
Discrete-time Lyapunov based small-gain theorem forparameterized interconnected ISS systemsDina Shona Laila and Dragan Ne�si�cElectrical and Electronic Engineering Department,The University of Melbourne, Parkville, 3010, Victoria, AustraliaAbstractInput-to-state stability (ISS) of a feedback interconnection of two discrete-time ISS systemssatisfying an appropriate small gain condition is investigated via the Lyapunov method. In particular,an ISS Lyapunov function for the overall system is constructed from the ISS Lyapunov functions ofthe two subsystems. We consider parameterized families of discrete-time systems that naturally arisewhen an approximate discrete-time model is used in controller design for a sampled-data system.Keywords: Discrete-time; Small gain; Input-to-state stability; Lyapunov method; Nonlinear.1 IntroductionThe small gain theorem is one of the most important tools in robustness analysis and controller designfor nonlinear control systems. A particularly useful version of the small gain theorem for nonlinearcontinuous-time systems was proved in [3] by Jiang et al. and it is based on the input-to-state stability(ISS) property introduced by Sontag in [12] (see also [13]). A range of related result for continuous-timesystems can be found in [2, 11, 14, 15] and for nonlinear discrete-time systems in [5]. All of the aboveresults rely on trajectory based proofs of the small gain theorem and they do not construct a Lyapunovfunction for the overall interconnected system. The �rst partial construction of a Lyapunov function forthe feedback connection of two continuous-time ISS systems satisfying a small-gain condition that weare aware of was proposed in [4].It is the main purpose of this paper to present a discrete-time version of the results in [4]. Indeed, wepresent a partial construction of an ISS Lyapunov function from the ISS Lyapunov functions of two inter-connected discrete-time ISS systems satisfying a small-gain condition. While the constructed Lyapunovfunction in the discrete-time case has the same form as the one constructed in [4] for continuous-timesystems, the proofs of the two results are signi�cantly di�erent.Our main result is a useful tool for a range of nonlinear discrete-time control problems. In particular,the constructed Lyapunov function can be used together with results in [7, 9] to design ISS controllersfor nonlinear sampled-data systems via their approximate discrete-time plant models. We also remarkthat our main result is closely related to results on changes of supply rates for ISS discrete-time systemsinvestigated in [10] and for IOSS discrete-time systems investigated in [6] and it can be regarded as anappropriate generalization of the results in [10]. 1



2 PreliminariesThe set of real numbers is denoted by R. A function 
 : R�0 ! R�0 is of class K if it is continuous,strictly increasing and zero at zero; it is of class K1 if it is of class K and unbounded. Functions of classK1 are invertible. We say that a function q : R�0 ! R>0 is positive if it is continuous and q(s) > 0 forall s � 0. A function q : R�0 ! R�0 is positive de�nite if it is continuous, q(0) = 0 and q(s) > 0 for alls > 0. A function � : R�0 ! R>0 is of class L if it is positive and �(s) is strictly decreasing to zero ass!1. Given two functions �(�) and 
(�), we denote their composition and multiplication respectivelyas � � 
(�) and �(�) � 
