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Abstract—This paper considers closed-loop quadratic stability
and L, performance properties of linear control systems subject to
input saturation. More specifically, these properties are examined
within the context of the popular linear antiwindup augmentation
paradigm. Linear antiwindup augmentation refers to designing a
linear filter to augment a linear control system subject to a local
specification, called the “unconstrained closed-loop behavior.”
Building on known results on ‘H., and LPV synthesis, the fixed
order linear antiwindup synthesis feasibility problem is cast as a
nonconvex matrix optimization problem, which has an attractive
system theoretic interpretation: the lower bound on the achievable
L, performance is the maximum of the open and unconstrained
closed-loopL- gains. In the special cases of zero-order (static) and
plant-order antiwindup compensation, the feasibility conditions
become (convex) linear matrix inequalities. It is shown that, if
(and only if) the plant is asymptotically stable, plant-order linear
antiwindup compensation is always feasible for large enougit-
gain and that static antiwindup compensation is feasible provided
a quasi-common Lyapunov function, between the open-loop and

since actuator saturation is ubiquitous, it is critical for practical
applications. Over the last decade considerable attention has
been given to controlling linear systems with input saturation
and significant progress has been reported in the literature.
The control objective for linear systems with input saturation
becomes even more difficult to obtain when the behavior of the
feedback algorithm must match a given behavior in the absence
of input saturation. For example, the controller may need to be a
particular PID controller for initial conditions and disturbances
that do not trigger input saturation. A local requirement like this
can arise for many reasons. In flight control, handling qualities
specifications dictate local controller attributes. In vibration at-
tenuation problems, frequency domain specifications constrain
the local design. In general, it is common to encounter control
problems where many years of experience have gone into the
development of a small signal controller and an augmentation

unconstrained closed-loop, exists. Using the solutions to the matrix Of that controller is desired to handle the effects of input satura-

feasibility problems, the synthesis of the antiwindup augmentation
achieving the desired level oL, performance is then accomplished
by solving an additional LMI.

Index Terms—Antiwindup analysis, antiwindup synthesis, con-
trol systems, cost optimal control, finite £, gain, linear matrix
inequalities (LMIs), linear parameter varying (LPV).

I. INTRODUCTION

P

tion that appear occasionally. Augmentation is necessary when
the predetermined controller is ill suited for the input satura-
tion nonlinearity. Among early control algorithms, those that
were most seriously affected by input saturation were those that
contained integral action, e.g., Pl or PID controllers. It was ob-
served that, due to input saturation, the state of the integrator
would “wind up” to excessively large values, leading to slug-
gish performance of the closed-loop control system [18]. Itis for
this reason that the phrase “antiwindup augmentation” is used

ERHAPS the first problem in nonlinear control is to desigky describe the problem of synthesizing controllers, subject to
high performance feedback algorithms for linear systems|ocal specification (called the unconstrained controller), for

with input saturation. This task is theoretically challenging anflpear systems with input saturation.

As first noted in [5], the most typical embodiment of anti-
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L z becomes inactive. When viewed in this LMI-based framework,
w_{_» P e the antiwindup augmentation design witty, performance
Ye u Yy S : .. .
¢ ‘W——,—’ IT,, objective leads to nice system theoretic interpretations: a lower
’Tc = bound on theLl, gain achievable by the augmented system
TL q is the maximum of theC, gains of the open-loop plant (with
AW zero control input) and that of the unconstrained closed-loop
Tau system. Moreover, when the antiwindup compensator order is
zero (static) or equal to the order of the plant (plant-order), the
Fig. 1. Antiwindup augmentation scheme. nonconvex matrix constraints can be reformulated in terms of

(convex) LMI constraints that can be easily solved, optimizing
the work of [30], the induced, norm was linked directly with 910Pally the performance and providing simple and effective

the behavior of the closed-loop system during saturation. F§Rnstructions for the antiwindup augmentation. Finally, by
thermore, various stability and performance tests for the clos&gY of these new tools, _plant-order augmentation can be
loop system could be formulated as convex feasibility proﬁ-h(_)Wn to_ be always _fea_5|ble (for I_arge enougb gam),_
lems, for which efficient solvers are now available. In [29], &'h'le st_at|c augmentation IS feasible if and Only if there exists
formal definition of the antiwindup problem was given. An im& quasi-common quadratic '-Vapun‘?" function between the
portant aspect of this definition was that recovery of linear peqpen-loop plant and the unconstrained closed-loop system.

formance (a concept also discussed in [6] and the referendfiQreover, asymptotlc stability of the plant is showr_1 to be a
therein) was stated in terms of nonline&y gains involving the "ecessary condition for the glob&} performance requirement

unconstrained and the actual response of the system. of this paper to be attainable.

In recentyears, several control applications started employing-M! tools have been brought to bear on the antiwindup
linear matrix inequalities (LMIs) [4] as a tool to exploit theffamework in very recent years. One of the earliest papers
(sometimes not evident) convexity of certain optimization prohere LMIs and antiwindup were combined is [19] where
lems in order to compute global optima in an extremely simplitability andZ, performance analysis of closed-loop systems
fied way. Although many valid antiwindup constructions hav#ith static antiwindup compensation is formulated as an LMI
been proposed, especially in the last decade that do not relyRsablem amounting to the determination of a “simultaneous
LMIs (see, e.g., [10], [20], [27], [24], [15], and [13]), we will quadratic Lyapunov function.” Moreover, [19] formulates
only focus here on LMI-based antiwindup designs. the associated synthesis problem in terms of bilinear matrix

While the control problem suggested by Fig. 1 is nonlinednequalities. In [17], the stability analysis of more general an-
one way to tackle it is to treat it as a linear parameter varyifigvindup closed-loop systems arising from known antiwindup
(LPV) problem, whereat(y.) is replaced by ()y. and®(-)  constructions were formulated in terms of LMIs and a first
is a measurable, matrix-valued function taking values in a sifempt to transform these LMI stability analysis tools into
consistent with reproducing the saturation nonlinearity. Withigentroller synthesis tools was made by the same authors in
this approach, special care has to be taken in assuring th@l, where the modified mixed»/H.. control problem was
well-posedness of the interconnection around the nonlinear#@yought to bear in the static and dynamic antiwindup synthesis
This is not an issue in the general LPV framework bec#i@g Problem, noting that it was associated with nonlinear matrix
is only a function of time. However, in the control problem irinequalities. Only recently, a complete LMI formulation of the
Fig. 1, ©(t) is actually better written a®(y.(t)), and might static antiwindup design problem, (namely, the case where the
result undefined if the system’s responget) is not well SystemAW in Fig. 1 is static, i.e., it has no dynamic state)
defined. We address and solve this well-posedness problemWis given in [22]. The result stops short of a system theoretic
this paper, by means of a global nonsmooth inverse functigﬁerpretation of the feaSlbl'lty conditions for static antiwindup.
theorem. The great advantage provided by the LPV frameworkThe main drawback of the static construction in [22] is that in
is that quadratic stability and performance by means of fixesveral situations the LMI constraints are unfeasible. To address
order antiwindup augmentation can be addressed using this problem, the same authors proposed an alternative static
LMI-based LPV synthesis ideas in [1] and [3] which derivantiwindup design in [21], based on the approximate solution
from a combination of [23] and [8] (see also [12]). Thesef nonlinear matrix inequalities, to relax the quadratic stability
synthesis ideas were applied to the control of linear systemegjuirement to piecewise quadratic stability.
with input saturation in [26] and [32], but not to what we have The rest of the paper is organized as follows. Section Il gives a
called the antiwindup augmentation problem since the contqmiecise statement of the problem including a Lyapunov-based
is not designed to match a given local controller. formulation of stability and performance. Section Il gives

The goal of this paper is to construct fixed-order dynamitie main results of this paper. In Section IlI-B, necessary
antiwindup compensators which guarantee a given level afid sufficient conditions for the existence of an antiwindup
performance using suitable finit, gains of the augmented compensator guaranteeing stability and a given level of perfor-
system as the performance obijective (this was also considemeg@ince is given. Interesting connections between the existence
in [22]). The basis for the study is the LMI-baskd,, controller of a suitable antiwindup compensator and properties of the
characterization of [8] and [12], where both full and reducedpen-loop plant and of the unconstrained closed-loop system
order controllers meeting al., norm-bound are describedare established based on this conditions. Furthermore, it is
in terms of a nonconvex feasibility problem, which reduce tshown how, for some special values of the antiwindup com-
a convex feasibility problem when a certain rank constraipensator order, these conditions can be easily checked solving
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LMIs based on the unconstrained controller and plant ma- Ly | 2,
trices. In these special cases, based on the LMI formulation, ﬂ» y u P y
the minimization of the performance level can be carried out C < - [z,

as a simple convex optimization problem that converges to a [ 2]

global minimum. Section IlI-A proposes a LMI to ascertain E 0

the performance of a given antiwindup compensator applied

to a given system. In Section IlI-C, it is shown that, once th&g. 2. Unconstrained closed-loop system.

necessary and sufficient conditions have been verified, it is

posslble to construct th? deS|_r e_d antlwmd_up compensator By Input Saturation and Antiwindup Augmentation
solving another LMI which efficiently provides a state-space o ) _ _ )
representation of the dynamics of such an antiwindup com-nstead of considering a particular plant input nonlinearity,
pensator. In Section IV, the proposed antiwindup constructi¥f® consider a class of input nonlinearities defined in Defini-
method is applied to a simulation example taken from tHon 2 (which requires the immediately following definition) in
literature and to an experimental system. The remaining s@kder to state necessary and sufficient conditions for stability
tion V provides the necessary tools for the proof of the mafind performance.

contribution of this paper through the statement and proof of Pefinition 1: Given any symmetric positive—definite matrix
interesting intermediate results. Vs € R™>*" and two matricesVy, W, € R™*", define the

Vs-productof W; andW, as

Il. PROBLEM DEFINITION (W, Wa)y, := WV, W,

A. Unconstrained Closed-Loop System i ) )
A function f : R"™ — R™ is said tobelong to the sector

Consider a lineaplantgiven by [0, 1]y, if {f(w),w— f(w))y. > 0forallw € R™. Afunction
&y = Apxp + By uu + By yw [+ R™ — R™ is said tobelong to the incremental sector

P Y= Cp,yxp + Dp,yuu + Dp,yww (1) [07 []Vs if <Jf(y)/ I- Jf(’y))‘/; > 0 for almost ally € R™-,

z2=0p.p+ Dyt + Dp pw whereJ f(y) denotes the Jacobian dfevaluated ay. o

Definition 2: A function ¢ : R™ — R™ is said to belong

wherez, € R™ is the plant statey € R" is the control , 4 if the functiong( - ) is locally Lipschitz, belongs to the
input, w € R™ is the exogenous input (possibly containing, remental sectd), 1]y, andg(0) = 0 o

d:sturbance, refglrebr}ci and measurementh:ngse)llﬁ"y IS :che Remark 1: If ¢(-) belongs tody, theng( -) belongs to the
plant output available for measurementc R™- is the perfor- sector(0, ]y, . Also, whenV, = T, the V,-product(W, W)y

mance output (possibly corresponding to a weighted trackingincides with the standard produdt? W,. Furthermore, the

el’ror) and Ap, Bp.,u.? Bp,u/': Qp,y: Dp,lyu; Dp.,yun Cp,z7 Dp,zua . ec:tor[o7 I]I property COinCideS W|th the SeCt{ﬂ', I] property
andD,,.,, are matrices of suitable dimensions. The plant With.fined in [14, p. 403] o

u = 0 will be referred to as thepenl—loop plant Suppose the control input of the plant is subject to a nonlin-
Assume also that, aminconstrained controllethas been earit
) y, namely
designed

c { ie = Acwe + Beyy + Beww + 01 u = ¢(yec) 5)

2)
c:OC;EC—l—DCq +Dcww+v (
Y Y ; 2 whereg( - ) belongs tody, .

(wherez, € R" is the controller statey. € R"+ is the con-  Remark 2: The ¢( - ) in (5) could be a decentralized satura-
troller output,»; andw, are additional inputs that will be usedjon function, namely

for antiwindup augmentation amdl., B, ,, B. .,, C., D, ,,, and
D.. ., are matrices of suitable dimensions) in such a way that its sat(y.) := [sat1(ye1) sata(ye2) - - satn, (Yen, )]
interconnection to the linear plant through the equations

T

wherée
u:y(‘ UIZO v2:0 (3) y
is well-posed and guarantees internal stability of the arising sati(yei) 1= max{l M}
closed-loop system. The interconnection of (1) and (2) via (3) T M;
corresponds to the block diagram in Fig. 2 which we will refertR/[ CRM > 0fori—1 . Such decentralized satura-
as theungonséptr?med 2'03537'009 systefly selecting the state tion functions belong t@v/ if VS is a diagonal positive—definite
Ty = [‘Lp ;EC] € Rrerxncer wherengr, := Np + Ne, and matrix s o

focusing on the effect of the exogenous inpubn the perfor-

. . . Given an integen.,,, > 0, we address the problem of de-
mance output, we can write the dynamics of the unconstrained . , L
i d . signing an ordef,,, linearantiwindup compensator
closed-loop system as a single linear system with state—spa

representation Taw = MTaw + A2(ye — u)

. v
Ty = AcLT¢ + Ber,ww AW v = [vl} = AsZaw + Aa(ye — u) ©)
2
z = CcL,.®¢ + Dcr, 20w 4)
. 1For the purpose of this paper, decentralized saturation can denote the larger
where Acy, Ber,w, Cev,z, and Dey, . are uniquely deter- set of decentralized functions wheret, ( - ) is locally Lipschitz,sat, (0) = 0

mined by the matrices in (1) and (2). and(d/(ds))sat,(s) € [0,1] almost everywhere far=1,...,n,,.
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Fig. 3. Antiwindup closed-loop system. [ll. LMI-B ASED ANTIWINDUP ANALYSIS AND SYNTHESIS

The main contribution of this paper is presented in three
(wherezx,, € R" is the antiwindup statey € R™ (with parts. In Section IlI-A, we will provide tools for performance
n, = n. + n,) is the antiwindup output, and the matriceanalysis when the antiwindup augmentation (6) is preassigned.
A1, Az, Az, andAy4 are of suitable dimensions) that guaranteda Section I11-B, we provide nonlinear matrix conditions whose
a desirableC, relationship between the exogenous inpuand  feasibility is necessary and sufficient to guarantee the existence
the performance outputfor all ¢( -) that belong toby,. The of an antiwindup compensator that guarantees stability and
interconnection (1), (2), (5), (6) will henceforth be called thgerformance in the sense of Definition 3. For special cases,
antiwindup closed-loop systeamd is shown in Fig. 3. these nonlinear matrix conditions are transformed into a set
of LMIs. Finally, in Section 11I-C, we will give a procedure to
C. Lyapunov Characterization of Stability and Performance construct antiwindup compensators that induce the performance
A desirable stability and performance property for the arevels guaranteed by suitable solutions to the matrix conditions
tiwindup closed-loop system will be presented in terms afi Section III-B.
Lyapunov analysis tools.
Definition 3: Given the linear planP in (1) and the uncon- A. LMI-Based Antiwindup Performance Analysis
strained controlleC in (2), a linear antiwindup compensator  Assume that the plar®® in (1), the controllec in (2) and the
(6) of ordern,,, guarantees well-posedness and quadratic pefinear antiwindup compensatot)V in (6) are given. Then, for
formance of level if the augmented antiwindup closed-loopynalysis purposes, the level of performance can be determined
system (1), (2), (5), (6) is such that, for & - ) that belong to by solving an LMI eigenvalue problem
Dy, To formulate suitably the corresponding LMIs, we need to
1) the interconnection (1), (2), (5), (6) is well-posed; introduce additional notation which corresponds to representing
2) there exists a scalar > 0 and a quadratic LyapunoVthe antiwindup closed-loop system in a compact way, as in
functionV(z) = «" Pz (with z := [z =l 27,]" and  Fig. 4. In particular definaj(-) : R™ — R™ with output
P = PT > 0) such that its time derivativé” along the g € R™ as
dynamics of (1), (2), (5), (6) satisfies
q=1(Ye) == ye — P(ye)- (8)

Next, define the overall state variahle € R", wheren :=
Np + Ne + Nayw, &S

- 1
V< —exle — =272 + ywlw V(z,w) #0. (7)
Y

[¢]

Remark 3: Definition 3 entails (sufficient) conditions for in- w=[aT aT :L.:;PW]T
ternal stability of the antiwindup closed-loop system and for fi- _ P _
nite £, gain~ from w to z for all ¢( - ) that belong taby . In-  which allows the linear dynamics of the plant, controller and
deed, since the interconnection (5) is well-posed [as guarant@&diwindup compensator to be combined and written as

by item 1)], item 2) guarantees & = Az + Byq + Byw
i) quadratic stability derived by rewriting (7) withv = 0, w Ye = Cyx + Dygq + Dyyyw 9)
which implies z=C.t+ D.qq+ D.,w
V < —e|x?; where the matricesA, By, B.,, Cy, Dyq, Dyw,C-, D.q, and