(�). Identity function is denoted by Id, that is Id(s) := s.Consider a family of parameterized discrete-time systemsx(k + 1) = FT (x(k); u(k)) : (1)where x 2 Rn and u 2 Rm are respectively the state and input of the system. It is assumed that FT iswell de�ned on arbitrarily large compact sets for su�ciently small T , where T > 0 is the sampling period,which parameterizes the system and can be arbitrarily assigned. Parameterized discrete-time systems(1) commonly arise when an approximate discrete-time model is used for designing a digital controllerfor a nonlinear sampled-data system (see [7, 9]). For instance, if we use the Euler model of _x = f(x; u)for controller design then we have FT (x; u) := x + Tf(x; u). Non-parameterized discrete-time systemsare a special case of (1) when T is constant (for instance T = 1). We use the following de�nition.De�nition 2.1 The system (1) is semiglobally practically input-to-state stable (SP-ISS) w.r.t. input uif there exist functions �, � 2 K1, a positive de�nite function � and 
 2 K, and for any strictly positivereal numbers �x, �u, � and ~� there exists T � > 0 such that for all T 2 (0; T �) there exists a continuousfunction VT : Rn ! R�0 such that for all jxj � �x, juj � �u and T 2 (0; T �) the following holds:�(jxj) �VT (x) � �(jxj) ; (2)VT (x) � 
(juj) + � ) VT (FT )� VT (x) � �T�(VT (x)) ; (3)VT (FT ) �VT (x) + ~� : (4)The function VT is called a SP-ISS Lyapunov function for the system (1). �De�nition 2.2 (Lipschitz uniform in small T) A family of functions VT : Rn ! R�0 is Lipschitzuniformly in small T if given any �x > 0 there exists T � > 0 such that for all T 2 (0; T �) andmaxfjxj ; jyjg � �x the following holds:jVT (x)� VT (y)j � L jx� yj : (5)�Remark 2.1 We note that for continuous-time systems, if �x > ��1(
(�u)+�) then the condition (4)is not needed in the de�nition of SP-ISS and a condition that corresponds to (3) is enough to guaranteean appropriate ISS bound on the trajectories of the system. However, for discrete-time systems, thecondition (3) alone is not enough to guarantee even the boundedness of the trajectories of the system no2



matter how large �x is compared to �u and �. This is illustrated by the system x(k + 1) = FT (x(k))where FT (�) is any continuous function satisfying (the example is taken from [8])FT (x) =8>>>><>>>>:2�x jxj � �=22 jxj jxj � 2�x0 � � jxj � �x ; (6)and �x and � are arbitrarily positive real numbers. With, for example, VT (x) = jxj, we have for alljxj � �x that jxj � � ) �VT := VT (FT (x)) � VT (x) = �VT (x): (7)Yet, every trajectory grows without bound. Note that the condition (7) gives the right bound on �VT forall �x � jxj � �. However, this example shows that some information about VT (FT (x)) is required evenfor values of x such that jxj � � in order to assert a bound on trajectories of the system. Consequently,we have included the condition (4) as a part of SP-ISS characterization in De�nition 2.1. We note thatthe condition (4) is not restrictive and is satis�ed in most situations of interest. Example 2.1 illustratesa particular case of this condition. �Example 2.1 Consider a continuous-time nonlinear system _x = f(x; u) where f is bounded on compactsets. Suppose we use the Euler discrete-time model of the system x(k + 1) = FT (x(k); u(k)) := x(k) +Tf(x(k); u(k)) to analyse its properties. Consider also a Lyapunov function VT that is uniformly (locally)Lipschitz in small T . Then, we can write on compact sets:VT (FT ) = VT (x) + VT (x + Tf(x; u))� VT (x) � VT (x) + LT jf(x; u)j : (8)Since there exists M > 0 so that jf(x; u)j � M , then given any ~� > 0 there exists T � > 0 (we can takeT � = ~�LM ) so that for all T 2 (0; T �) we have that (4) holds. �Remark 2.2 If instead of (3), we used the following Lyapunov condition in De�nition 2.1�VT � �Ta(jxj) + T