D.,,, are of appropriate dimensions and are uniquely deter-
ii) Lo gain fromw to z smaller tharry. Indeed, inequality mined by the matrices in (1), (2), and (6).
(7) can be integrated on both sides from @ fassuming  After a suitable change of coordinates the interconnec-
zero initial conditions) to obtain tion between (8) and (9), named tl®mpact antiwindup
; Lt . closed-loop systerand shown in Fig. 4, corresponds to the
0<V(t)+ 6/ lz2dt’ < __/ 2|2 dt’ + 7/ lw|? dt’ antiwindup closed-loop system (1), (2), (5), (6).
Jo Y Jo 0 Theorem 1: Given the antiwindup closed-loop system (8),
(9) and a scalaf, the antiwindup closed-loop system is well-

which implies the finiteL, gain~ from w to z: ) i
posed and guarantees quadratic performance of feifednd
”ZH? < ’VHMHQ' 2The LMI eigenvalue problem (see, e.g., [4, p. 10]) is to minimize a linear
function subject to an LMI constraint (or to determine that the constraint is un-
o feasible).
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only if there exists a solutiof@), 6,~) to the following LMl  MC(P,C,n.y,7) as the following set of matrix conditions in

problem: the unknowng R, S,~):
QAT + AQ B,U +QCT B, QCT [RuAT + A,Ryy  B,., RiCT,
UBJ +CyQ DyU+UDy, =2U Dyw UDZ | B, I Dy, | <0 (113)
B;ZL—: Dgw _FYI DZw L Op,lel Dp,zw _’YI
C.Q quU D, —I I SA%L + AcLS BCL,w SCgL;Z
(10a) BE, —I D&, |<0 (11b)
Q = QT >0 (1Ob) L CCL,ZS DCL,zw _fyI
_ —1
U=ov,">0 (10¢) R=RT = [g% glﬂ >0 (11c)
v <A (10d) 12 ez
S=8T>0 (11d)
Proof: See Section V-A. [ | R-S5>0 (11e)
Remark 4: Convex Performance AnalysiSiven a plant, rank (R — §) < nay (11)
controller and antiwindup compensator that make up an N <A N (11g)

antiwindup closed-loop system, the greatest lower bound on

performancey* can be obtained by solving in the unknowns

(Q.6,~) the convex LMI eigenvalue probled := inf(y) MoreoverMC(P,C, n,y,¥) is said to bdeasiblef there exists

subject to (10a)—(10c). o asolution(R, S, ) that satisfies (11). o
Remark 5: If ¢(-) belongs to®y. andV,~' is linearly pa-  The following theorem, representing our main result, pro-

rameterized, then extra degrees of freedom can be exploi¥ges necessary and sufficient conditions for the existence of

when solving the LMIs (10). This is the case for decentralize? antiwindup compensator that guarantees well-posedness and

saturation functions introduced in Remark 2. Observesthat! ~ quadratic performance of levglin terms of the matrix condi-

is linearly parameterized over the family of diagonal positivions MC(P, C, naw, 7).

definite matrices. Hence, in the decentralized case, (10c) can bdheorem 2: Given the planf in (1), the unconstrained con-

replaced by/ = diag(u, . ..u,,) > 0 whereu; are unknown, ftroller C in (2), an integem.,, > 0 and scalar, there exists

thus allowing extra degrees of freedom in the minimization & linear antiwindup compensator of ordey, that guarantees

5. o Wwell-posedness and quadratic performance of keviednd only
Although Theorem 1 provides a useful tool for analysi§ MC(P,C, ., 7) is feasible.
purposes, it can not easily be used for antiwindup synthesis be- Proof: See Section V. u

cause the unknown antiwindup compensator matrices multiplyRemark 6: The Greatest Lower Bound on Achievable
the unknownQ, thus making the matrix inequality (10a) nonPerformance: The goal of optimal antiwindup design is to
linear. In the sequel, suitable procedures are given to constré@fstruct an antiwindup compensator that guarantees a per-

antiwindup compensators that guarantee well-posedness fggnance level as small as possible. Based on Theorem 2, the
quadratic performance. greatest lower bound on achievable performafteuch that

MC(P,C, naw,7*) is feasible can, in principle, be determined
by solving in the unknowngR, S, v) the nonconvex optimiza-
tion problemy* := inf(~y) subject to (11a)—(11f). o

To assist in the system theoretic interpretation of the matrli_x Remarlk 71 1Lower d Biggd‘; on Perfo:mant%e Le}[/_kdls_lntg
inequalities that will follow, recall the well-known LMI formu- emma 1, (11a) and (11b) have a system theoretic interpre-

lation of the bounded real lemma for continuous time systerf?stion' In particular, observe that (11_a) constrf';r'mk) be no
(for a complete proof see, e.g., [25, p. 82]) ess than thé{., norm of the plant® with « = 0, inputw and

Lemma 1 (Bounded Real Lemmaphe following statements OUtpUt,Z or equivalently, no less than t@% gain fromw 1o z .
are equivalent. associated with the open-lc_)op plant. S|m|larly, (11b) constrains
) _ ~ to be no less than th&, gain of the unconstrained closed-loop
1) [ID+ C(sI - A)_IB||0<>_< 7 andA is Hurwitz. system (4). While these two LMIs provide lower bounds for
2) There exists a symmetric positive—definite solutiorio  ne £, gain achievable by the antiwindup closed-loop system,
the LMI (11e) and (11f) establish a nonlinear coupling between the two
conditions. o
Based on the previous remark, it is evident that for condi-
tion (11a) to be feasible the plant (1) needs to be asymptotically
stable. Since Theorem 2 also establishes the necessity of (11) for
antiwindup feasibility, asymptotic stability of the plant is shown
The following definition will be useful to simplify the nota- there to be necessary if one wants to guarantee the global proper-
tion throughout this paper. ties of Definition 3. One of the reasons that itis necessaryfor
Definition 4: Given the plan® in (1), the controllef in (2), to be Hurwitz is that we are asking for global quadratic stability
an integem,,, > 0 and a scalaf, define the matrix conditions in the absence of inputs. Even if we didn’t insist on quadratic

B. Feasibility of the Antiwindup Synthesis Problem

XAT +AX B XCT
BT —~I DT | <o.
CX D I
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stability, with appropriate detectability and stabilizability cons, MC(P,C,n.w,7) is feasible if and only if there exists a
ditions fromw to z, it is a straightforward consequence of theolution(R;1, S, ~) to the following LMI problem:
classical small gain theorem that finite gaia stabilizability

. X : [Ri1 AT + AR B,., R;CT
by bounded controls implies that, is Hurwitz. In the more 1 —; prL o p o
. : . BY —~I D <0 (13a)
general case of non asymptotically stable linear plants (which o p’ﬁ D wlw
is not addressed in this paper), the global properties of Defini- = 7 = pEw _77
tion 3 should be relaxed to be able to guarantee useful results. SAcr +AcLS Berw  SCcrp .
In the next section, we will show that the nonlinear condition BgL,w =1 DgL,zw <0 (13b)
(11f) can be transformed into a linear one, in some special cases. | CoL..S Dcrow =71
1) LMI Formulations of the Feasibility ConditionAn ap- Riy =R, >0 (13c)
pealin_g pr(_)perty of Theor?m 2 i_s that z_;\II but one of the G gT S11 Sia 0 134
conditions INMC(P,C, n.y,7) are linear with respect to the = T | 8L, Sy > (13d)
upknowns(R, S v), the exception being (1.1f.)—the ra_n_k con- Ryy — Sy >0 (13e)
dition. Paralleling the necessary and sufficient conditions for <A 13
reduced ordefH., control synthesis (see, e.g., [8, eq. (26)], T=7 (13f)
when considering thdull order casenay = n, + nc, the Proof [Feasibility of (13)= Feasibility of (11)]: Given a

rank condition is trivially satisfied and the optimization of th%olution(RH, S,7) to (13), takeR1y = S15 and Rys = Sas.
performance level and the determination of the correspondimgien R and S trivially satisfy the rank constraint (11f) since,
solution(R, S, ) reduces to a convex LMI eigenvalue problempy (13e),R;; > Si1, thenR > S > 0. Hence,R is positive
for which numeric algorithms are readily available (see, e.@efinite and(R, S, ~) satisfies Conditions (11) With,y, > n,,.
[9D). [Feasibility of (11) = Feasibility of (13)]. Suppose (11) is
For the full-order case, the rank condition is guaransatisfied by a solutiofiR, S, ~). Then (11e) guaranteds;; —
teed satisfied and the optimal performance leyél such g,, > 0. Then there exists a symmetric positive—definite matrix
that MC(P,C,n;, +n.,7") is feasible can be determinedR,,, such that withR,; — Si; > 0, (13a) is satisfied. ([To
by solving in the unknowngR, S,v) the LMI eigenvalue show this, take: > 0 such thatRy; = Ry + el,,, satisfies

problem o= inf(_v)_ subject to (11a_)—(11e). However,(13a). MoreoverR; — S11 > 0 = Ry — el,, — S11 >
when considering antiwindup compensationreduced-order o = R,; — S;; > 0, as desired]. Finally, (13) is satisfied by
(naw < my + me), the rank condition needs to be satisfiedz,,, 5, ). m

and the conditionsIC(P,C, naw, ) become nonlinear. By  Based on Theorem 2 and Propositions 1 and 2, the following

exploiting the special structure of the antiwindup desigiheorem gives suitable conditions for the feasibility of the con-
problem, in the following Propositions 1 and 2 we will ShOV‘ditionsMC(p7c7naw7:y) in Definition 4.

how to replace the nonlinear rank condition with equivalent Theorem 3: The following properties hold.

linear conditions, for the_ special reduced order Casgs= 0 1) There exists ascaldsuch thaMC(P, C, 0,7) is feasible
andnaw > nyp, respectively. In these two special cases, all "~ it 5ng only if there exists a matri® that is a solution
the matrix inequalities are linear in the unknowns, and the (5 the LMI problem

minimization problem fory becomes a convex LMI eigenvalue

problem. Ry Al + ARy <0
Proposition 1(n.. = 0): ~Given the platlt’P_ in (1), the RAL, + AcLR < 0
controllerC in (2) and a scalaf, MC(P,C,0,) is feasible if R R
and only if there exists a solutigi?, v) to the following LMI R=R" = [RITI R12 > 0. (14)
conditions: R
_ - T oA 2) There exists a scalgrsuch thaMC(P,C, n,,7) is fea-
Rud, + AR Bpw  RuGy . sible if and only ifA, is Hurwitz.
B, —I D, | <0 (12a) 3) If MC(P,C,n1,7) is feasible andn; < mns, then
L CpRn Dpzw =1 | MC(P,C,ns,7) is feasible.
[RALL + ActR BoLw RO . 4) If MC(P,C,n1,7) is feasible andn; > n,, then
BEL; ., —I DL .. 1 <0 (12b) MC(P,C,n,,7) is feasible.
| Ccu.R Devzw  —I | Proof:
R_RT - [Rn Rlz] 50 (120) Item 1) If MC(P,C,0,7) is feasible then by Proposi-
RY, Ra tion 1 there exists a matrik that satisfies (12a) and
v <A. (12d) (12b) with~ = 4. Since each block on the main diag-
onal of both (12a) and (12b) is negative definite, then
Proof: If n,, = 0, (11f) is satisfied if and only if? = S; the top left block diagonal entries which correspond to
thus (11e) is satisfied and (11d) is redundant. Hence, the proof the inequalities (14), are negative definite as well.
follows by rewriting the remaining inequalities in (11) with= Assume there exists a symmetric positive definite
S. [ | matrix R that satisfies (14). Since (14) corresponds to
Proposition 2 (n.w > mnp): Given the plantP in (1), the top left block diagonal entries of Conditions (12a)

the controllerC in (2), an integern,, > mn, and a scalar and (12b), then there exists a large enotigh 4 such
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that (12a) and (12b) are satisfied. The result followa certain performance level for the closed-loop system in
from Proposition 1 pickingy = 7. Fig. 3, they do not provide tools for the construction of such a
Item?2) First, note that there exists a matribcompensator. In this section, based on a solutiBnS, ) to

Ri1 = RY, > 0 such thatRllAf + A,R11 < 0 MC(P,C,naw,7) arising from Theorem 2 or Proposition 1 or

if and only if A, is Hurwitz. Moreover, since the 2, we give a procedure to construct a state-space representation
unconstrained closed-loop system is exponentialbf an antiwindup compensator that guarantees well-posedness
stable, Acr, is Hurwitz and there exists a matrixand quadratic performance of level The effectiveness of the

S = ST > 0 such thatSAL;, + AcpS < 0. Since procedure is then formally stated in Theorem 4.

Ry1 > 0, there exists a sufficiently smadl > 0 such To suitably describe the procedure for the construction of the
that R;; — S11 > 0. TakeS = €S. Then there exists antiwindup compensator, we will first introduce an equivalent

a large enoughy = 7 such that(R,,, S, ) satisfies representation for the antiwindup closed-loop system (1), (2),
(13). The proof is completed by applying Propositio5), (6) represented in Fig. 3. By stacking the plant and the con-

2 pickingy = 7. troller states into a single state vectary, := [+] 2I]T €
Item 3) The result is a direct consequence of DefinR™ct, with ncy, := n, +n., the antiwindup closed-loop system
tion 4 since if the rank condition (11f) holds fag, = can be written as shown in Fig. 5. The dynamics of the sub-
ny then it also holds fon,, = ns > n;. systemH in Fig. 5 is given by
Iltem 4) The result is a direct consequence of Proposi- .
tion 2 since Conditions (13) are independentgf.m gcL = Acr@er + Berww + Bev,gq + Bor,ov
An important implication of Theorem 3 is that not only does’t z =Ccr:xcL + Der,zww + Dt 2qq + Der 20
the antiwindup construction always admit a solution choosing Ye = CerLyrer + Devyuwtt + Devyqd + Dot yov
Naw = n,, but also given the optimal performangé achiev- (15)

able by a solution of any order,,, > n,, then by item 4 of the
theorem, this same performance is achievable by an antiwindgﬂere

compensator of ordet,. Hence, the restriction that the anti- C&B’ Do 2w, I?CL’Z‘“ DQLtvz“c’j.OCL*“J.’ DCEW’I DOCIIL*W’d
windup compensator orderis, does not restrict the minimum andlcr,,» are ot appropriate dimensions ana only depend on
achievable performance level the matrices of the plant (1) and of the controller (2).

Moreover, item 1) of Theorem 3 implies that, in man Based on the linear system (15), we can formalize a procedure

situations, static antiwindup compensation does not provi 1th(|aacons(;ruct|in g thet angwmd??hcogpfn_sa:jtor. c
a feasible solution to this antiwindup problem, regardless of ) Procedure 1 (Construction of the Antiwindup Compen-

the performance levél. Indeed, condition (14) corresponds o2 or): o N
requiring the existence of a quasi-common quadratic LyapunovStep 1) Solve the feasibility conditions

the matrices ACL7 BCL,un BCL,q: BCL,m

function between the open-loop plant and the unconstrained Given the plant?, the controllerC, an in-
closed-loop system. In particular, if the unconstrained controller teger n,, > 0 and a scalary, determine a
is static(Ry; = R), it exactly requires a common quadratic solution (R,S,v) that satisfies the conditions
Lyapunov function. In the general case of a dynamic uncon- MC(P,C, naw, 7). _
strained controller, it is a generalization of this requirement St€p 2) Construct the matrix). _
based on the fact that the size of the unconstrained closed-loop Using the solution( R, S, v) from Step 1, define
system is larger than the size of the open-loop plant. the matrix V€ R™c»*"= as a solution of the fol-
Remark 8: Greatest Lower Bound on Achievable Perfor- lowing equation:

mance via Convex OptimizatiorRemark 6 provides a method

to determine the greatest lower bound on performance by
solving a nonconvex optimization problem. In the light of Since R and S are invertible and Conditions
Propositions 1 and 2, the greatest lower bound on performance (11e) and (11f) of Definition 4 are satisfied, then
can be determined by solving a convex optimization problem
when considering static or at least plant-order antiwindup com-

RS™'R—- R =NNT. (16)

RS™'R — R is positive semidefinite and of rank
naw, SO there always exists a matriX satisfying

pensation. In particular, the greatest lower bound on achievable (16). Define the matrid\/ € R™sv X" as
performance’, using a static antiwindup compensator can

be determined by solving, in the unknow(®, +), the convex M:=IT+NTR™'N. 17)
LMI eigenvalue problem¥* := inf(y) subject to (12a)—(12c).

Similarly, the greatest lower bound on achievable performance, Finally, define the matrix
Ay, » Using an antiwindup compensator of order greater than or Q € Rmertnaw)x(nertnay) gg

equal to the order of the plant can be determined by solving, in RN

the unknowngR;1, S, ), the convex LMI eigenvalue problem: Q= {NT M} (18)
Yn, = inf(7) subject to (13a)—(13e). o

C. LML-Based Antiwindup Svnthesi Step 3) Construct other required matrices
. -Based Antiwindu nthesis i nxn

) P y- _ _ Construct the matricesl, € R"*" B, €
Although the results in Section 1lI-B provide natural condi- R Cyo € R™X™ Dygo € R™*™, C,, €

tions for the existence of an antiwindup compensator achieving R":X" D, € R™Xm HT ¢ RXMawtn.)