(juj) + T� ; a; 
 2 K1 ; (9)then we would not need (4). However, the above given formulation leads to a more complicated statementand proof of our main result and hence we have opted to use the conditions as stated in De�nition 2.1.We emphasize that (3) and (4) are equivalent to (9) if an appropriate condition holds. Indeed, it istrivial to see that (9) implies both (3) and (4). The opposite holds if there exists � 2 K1 such that forany strictly positive r; � there exists T � > 0 such that the following holdsmaxT2(0;T�);jxj�
(r);juj�r �����VTT ���� � �(r) + � ; (10)and then we can write that for any (�x;�u; �) there exists T � > 0 such that the following holds:�VT � �T�(VT ) + T�(juj) + T� :The condition (10) is slightly stronger than (4) but it often holds.3



We note that the condition (9) was used in [9] to provide a framework for design of input-to-state sta-bilizing controllers for sampled-data systems via their approximate discrete-time models. Hence, resultsof this paper in cases when the condition (10) holds provide a tool for ISS controller design within theframework of [9]. In Section 4 we present an example which illustrates the importance of the particularde�nition of SP-ISS that we use when the controller design is based on an approximate discrete-timeplant model. �3 Main resultIn this section we state and prove Theorem 3.1, which is the main result of this paper. Theorem 3.1 isa discrete-time version of the continuous-time result [4]. The statements of both results are similar butthe proofs are notably di�erent and the di�erences are commented on below (see Remark 3.2).The focus of this paper is a family of parameterized discrete-time interconnected systems�1 : x1(k + 1) = F1T (x1(k); x2(k); u(k)) ;�2 : x2(k + 1) = F2T (x1(k); x2(k); u(k)) : (11)In the sequel we will assume that the subsystem �1 is SP-ISS with respect to inputs x2 and u andthe subsystem �2 is SP-ISS with respect to inputs x1 and u. More precisely, we suppose that fori; j 2 f1; 2g; i 6= j, there exist functions �i; �i 2 K1, positive de�nite functions �i, functions 
xi ; 
ui 2 K,and for any strictly positive real numbers (�xi ;�xj ;�ui ; �i; ~�i) there exist T �i > 0 and for any T 2 (0; T �i )there exist ViT : Rn ! R�0 such that the following hold for all T 2 (0; T �i ), jxij � �xi , jxj j � �xj andjuj � �ui : �i(jxij) �ViT (xi) � �i(jxij) ; (12)ViT (xi) � maxf
xi(VjT (xj)); 
ui(juj) + �ig ) ViT (FiT )� ViT (xi) � �T�i(ViT (xi)) ; (13)ViT (FiT ) �ViT (xi) + ~�i : (14)Under the above given conditions and an appropriate small gain condition, we show that the overallsystem (11) is SP-ISS with respect to the input u. Moreover, we construct a SP-ISS Lyapunov functionVT for the overall system (11) using the SP-ISS Lyapunov functions V1T and V2T of the subsystems �1and �2. More precisely, we can state the following result.Theorem 3.1 Consider the family of parameterized discrete-time interconnected system (11). Supposethat the following conditions hold:A1. The subsystem �1 is SP-ISS with inputs x2 and u and SP-ISS Lyapunov function V1T .A2. The subsystem �2 is SP-ISS with inputs x1 and u and SP-ISS Lyapunov function V2T .A3. There exist �1; �2 2 K1 such that (Id + �1) � 
x1 � (Id + �2) � 