1516

AW v TS ?'[ yc
[
LTI ()

T aw

-

Fig. 5. Equivalent representation of the antiwindup closed-loop system.

Gy € Rawtnu)xn g ¢ Rawtnu)xne [l ¢
Rnux(n“‘v+n”), Hg“ c Rn;X(naw+nv),Bw c

R*»*"w D., € R"*™ andD,, € R™*™ as

follows:
| AcL O | BcL,g
ol 2] e[
Cyo = [CCL,y 0]
(19a)
quo = DCL,yq C.o = [CCL,z 0] quo = DCL,zq
T __ [ 0 BCL,U o 0 Inaw
Hy = | I, O Gi=19
[0
Ga= | 1]
Hy =[0 Dcrye] Hi =[0 Decrzol (19b)
B .
B, = COL7 :| D.., = DCL,zw Dyw = DCL,yw
(19¢)
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Theorem 4: Given the plantP, the controllerC, an integer
naw, @ scalary and a solution(R, S, v) to MC(P,C, naw,7),
the LMI (22) constructed according to Procedure 1 is guaranteed
to be solvable forA. Furthermore, the solution defines the
matrices of a linear antiwindup compensator (6) of ordgf
that guarantees well-posedness and quadratic performance of
level 5.

Proof: See Section V. ]
Remark 9: To overcome implementation problems, it might
be desirable for the antiwindup compensator arising from Pro-
cedure 1 to be strictly proper. At least for the case when the con-

troller (2) is strictly proper (namelyj). , = 0 andD, ,, = 0),

this is possible without increasing the performance lévbut
increasing the dimension of the antiwindup compensator (6) by
addingn,, states. Indeed, the conditions of Theorem 2 hold for
a giveny if and only if they hold for someg = v — 6, with

6., sufficiently small. Then, following a singular perturbation
approach (see, e.g., [14, Sec. 9.4)), it can be shown that there
exists a sufficiently small constapt > 0 such that the same
antiwindup compensator augmented with the filter

ng=—q+us

located at its input (namely, choosing = 1 (y.)) still guar-
antees well-posedness and quadratic performance of fevel
Indeed, defining the new state variabfe:= ¢ — ¥(y.), a
singular perturbation argument allows us to prove a relation
similar to (7) for the new antiwindup closed-loop system. In
particular, taking anyl € (0,1) a new (Lipschitz) Lyapunov

Step 4) Construct and solve the antiwindup compensatdtnctionV (z, £) := (1—d)V (z)+dé? can be shown to satisfy

LMI.

(7) for a smallere but the same original value foy (this is

Stack the matrices of the antiwindup compensat@ossible by the preliminary insertion of the margin). o

(6) in a single matrix\ € R(mawFm)X(nawtn.) gg

follows:
A
Ay |-

Choose anys € R,6 > 0 and defineU = ¢§V,71.

A= {Al (20)

A3

Based on the matrices determined in Steps
and 3) of this procedure, -construct the

] € R(n+nu+nw+n1)><(n+nu+nw+nz).H €
R(naw +ny) X (04 ny 4+ ny +nz), and G c

Remark 10: When the saturation function is decentralized
(consequently, by Remark 5] can be selected as a diagonal
positive definite unknown), the static antiwindup construction
in Procedure 1 (witl,,, = 0) corresponds to the optimal static
antiwindup construction proposed in [22], where the mattfix
is an unknown diagonal positive—definite matrix (ther&in!
is referred to as the “stability multiplier”) and the parameter
2) = R, instead of being determined in Step 2), is undetermined

matricesnd considered as an extra unknown variable in the inequality

(22). Indeed, due to the simpler structure of the problem when
n.w = 0 (causingG; = 0), inequality (22) turns out to be

R(maw +mu) X (n 47+ nw +n2) a5 shown in (21a)—(21c) at thelinear in the unknowng), U, A, U, and~, hence being solvable
bottom of the page. Finally, compute the matixassociated through a single-step solution, wheye&an be once again min-
with the desired antiwindup compensator by solving the LMIlimized in a convex way. Although the stability multiplier was

employed in [22] to improve the antiwindup performance, an

U+ GTATH + HTAG < 0. (22) interesting implication of Theorem 2 is that since the conditions
QAT + A.Q BgoU +QCL, B, QCL
T T T
v |UBL+Cy0Q Dyl +UDL, —2U D, UDL, (213)
BT Dz, —I DI,
Con quoU Dzw _’YI
H=[H, Hy, 0 Hj] (21b)
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MC(P,C, naw,~) are independent oV, then the minimum 15
achievable performance level does not depend on the stabili
multiplier. o

-
o

o

IV. APPLICATION EXAMPLES

pitch angle (deg)
flight path angle (deg)

o

In this section, the antiwindup construction proposed in % > 4 0 2 4

Section 1lI-C is applied to two linear windup-prone control
systems. The first one is a simulation example that illustrate 5
the effectiveness of the construction in the nontrivial cas¢s ° -
of a multiple-input—-multiple-output system. The second oneES-10

w
o

20

flaperon angle (deg)
>

is an experimental application that shows the success (g

our algorithms when applied to practical control problems.g_20 0

In particular, the application that we have chosen exhibit: ® -3 J 5 ” ~10— 5 ”
a difficult windup problem for which static antiwindup is time (s) time (s)

not even capable of guaranteeing quadratic stability (this is

verified by checking the conditions in Theorem 3) and the mofdg. 6. Example 1. Comparison of the unconstrained response (bold solid) and
of the saturated response (dotted) to the static (dash-dotted) and dynamic (thin

SOphiSticated plant-order dynamic antiWinduP Compensati%]id) antiwindup designs with = y — w and to the scheme of Kapasoueis
scheme is necessary. al. (dashed).

Example 1 (The Longitudinal Dynamics of an F8 Aircraft
[13], [19]): Consider a fourth-order linear model of the longiscussed thus far, are shown in Fig. 6, where the bold solid
gitudinal dynamics of the F8 aircraft and the eighth order linegfe is the unconstrained trajectory, the dotted line is the satu-
unconstrained controller introduced in [13]. The two inputs tgated trajectory, the dashed line is the antiwindup response with
the plant are the elevator angle and the flaperon angle, e@gh method of [13], the dash-dotted line is our static antiwindup
one limited betweent25 degrees and the two outputs of thgesponse, and the thin solid line is our plant-order antiwindup
plant are the pitch angle and the flight path angle. The copsponse. Both of the antiwindup closed-loop system responses
troller input is the difference between the plant OUtpUt and tl}}%\/e Signiﬁcant overshoot and are, perhaps] undesirable.
reference input. The authors of [13] observe a substantial pernext, we will show that the antiwindup trajectories can be sig-
formance loss when the plant input is subject to saturation af#icantly improved by selecting a different performance output.
propose a reference governor scheme for antiwindup purposgg observe the most substantial degradation in performance of
We will compare their result to the antiwindup compensatotie saturated closed-loop trajectories is the large overshoot and
designed using the methods in this paper. settling time of the pitch angle. For this reason, we select the

The methods in this paper depend on the realization of thgrformance objective to be composed of the pitch angle error
unconstrained controller. Using the matricAs, B., Ca,H, and the angular acceleration due to the plant state on the pitch
andG defined in [13], choose the realization of the controllegngle. In particular, we will define the performance output via

according to the matrices
_[A.+B.G-HC, 0 B k! o 0 o 3
Ao = G 0| TBew=Bey= [0} Cpz = [—.8 —.0006 —12 0
CC = [0 I] Dp,zu = 02><2
3
, . . . -2 0
andD. , andD. ,, are zero matrices of appropriate dimensions. Dy .w = [ 04 0] .

By selecting the performance output y—w wherew denotes

the reference input, a static antiwindup compensator can Aatatic antiwindup compensator can now be constructed using
constructed using Procedure 1 with, = 0 which guarantees Procedure 1 with,,, = 0 which guarantees performance level
performance leve} = 22.19 and the resulting antiwindup com-v = 26.18 and the resulting antiwindup compensator consists
pensator consists of the gain is as shown in the equation at tfiehe gain as shown in the the equation at the bottom of the
bottom of the page. Similarly, a plant-order antiwindup compepage. Similarly, a plant-order antiwindup compensator can be
sator can be constructed using the same performance outputeomktructed using the same pitch angle performance output and
Procedure 1 withr,,, = n,, resulting in an antiwindup com- Procedure 1 withi., = n,, resulting in an antiwindup com-
pensator with guaranteed performance level 19.39. To save pensator with guaranteed performance level 22.91. To save
space, the constructed matrices are not written here. The agfiace, the constructed matrices are not written here. The an-
windup closed-loop system response, and the other resportsesdup closed-loop system response, and some of the other

6.1077 10.113 —5.1947 —1267 —0.17647 0.89373 6.2456 11.053 —0.90667 1.5318 |"

As= —1.9882 9.6373 —3.85643 —566.8 —0.24158 0.31719 -—-1.9261 10.102 0.05948 0.01987
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Fig. 7. Example 1. Comparison of the unconstrained response (bold solid
and of the saturated response (dotted) to the static (dash-dotted) and dynan
(thin solid) antiwindup designs with pitch angle performance output and to the
scheme of Kapasourgt al. (dashed).

responses discussed previously, are shown in Fig. 7 where t 7 4
bold solid line is the unconstrained trajectory, the dotted ling
is the saturated trajectory, the dashed line is the antiwinduf
response with the method of [13], the dash-dotted line is ou
static antiwindup response, and the thin solid line is our plant
order antiwindup response. The trajectories of this antiwindup
closed-loop system designed using the pitch angle performang
output, particularly with plant-order antiwindup, are highly de-
sirable and are a marked improvement over the scheme pr
posed in [13].

Example 2 (An Experimental ExampleJhe cart-spring-
pendulum system shown in Figs. 8 and 9 (which is available
at the Control and Computation Laboratory at the University
of California, Santa Barbara) consists of a cart restricted t
motion on a straight and level track which is attached via ¢
spring to a fixed wall. A pendulum is suspended from the car
by a hinge so as to be constrained to the vertical plane define
by the track. The cart is equipped with a DC motor that exerts i
torque to a small toothed wheel which, in turn, applies a force
on the cart. The system will be disturbed by a sharp tap on th
pendulum that comes from a human hand. For the purpose of
deriving a model, the experimental system will be consider&§- 8- Damped mass-spring-pendulum system in Example 2.

to be composed of a massless spring attached to a frictionless ] ) )
cart from which a slender rod freely hangs. the DC motor]—6, 6] Volts). The disturbance is a force in the

The output of the system is the positiprof the cart, in me- plane of motion orthogonal to the pendulum of lengthand

ters, relative to the spring’s equilibrium point and the angul&Cts at a distance dft/3)! from the cart-pendulum hinge. A
positiond of the pendulum, in radians, relative to the vertica?onlinear model of the system can be derived by applying stan-

both positions are measured with optical encoders. The ph§&rd Euler-Lagrange ;echr_ﬂque_s. Moreover, defining the plant
ical inputs of the system are the voltageapplied to the ar- State as;, := [p p 6 01", alinearized model around the origin
mature of the dc motor, in Volts, and a disturbance fargén 1S given by (1) and

Newtons. The force from the motgt, in Newtons, is modeled 0 1 0 0
asf = kiu — kop. The operating range of the control input —-330.46 —-12.15 -—2.44 0
is constrained by the range of the D/A converfer;, 5] Volts Ap = 0 0 0 1
(which, incidentally, nearly covers the entire operating range of —812.61 —29.87 —-30.10 0

| 14339 —55.258 —0.10926 —7.6946 0.01282 0.30214 14.406 —55.168 —0.97438 —0.019895 T

A= —76.926  528.52 2.4325 5.9347 0.54967 0.69361 —76.628 527.19 —0.13474 —0.76157
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{1 taps, however, give rise to undesirable closed-loop behavior,
i.e., the settling time is severely deteriorated. In Fig. 9, the

6 (radians)
o

\/

bold solid curve represents the simulated (ideal) unconstrained
1 response, the dash—dotted curve represents the simulation of

the saturated response and the thin solid curve represents the

1 corresponding experimentThe noticeable mismatch between
the thin solid and the dash-dotted curves is cause by unmodeled

p (meters)

effects of the experimental device: mainly backlash and stiction
affecting the movement of the cart on the track. Besides these

unmodeled phenomena (which cause significant differences,
especially on the tails of the responses), the fourth order model

u (volts)
o

_5F -

represents sufficiently well the dynamics of our experimental
system.

Based on the antiwindup construction proposed in Proce-
dure 1, the undesired behavior of Fig. 9 can be mitigated by

time (seconds)

augmenting the experimental control system according to the
diagram in Fig. 3. To determine an optimal selection of the an-

Fig. 9. Example 2. Response to the larger pendulum tap. Simulated

unconstrained response (bold solid); simulated
(dash-dotted); experimental saturated response (thin solid).

r 0 0
2.71762 0
By = 0 Bpw = 0
L 6.682 68 15.61
[1 0 0 0 0
Cp,y: 0 0 1 0:| DP,!IUZ|:0:|
[0
Dy yw = 0}

where 4, is Hurwitz.

Suppose the system is allowed to come to rest before it Smpensation matrices are obta

saturated

ﬁygindup compensator matrices we first choose a performance
outputz. By inspecting Fig. 9, we see that for the larger pen-
dulumtaps, the pendulum swings wildly causing the cartto chase
after the pendulum, almost in vain. To reduce quickly the mag-
nitude off, we choose the matrices related to the performance
outputz as follows:Cp . = [0 0 1 0], D} .o, = 0,D,, .., = 0.

A first antiwindup design attempt is carried out by selecting
k = 0 to explore feasibility of static antiwindup compensation.
Unfortunately, for this system, the associated LMIs (12) in
Proposition 1 are unfeasibie As a further step, we move to
dynamic antiwindup compensation of order= n,, which,
based on the asymptotic stability of the plant, is guaranteed
to be feasible by Theorem 3. To construct this compensator,
Procedure 1 is applied with., = n, and the following
ined, which guarantee a per-

respo

disturbed and we are interested in the response of the systemgyﬁ]ance level ofy = 181.82:
to two test pendulum taps, one smahd one five times larger. o

Suppose further the objective is to return the pendulum and cart - —65.02  198.43 98.11 —66.75
quickly and gently to their equilibrium after the smaller taps and 293.94 —697.09 —347.39 9247.24
gracefully handle the larger taps to the pendulum. Following a1 = 41.17 —98.10 —47.56 55.95
LQG construction, an observer based controller of the form (2) | —121.39 309.97 13831 —131.52
is designed where - 0.0688
—0.2620
K =[64.81 213.12 1242.27 85.82] Ao =| o637
p_[64 2054 —8 —1432 ’ L 0.1559
-8 =280 142 10169 r 41.22 —160.42 —106.41 82.03
—3469.09 8318.57 3423.87 —2388.49
A. == A, — BpuK — LC, B,y = L,C. == —K, A4 ~162.51  386.26 —35.56 71.07
and B, ., D.,, and D.,, are zero matrices of appropriate —4584.37  9490.06 —11350.16 11407.08
dimensions. 587.11  —1687.16  —821.25 632.86
For the simulations reported here, we have used the lin- r—0.0622
earized model of the plant. Indeed, the resulting trajectories are 2.9070
almost the same as the corresponding ones with the nonlinear, — | 0.2338
Euler-Lagrange model, thus confirming the appropriateness of 5.5623
the linear approximation for our operating conditions. For the 0

smaller pendulum tap, the plant input does not saturate and the

unconstrained responselis deemed desirable, both in SImUI‘B"{IQ‘IAIthough a continuous time controller has been designed, it is implemented

and in experiment. The settling time for the pendulum is aprdiscrete time. We allow Quanser Consulting Inc. software, WinCon 3.1, to

proximately 1.5 s and for the cart, it is 3 s. The larger penduluganvert our continuous time controller to discrete time using the Runge—Kutta
fixed-step solver with sampling time 0.0005 s.

3For simulation purposes, the smaller pendulum tap is modeled a constaritUnfeasibility was determined due the inability of the MATLAB LMI

force of 1.588 Newton with duration 0.01 s.

Control Toolbox to find a feasible solution to the LMIs (12).
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-4 where the seiM is compact, convex, and each matrix
is nonsingular. Then there exists a (unique) globally Lipschitz
functionG: R" — R™ such thatF'(G(z)) = z for all z € R™.
"1  Equivalently, F' is a homeomorphism with globally Lipschitz
4 6 8 10 inverse.
‘ Lemma 3: Given two square matriced andV = VT > 0,

if —2V+V D+ DTV < 0thenI — DA is nonsingular for allA
such that the linear map— Az belongs to the sectd®, 1]y .

Lemma 4: Given any symmetric positive-definite matrik,
s 10 the function¢( -) belongs to®y. if and only if the function
Y(ye) == ye — ¢(y.) belongs tody, .