x2(s) < s; 8s > 0.Then, the system (11) is SP-ISS w.r.t. the input u; moreover, there exists � 2 K1 such that the functionVT (x1; x2) := maxfV1T (x1); �(V2T (x2))g ; (15)is SP-ISS Lyapunov function for the system (11). Moreover, if V1T , V2T are locally Lipschitz uniformlyin small T , then VT is locally Lipschitz uniformly in small T . �4



Proof of Theorem 3.1: Suppose that all conditions of Theorem 3.1 are satis�ed. Let �1, �1, �1, 
x1 ,
u1 come from conditions A1, and let �2, �2, �2, 
x2 , 
u2 come from condition A2. Let �1; �2 2 K1 comefrom condition A3. Note that without loss of generality we can assume that (Id��i); i = 1; 2 are positivede�nite. For simplicity of notation we introduce ~
x1(s) := (Id + �1) � 
x1 ; ~
x2(s) := (Id + �2) � 
x2 .Similar to [4] we denote b := limr!1 ~
x2(r) and since ~
x2 2 K, then ~
�1x2 is de�ned on [0; b), ~
�1x2 (r) !1as r ! b� and from A3 we have that~
x1(r) < ~
�1x2 (r); 8r 2 (0; b) : (16)Let 
̂x 2 K1 be such that� 
̂x(r) � ~
�1x2 (r) for all r 2 [0; b);� ~
x1(r) < 
̂x(r) for all r > 0.(if ~
x2 2 K1, then we can take 
̂x(r) = ~
�1x2 (r)). Let � 2 K1 come from Lemma 6.1 such that~
x1(r) < �(r) < 
̂x(r) ; 8r > 0 : (17)Denote ~q(r) := d�dr (r), where ~q is a positive function. Let VT be de�ned as:VT (x1; x2) := maxfV1T (x1); �(V2T (x2))g : (18)We use the notation x := (xT1 xT2 )T , FT := (F T1T F T2T )T and the norm jxj := jx1j + jx2j. We show thatthe interconnected system (11) is SP-ISS with input u by proving that VT is a SP-ISS Lyapunov functionfor the system.Let arbitrary strictly positive real numbers (�x;�u; �; ~�) be given. Let �x1 = �x2 = �x and�u1 = �u2 = �u. Let "1; "2 2 K1 be arbitrary functions such that (Id � "i) are positive de�nitefunctions for i = 1; 2. Let �1 be such thatmax��1; maxs2[0;�u]["�11 (
u1(s) + �1)� "�11 � 
u1(s)]� � � (19)and let �2 be such thatmax� maxs2[0;�u][�(
u2(s) + �2)� � � 
u2(s)]; maxs2[0;�u]["�12 � �(
u2(s) + �2)� "�12 � � � 
u2(s)]� � � : (20)Let ~�1 > 0 and ~�2 > 0 be such thatmaxf~�1; maxs2[0;�2(�x2 )][�(s+ ~�2)� �(s)]g � ~� ; (21)(Id + ��11 )(~�1) � �12 ; (Id + ��12 )(~�2) � �22 : (22)Let (�x1 ;�x2 ;�u1 ; �12 ; ~�1) determine T �1 > 0 via the condition A1. Let (�x1 ;�x2 ;�u2 ; �22 ; ~�2) determineT �2 > 0 via the condition A2. Let T � := minf1; T �1 ; T �2 g. In the rest of the proof we assume that jxj � �x,juj � �u and T 2 (0; T �).First note that ~
x1(s) � 
x1(s), ~
x2(s) � 
x2(s) for all s � 0. Conditions A1 and A2 imply that:V1T (x1) � maxf
x1(V2T (x2)); 
u1(juj) + �1=2g ) V1T (F1T )� V1T (x1) � �T�1(V1T (x1)) ; (23)V2T (x2) � maxf
x2(V1T (x1)); 
u2(juj) + �2=2g ) V2T (F2T )� V2T (x2) � �T�2(V2T (x2)) ; (24)V1T (F1T ) � V1T (x1) + ~�1 ; V2T (F2T ) � V2T (x2) + ~�2 : (25)5



Moreover, using respectively A1 and A2 and our choice of �i; ~�i; i = 1; 2 we can write respectivelyV1T (F1T ) � maxf(Id� T�1)(V1T (x1)); ~
x1(V2T (x2)); 
u1 (juj) + �1g ; (26)V2T (F2T ) � maxf(Id� T�2)(V2T (x2)); ~
x2(V1T (x1)); 
u2 (juj) + �2g : (27)We only prove (26) and the proof of (27) is omitted since it follows the same steps. Note that ifV1T (x1) � maxf
x1(V2T (x2)); 
u1(juj) + �1=2g, then from (23) we can write that:V1T (F1T ) � (Id� T�1)(V1T (x1)) : (28)On the other hand, if V1T (x1) � maxf
x1(V2T (x2)); 
u1(juj) + �1=2g, then from (25) we haveV1T (F1T ) � V1T (x1) + ~�1 � maxf
x1(V2T (x2)) + ~�1; 
u1(juj) + �1=2 + ~�1g :By considering two sub-cases �1 � 
x1(V2T (x2)) � ~�1 and �1 � 
x1(V2T (x2)) � ~�1, and from de�nition of�1 and ~�1 we can write thatV1T (F1T ) � maxf(Id + �1) � 
x1(V2T (x2)); (Id + ��11 )(~�1); 
u1(juj) + �1=2 + ~�1g� maxf~
x1(V2T (x2)); (Id + ��11 )(~�1); 
u1(juj) + �1=2 + �1=2g� maxf~
x1(V2T (x2)); �1=2; 
u1(juj) + �1g = maxf~
x1(V2T (x2)); 
u1(juj) + �1g ; (29)and (28), (29) complete the proof of (26). We assume in the sequel that (23)-(27) hold.We have that 12r1 + 12�(r2) � maxfr1; �(r2)g � r1 + �(r2), for any � 2 K1, r1 � 0, r2 � 0, and thatfor any �1; �2 2 K, there exist �; � 2 K such that �(s1 + s2) � �1(s1) + �2(s2) � �(s1 + s2); 8s1 �0; s2 � 0, where we can take �(s) := minf�1( s2 ); �2( s2 )g and �(s) := 2maxf�1(s); �2(s)g. Usingthe de�nition of VT , we have that VT satis�es (2) with �(s) := minf1=2�1(s=2); 1=2� � �2(s=2)g and�(jxj) := 2maxf�1(s); � � �2(s)g. Moreover, from the de�nition of VT and (21) we have thatVT (FT ) = maxfV1T (F1T ); �(V2T (F2T )g � maxfV1T (x1) + ~�1; �(V2T (x2) + ~�2)g� maxfV1T (x1); �(V2T (x2))g+ ~� = VT (x) + ~� ; (30)which proves that (4) holds.To show that VT satis�es (3), we consider the following four cases:Case 1: V1T (x1) � �(V2T (x2)) and V1T (F1T ) � �(V2T (F2T )). It holds that�VT := VT (FT )� VT (x) = V1T (F1T )� V1T (x1) :Conditions V1T (x1) � �(V2T (x2)) and 
x1(r) � ~
x1(r) < �(r) for all r > 0 imply V1T (x1) > 
x1(V2T (x2)).Hence, from (23) it holds that if V1T (x1) � 
u1(juj) + �1 then we haveV1T (F1T )� V1T (x1) � �T�1(V1T (x1)) :Since VT (x) = V1T (x1), � � �1 and "�11 > Id we haveVT (x) � "�11 � 
u1(juj) + � � 
u1(juj) + � ) �VT � �T�1(VT (x)) : (31)6



Case 2: V1T (x1) < �(V2T (x2)) and V1T (F1T ) < �(V2T (F2T )). It holds that�VT = �(V2T (F2T ))� �(V2T (x2)) : (32)Conditions V1T (x1) < �(V2T (x2)) and ��1(r) > ~
x2(r) � 
x2(r);8r > 0 imply V2T (x2) > 
x2(V1T (x1)).Hence, from (24) it holds that if V2T (x2) � 
u2(juj) + �2, we have that�V2T = V2T (F2T )� V2T (x2) � �T�2(V2T (x2)) ) V2T (F2T ) � (Id� T�2)(V2T (x2)) : (33)Then using the Mean Value Theorem and the construction of � via Lemma 6.1, we have that�VT = �(V2T (F2T ))� �(V2T (x2))� � � (Id� T�2)(V2T (x2))� �(V2T (x2)) = �T ~q(V ?2T ) � �2(V2T (x2)) ; (34)with V ?2T 2 [(Id � �2)(V2T (x2)); V2T (x2)] (since T < 1) and ~q is a positive function. Let ~q generate viaLemma 6.2 the functions q1 2 K1 and q2 2 L. We use the fact that VT (x) = �(V2T (x2)) to write that�VT � �T ~q(V ?2T ) � �2(V2T (x2))� �Tq1(V ?2T ) � q2(V ?2T ) � �2(V2T (x2))� �Tq1 � (Id� �2)(V2T (x2)) � q2(V2T (x2)) � �2(V2T (x2))=: �Ta2a(V2T (x2)) = �Ta2a � ��1(VT (x)) = �Ta2(VT (x)) : (35)Since VT (x) = �(V2T (x2)), "�12 > Id and by (20), we haveVT (x) � "�12 � � � 
u2(juj) + � � � � 
u2(juj) + � ) �VT � �Ta2(VT (x)) : (36)Case 3: V1T (x1) < �(V2T (x2)) and V1T (F1T ) � �(V2T (F2T )). Using (26) it holds that�VT = V1T (F1T )� �(V2T (x2))� maxf(Id� T�1)(V1T (x1)); ~
x1(V2T (x2)); 
u1(juj) + �1g � �(V2T (x2)) : (37)We now over bound each of the terms in (37). First, by using (61) from Lemma 6.3 with V1T (x1) = sand V2T (x2) = r, we obtain(Id� T�1)(V1T (x1) � �Ta3a � �(V2T (x2)) = �Ta3a(VT (x)) : (38)Next, since ~
x1(r) < �(r);8r > 0, the function a3b(r) := �(r)� ~
x1(r) is positive de�nite and since T < 1we have that~
x1(V2T (x2))� �(V2T (x2)) = �a3b(V2T (x2)) = �a3b � ��1(VT (x)) � �Ta3b � ��1(VT (x)): (39)Finally, we consider the third term. Let "1 2 K1 be such that Id� "1 is a positive de�nite function. If�(V2T (x2)) > "�11 � (
u1(juj) + �1) then it holds that��(V2T (x2)) + 
u1(juj) + �1 � �(Id� "1) � �(V2T (x2)) : (40)Since VT (x) = �(V2T (x2)) and using the de�nition of �1 and T < 1, we can write:VT (x) > "�11 � 