Proof (Sufficiency): Assume ¢(-) belongs to ®y..
Clearly, v¢(-) is globally Lipschitz. Moreover, since
(¢(y) —y, ¢(y))v, < 0forally, then(—y(y),y —¥(y))v, <0
for all y, namely(-) belongs to sectofo, I]y,. Moreover,
time (seconds) sinceJyY(y.) = I — Jp(y.) wheneverJ¢(y.) exists it follows
that (Jy(y), I — J¢(y))y, > 0 for almost ally € R™. Thus

s =

Fig. 10. Example 2. Response to the larger pendulum tap. Simulat g . .
unconstrained response (bold solid); simulated response with antiwind@ ) belongs t@Vs' The necessity can be proven by swapping

(dash-dotted); experimental response with antiwindup (thin solid). the functionsp( - ) and+( - ) in the previous proof. [ ]
The following facts will also be useful for the proof of

=}
N
T

0 (radians)
=)

|

o

N
T

p (meters)

u (volts)
=)

5k

The thin solid curve in Fig. 10 represents the experiment-gheorern_ 1. _ _ _
response of the closed-loop system with dynamic antiwindupFact 1: By noting thaty. andz are linear functions of, ¢,
compensation to the same disturbance that generates the ufi§w, Writing the upcoming (23) in matrix inequality form and

sirable response represented in Fig. 9. Similarly to Fig. 9, tfking its Schur complement [4, p. 7], it can be shown that given

( _ e e . 2
dash—dotted curve represents a simulation of the closed-Idopg= £~ > 0, andV' = u% Pz, where its derivative along the

with the linear plant model, while the bold solid curve repredynamics of the system (8), (9) I8 = 227 P(Az + Byq +
sents a simulation of the unconstrained closed-loop systen@gw)' then

response. A comparison between the thin solid responses in 1

Figs. 10 and 9 illustrates that the insertion of the antiwindup V4 =2tz —ywtw+2r¢" W(y. — q) <0
compensator greatly improves the experimental response to the v

larger pendulum taps, while structurally preserving the desirable V(z,q,w) #0 (23)
performance of the (previously designed) unconstrained caop- . .
troller for the smaller pendulum taps. It should be recognizé*cwl"]anI only if the equation shown at the bottom of the page holds.
that the tails of the simulated responses are quite different fro
the experimental ones because of the unmodeled effects cl(f
mented above. Nevertheless, the plant model is mostly accu
in the operating conditions where the plant input is close to t i
saturation limits. These are the operating conditions of interestl) there exists a scalar> 0 such that

for the antiwindup action, hence a more accurate model of the

plant does not seem to be necessary for the antiwindup desidn.+ ngz —ywTw+ 27" W(y. —q) <0 V(z,q,w) #0

-act 2. By employing theS-procedure [4, p. 24], itis shown
t given any symmetric positive definite matii and (as in
gct 1)V =227 P(Az + Byq + B,w), if

V. PROOF OF THEMAIN RESULT then
A. Proof of Theorem 1 2)
To prove Theorem 1, the following lemmas will be useful. 1 5 T
The proofs of Lemmas 2 and 3 can be carried as in [33]. V+ S ETIwwS 0 (25a)
Lemma 2: Consider a locally Lipschitz functiof: R™ +—
R™ and assume that the Jacobianfosatisfies for all (z,q,w) # 0 such that
JF(z) € M, for almost all z € R™ IW(ye—q) = qTW(Cyz—l—quq—}—Dyww— q) > 0. (25b)
ATP 4+ PA PBy+7CJW PB, cT
BI'P++WC, 1(WDy,+ D! W —-2W) +WD,, DI <o
BTP DLW —~I DT,

OZ qu Dzw _'YI
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In addition, if there exists at least one selectiowhereH (-) isglobally Lipschitz. Since, by Lemma 4, the func-
(z*, ¢*, w*) such that tiony( - ) belongstaby, , then almost everywherd, = J(y.)
is such thatA, I — A)y, > 0. This can be rewritten as
¢ TW(Cyz* + Dyyq* + Dypw* —q*) >0 (26)
—2ATV,A+ VA + ATV, >0 (28)
then item 2) implies item 1).
Fact 3: There exists a selectiofx™, ¢*, w*) that satisfies
(26).

whereA = Jv(y.) almost everywhere. Then, for almostall
the Jacobian off (y.) satisfies

Proof: If there existz*, w* such tha{Cyz* + D, w*] # JH(ye) € {(I = DyyA), A - —2ATV,A
0, then pickg* = ¢[C,x* + D,,,w*] with ¢ sufficiently small to ' LV A ATV, > 0 = JH
satisfy (26). Conversely, &,z + D,,,w = 0forall (z, w), then s s="r
the controllerC is identically zero. In this trivial case, = 0 \yhere the set/’H is compact by the boundedness Afand
for _aII_ times. Namely, since t_he saturation never activates, thgcause the inequality in (28) is nonstrict. The &2t is also
antiwindup problem is nonexistent. From a more system theQsnvex because, by Schur complement, inequality (28) can be
retic viewpoint, in this case the optimal performangés the \yritten as an LMI inA. Furthermore, since the diagonal entries
Lo gain of the open-loop plant, and an antiwindup compensa@fr(loa) are negative definite, ther2V, + V,D + DTV, < 0
that achieves this performance level is the identically zero angﬁd’ by Lemma 3, each matrix in the sEk is nonsingular.
windup compensator. ®  Then, by Lemma 2 there exists a (unique) globally Lipschitz
Prqof of Theorem 1: _ function ¢(-) such thaty. = ((Cyz + Dy,w). Finally, the
NecessityAssume that for a given plant, controller anq iyschitz property of the right-hand side of (9) guarantees the
antiwindup compensator of order.,, well-posedness and gyistence and uniqueness of solutions, thus proving well-posed-
quadratic performance of levglare guaranteed in the sense of,ass of the interconnection between (8) and (9). o
Definition 3. Lemma 4 guarantee¥ - ) belongs to®y,, and
therefore(q,y. — q)v. > 0. Hence, by inequality (7), there B. Proof of Theorems 2 and 4
exists a quadratic Lyapunov function(z) = 2T Pz where
P = PT > 0 such that item 2 in Fact 2 is satisfied with

W =V, andy = 5. Combined with Fact 3, Fact 2 implies , °, LMIs for analysis (10) in Theorem 1, and the LMI (22) in

that there exists a constant> 0 that satisfies (24). Finally, by the final step of Procedure 1. The LMIs (10a) and (22) coincide

F_act 1, (27), shown at the bottor_n of the page, holds. Moreovglrjt are in different unknowns; the LMI (10a) is in the unknown
since all blqck diagonal teri”ns in (27) mus} belnonzero, th%? and the LMI (22) is in the unknowr. Indeed, since the

7 # 0. Defining @ = P~ andU := 77V, and then . system (9) represented by the diagram in Fig. 4 coincides with
She system (6), (15) represented in Fig. 5, the matrices in (9)
can be expressed in terms of the matrices in (6), (15). Within
this equivalence, it is easy to check that the matriggsD,,,,

and D.,, in (9) coincide with those defined in (19¢) and the
remaining matrices in (9) satisfy

A key step in the proof of Theorems 2 and 4 is the connection
between the matrix conditiordC(P, C, n..,7) in Definition

block diagonal matrixdiag(Q,U, I, 1), it follows that there
existsQ = QT > 0andé := 7—! > 0 that satisfy (10a), as
desired.

Sufficiencylf there exist@,~, andé > 0 that satisfy (10),
define P := Q7! andr := §-! and premultiply and
postmultiply (10a) by the symmetric block diagonal matrix A=A, +HTAG, C,=Cyp+ HING,
diag(P,7Vs,I,1). The resulting inequality guarantees (27) C. = C.. + HTAG

becausey > ~. Then, Fact 1 and Fact 2 guarantee that the * =° 3T ! -
functionV (z) = 27 Pz satisfies item 2 in Fact 2 with’ = V. By = Byo + Hi AGy  Dyg = Dygo + Hy AG

Sinceq = 1(y..) andy( - ) belongs tdo, I]y., inequality (25b) D., = D.,o + H{ AG». (29)

is always satisfied by the trajectories of the closed-loop system _ ) )

(1), (2), (5), (6). Hence, since the inequality in (25a) is strict, The following theorem establishes the equivalence between

there exists a small enough> 0 such that inequality (7) in the feasibility of the matrix condition31C(P,C, na,7) in

item 2 of Definition 3 is guaranteed. Definition 4 and the feasibility of the matrix constraints (10)
To show well-posedness in item 1) of Definition 3, rewrite th@nd (22).
interconnection of (8) and the middle equation of (9) as Theorem 5
1) Giventhe plan®P in (1), controllerC in (2), integem v >
H(ye) := ye — Dygth(y.) = Cyz + Dyyw 0 and scalaf, there exist matrice§, A and scalarg, §
ATP 4+ PA PB,+7CTV, rB, CT
BqTP + TVSCy T (—2Vs + Vsqu + ng%) TVSDU“’ D'Zq < 0. (27)
BEP TDng; _’?I DZw

Cz qu Dzw _:YI
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satisfying (10) (with the definitions (19), (29)) ifand only Lemma 6 [23]: Let R, Z € R™*™ be symmetric positive
if the matrix conditionsMC(P, C, n.y, ) are feasible.  definite matrices. Then the two conditions
2) Given a feasible solutiofi?, S, v) to MC(P,C, naw,¥),

_ —1
the matrix@ constructed in (16), (17), (18) guarantees 4 R_l 20
that the LMI (22) in the unknown§A, §, v) is solvable rank[Z — R™'] < naw
and the arising solutioi@, A, 6,~) also satisfies (10) hold if and only ifthere exislV € R™*"=v andM € R™aw X Maw |
[with the definitions (19) and (29)]. with M = MT > 0 such that
, . R N R N17' [z 2
Proof: See Section V-B. [ NT vl Y Nt oml T o

Proof of Theorem 2:The composition of Theorem 1 and ) )
item 1 in Theorem 5 imply Theorem 2. where? denotes matrix entries that we do not care about.