u1(juj) + � ) �(V2T (x2)) > "�11 � (
u1(juj) + �1)) �(Id� "1) � �(V2T (x2)) = �(Id� "1)(VT (x))=: �a3c(VT (x)) � �Ta3c(VT (x)) : (41)7



Combining inequalities (35), (39) and (41), with a3(r) := minfa3a(r); a3b � ��1(r); a3c(r)g, we have thatVT (x) > "�11 � 
u1(juj) + � ) �VT � �Ta3(VT (x)) : (42)Case 4: V1T (x1) � �(V2T (x2)) and V1T (F1T ) < �(V2T (F2T )). Using condition (27) we have�VT = �(V2T (F2T ))� V1T (x1)� maxf� � (Id� T�2)(V2T (x2)); � � ~
x2(V1T (x1)); �(
u2 (juj) + �2)g � V1T (x1) : (43)Now we bound the terms on the right hand side of (43). First, using (62) of Lemma 6.3 with s = V2T (x2)and r = V1T (x1) we can write� � (Id� T�2)(V2T (x2))� V1T (x1) � �Ta4a(V1T (x1)) = �Ta4a(VT (x)) : (44)Since a4b(r) := (Id� � � ~
x2)(r) is positive de�nite, T < 1 and VT (x) = V1T (x1), we have that� � ~
x2(V1T (x1))� V1T (x1) � (� � ~
x2 � Id)(V1T (x1))=: �a4b(V1T (x1)) = �a4b(VT (x)) � �Ta4b(VT (x)) : (45)Finally, we consider the third term. Let "2 2 K1 is such that a4c := Id�"2 is a positive de�nite function.Using the de�nition of �2, VT (x) = V1T (x1) and the fact that T < 1, we can write thatVT (x) � "�12 � � � 
u2(juj) + � ) V1T (x) � "�12 � �(
u2(juj) + �2)) �(Id� "2)(VT (x)) =: �a4c(VT (x)) � �Ta4c(VT (x)) : (46)Combining (44), (45) and (46), with a4(r) := minfa4a(r); a4b(r); a4c(r)g, we can write thatVT (x) � "�12 � � � 
u2(juj) + � ) �VT � �Ta4(VT (x)) : (47)By combining (31), (36), (42) and (47) and the fact that "�1i (r) > r;8r > 0; i = 1; 2, we have shownthat (3) holds with �(r) := minf�1(r); a2(r); a3(r); a4(r)g (48)
(r) := maxf"�11 � 
u1(r); "�12 � � � 
u2(r)g (49)where � is a positive de�nite function and and 
 2 K. Hence, the system (11) is SP-ISS.The last thing left to prove is that if V1T and V2T are Lipschitz, uniformly in small T then VT isLipschitz, uniformly in small T . Let �x > 0 be given. Let L1; T �1 and L2; T �2 come respectively from theLipschitz properties of V1T and V2T for the set jxij � �x; i = 1; 2. Note also that since � 2 C1, it is locallyLipschitz and let L� be its Lipschitz constant for the set V2T (x2) � �2(�x). Denote x := (xT1 xT2 )T andy := (yT1 yT2 )T . Let T � := minf1; T �1 ; T �2 g and consider arbitrary T 2 (0; T �) and maxfjxj ; jyjg � �x.Introduce the sets: A := fx : V1T (x1) > �(V2T (x2))g; B := fx : V1T (x1) = �(V2T (x2))g; C := fx :V1T (x1) < �(V2T (x2))g: We consider the following cases, to prove our claim:Case 1: (x; y 2 A) or (x 2 A and y 2 B) or (x 2 B and y 2 A) or (x; y 2 B)jVT (x)� VT (y)j = jV1T (x1)� V1T (y1)j � L1 jx1 � y1j : (50)8



Case 2: (x; y 2 C) or (x 2 C and y 2 B) or (x 2 B and y 2 C).jVT (x)� VT (y)j = j�(V2T (x2))� �(V2T (y2))j � L�L2 jx2 � y2j : (51)Case 3: x 2 A and y 2 C jVT (x) � VT (y)j = jV1T (x1)� �(V2T (y2))j : (52)Since x 2 A implies V1T (x1) > �(V2T (x2)) and y 2 C implies V1T (y1) < �(V2T (y2)), we have that:1. If V1T (x1) > �(V2T (y2)) thenjV1T (x1)� �(V2T (y2))j = V1T (x1)� �(V2T (y2)) � V1T (x1)� V1T (y1) � L1 jx1 � y1j : (53)2. If V1T (x1) � �(V2T (y2)) thenjV1T (x1)� �(V2T (y2))j = �V1T (x1) + �(V2T (y2)) � �(V2T (y2))� �(V2T (x2)) � L�L2 jx2 � y2j : (54)Case 4: x 2 C and y 2 A. This case follows by symmetry from Case 3.Hence, we can conclude thatjVT (x)� VT (y)j � L(jx1 � y1j+ jx2 � y2j) ; (55)where L := maxfL1; L�L2g. Therefore, VT is Lipschitz uniformly in small T . �Remark 3.1 Similar results can be stated for non-parameterized discrete-time systems x(k + 1) =F (x(k); u(k)); if all conditions hold on appropriate sets. The relationship between these sets can