Proof of Theorem 4:Step 1) of Procedure 1 is assumed to Proof of Theorem 5:We first prove the necessity part of

be solvable. Steps 2) and 3) are constructive. For Step 4), {ifn 1. According to the definitions (19), (20), (21), and (29),

matrices (21) can always be constructed based on the matriged®) coincides with (22) as shown in (33) at the bottom of
computed at the preceding steps. Moreover, by item 2) in THB€ Page. We will apply Lemma 5 to inequality (33) [which

orem 5, the matrix? constructed in Step 2 guarantees that tHePincides with (10a)] to show that there exists a feasible
LMI (22) is solvable forA and any feasible solutiopt, §,7) Solution (@, A,v,é) to (10) if and only if the conditions

to the LMI (22) is such thatQ, A, é,y) satisfies (10). Hence, MC(P,C,naw,7) in Definition 1 are feasible. In particular,

by Theorem 1, the antiwindup closed-loop system (8), (9) cot€ will show that (31a) is equivalent to (11a) and that (31b) is

responding ta\ is well-posed and guarantees quadratic perfofduivalent to (11b), that the coupling between (11a) and (11b)

mance of levef;. o through¥ can be rewritten as (11e), (11f).

The following lemmas, proven in [8], [12] and [23], respec- Condition (11a): According to (19b), (21b) and the
tively, will be useful for the proof of Theorem 5. exphcn expressions for the matrices in (15 can be

Lemma 5 (Projection Lemma [8, Lemma 3.1]Biven a sym- written as (34), shown ?t the bottom of the page, v;/here
metric matrix?U € R™*™ and two matricess, H of column Ayp = (I = Dy yuDey)™ andAye := (I = DeyDp,yu)

dimensionm, consider the problem of finding some matrix are well defined (namely the matrices in parentheses are
of compatible dimensions such that invertible) by the well-posedness of the unconstrained inter-

connection. According to this special structure, a matrix that
spans the null space df is

U+ GTATH + HTAG < 0. (30) -
I,, 0 0 -B,, 0 0
_ Wg=1]0 00 0 I,., 0| . (35
Denote byiWs, Wy any matrices whose columns form bases of 0 0 0 —-D 0 I
the null space ofs and H, respectively. Then (30) is solvable o "
for A if and only if Indeed, by the assumption of well-posedness of the uncon-
strained closed-loop system,,. is full rank, hence, according
- to the (34), the dimension of the null spacekbfis necessarily
Wy¥Wg <0 (31a) np +n, + 1y, Moreover, the rank ofVy is n, +n, +n,, and
WEIWe < 0. (31b) it can be verified by computation th&iWg = 0.
QAT + AQ B, U + QCT B, QCT
UBqT +CyQ Dy U+ UD,fq —2U Dy UDZTq
Bg D;w _71 DZU)
CZQ quU Dzw _’yI

HTAGLQ + QGTATH, HTAGSU + QGTATH, 0 QGTATH,

_ug HIAG1Q +UGYATH, HIAGU +UGYATH, 0 UGYATH;

0 0 0 0
HTAG1Q HTAG,U 0 0
=V +H'AG+G"ATH <. (33)
0 0 In.. 0 0 0
H= 0 I, 0 0 0 0 (34)
T T T T T T T T
Ayan,u Dp,yuAypB(‘,y 0 Ay(’ 0 Ay(’Dp,zu
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Assume that, according to (18), the maif)xs partitionedas  Conditions (11e) and (11f)SinceP = Q~', andS = P,
then from the partitions o and@ we have

Q= [ Ko 1
“INT M . R N -1 _ . S Py
] Q_[NT M]>0 and @ _P_{PS Poy
where . :
i which can be rewritten as follows:
R= [ﬁ;l 212 : BONT o [RONTT[ST Pul g
12 M2z ] NT M NT M T PL Pl

and (21a) with (19a), (19c). After some computations it follows

that WEUWg < 0 coincides with the inequality in (11a), as STT—R'>0 (39a)
desired. rank[S™! — R < ngy. (39b)
Condition (11b): According to (21c), the matrixs can be

factored as follows: Premultiplying and postmultiplying the matrices in (39b) by

S andR, respectively and performing a Cholesky factorization

G=GoT=[G1Q G,U 0 0] (see, e.g., [28, p. 195],) on (39a), we get Conditions (11e) and
— 1[G Gy 0 0]diag(Q,U,1,1) (111), thus completing the proof of the necessity part of item

iy ~ A 1). To prove the sufficiency in item 1), the aforementioned rea-

Go T soning can be reversed. In particular, conditions (11e) and (11f)

where Go € ROmtn)x(ndn4n.+n.) and T e imply (39), which by Lemma 6 imply the existenceldf, IV sat-
R(m+nutnetn)x(ntnutn.+nu)  Since T s invertible isfying (38).. Finally, (11a)and (11b) holq wi_thg 9, hencg, by
(indeed,Q > 0 andU > 0 by assumption), we can write Lemma 5, inequality (30) holds too. This, in turn, implies that
(10) is solvable.
qu;WG - WC,T;T T T ' TWs = Wgo IWe, Finally, we prove item 2) of the theorem. Since (22) coincides
Y with (10) with the selection fo€ (16)—(18), then provided the

matrix () satisfies expression (38), the proof of the sufficiency
whereWg,, spans the null space 6f, and, according to the of item 1) can be followed verbatim to show that (22) is solvable
definitionsP = Q= andU = W~ (36) shown at the bottom with (16)—(18). To show that the construction (16)—(18) €pr
of the page holds. Based on (19b), we can write explicitly tratisfies (38), note that by the formulae for the inversion of block
entries ofGo as matrices [31, p. 23], the upper left block Bfneeds to satisfy

00 I,, 0 00 Pu=S"'=R'+R'N(M - NTRT'N)"'NTR™!
00 0 I, 0 0}

3 Wao

Go=1[Gy Gy 0 0]=
which, when premultiplied and postmultiplied B/and substi-
Hence, a matrix Wao € tuting the selection (17) fab/, becomes

(P +7eFnaw 10+ 410 ) X (N +e 2+,
R . that spans the null R+ NNT = RS 'R
space ofGy is

which, by (16), is always satisfied. °
L, 0 00 0 017" v (19) Y
_ |0 L 00 0 0 VI. CONCLUSION
Waoi=1 4 0 0 0 I,. 0 (37) L .
0 0 00 0 I, The problem of synthesizing fixed-order antiwindup com-
_ N . pensators which meet afy, performance bound has been ad-
Using the partition of the matrix dressed. The main results have demonstrated how a Lyapunov
formulation of this problem can be expressed as a nonconvex
p=|ty Do imizati bl hich closel bles th f
= |PL P optimization problem which closely resembles the LMI for-

mulation of H., controller synthesis. For certain antiwindup
we can compute explicitly the inequality (31b) based on tleompensator state dimensions, the optimization problem is ac-
definitions (36) and (37) and substituting (19a) and (19¢)ially convex and hence can be solved using standard methods,
into the entries ofU. After some computations it follows which allow the construction of an optimal compensator that
that WX WW¢ < 0 coincides with the inequality in (11b), asachieves a maximum performance level globally, via convex

desired. optimization.
ATP+ PA, PB4+ CJW PB, CT,
T T T
T By P+WCyo —2W +WDygo+ DyyoW WDy D3 . (36)
BTP Dy,W —~I DT,

Ozo quo Dzw —’yI
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