beeasily deduced from the proof of Theorem 3.1. Moreover, similar results can also be presented for an-other class of parameterized systems x(k + 1) = FT;h(x(k); u(k)); which naturally arise when a familyof approximate discrete-time models of the continuous-time plant is generated by integrating continuous-time plant dynamics over one sampling interval of length T > 0 using a numerical integration schemewith integration period h > 0. In particular, the results that we stated can be regarded as a special caseof this more general situation when T = h (see [8] for more details). �Remark 3.2 We note that the proofs of the continuous-time result in [4] and the discrete-time result inTheorem 3.1 are notably di�erent although the constructed function VT has the same form. In particular,while the result in [4] was proved by considering 3 di�erent cases, we need to consider 4 cases in discrete-time, some of which contained up to three di�erent sub-cases. Moreover, in the proof of the discrete-timeresult we needed to use The Mean Value Theorem and Lemma 6.2, which were not needed in the proofof the continuous-time result in [4]. �4 ExampleThe following example illustrates that it may happen that an approximate discrete-time model satis�esa small gain condition but if the gains depend on T (hence, the subsystems are not SP-ISS in the senseof our De�nition 2.1), then the approximate discrete-time model may be stable for all small values ofT but the exact discrete-time model is unstable for all small values of T . This example motivates our9



approach and in particular the consideration of families of parameterized discrete-time systems and theSP-ISS property that we use.Consider a continuous-time plant _x1 = x1 + u; which is between a sampler and zero order hold.Suppose that we want to carry out the controller design using the Euler discrete-time approximatemodel of the plant x1(k + 1) = (1 + T )x1(k) + Tu(k) : (56)Suppose that we use the following family of dynamic controllersx2(k + 1) = �0:5x2(k)� T 2x1(k) ; (57)u(k) = � 1T x2(k)� 2T x1(k) : (58)Note that the approximate closed-loop system (56), (57), (58) can be regarded as a feedback interconnec-tion of two scalar systems (56) with (58) and (57). Moreover, using Lyapunov functions V1T (x1) = jx1jand V2T (x2) = jx2j and suppose that T < 1, we can write the following:jx1j � 2T jx2j ) �V1T � �T2 jx1j ; (59)jx2j � 4T 2 jx1j ) �V2T � �T4 jx2j : (60)In this case the gains are 
x1(s) = 2T s and 
x2(s) = 4T 2s. Note that for any M 2 (0; 1=8) there existsu�ciently small �1; �2 2 K1 so that our small gain condition holds for all T 2 (0;M ]. We have computedthe eigenvalues of the approximate closed-loop system matrix and obtained that �a1 = � 12 +2T 2+O(T 3)and �a2 = �1 + T � 2T 2 + O(T 3), which indicates that indeed the approximate closed-loop model isstable for su�ciently small T . However, if we consider the exact closed-loop system consisting of theexact discrete-time plant model x1(k + 1) = eTx1(k) + (eT � 1)u(k) and (57), (58), we obtain that theeigenvalues of the system matrix are �e1 = � 12+2T 2+O(T 3) and �e2 = �1� 116 T 2+O(T 3) and obviouslywe have that j�e2j > 1 for all su�ciently small T . In this case, since 
x1 and 
x2 depend on T , it is notpossible to construct a Lyapunov function VT via (15) that satis�es appropriate bounds in De�nition2.1 uniformly in small T .5 ConclusionsWe have presented in this paper a Lyapunov based small gain theorem for parameterized discrete-time SP-ISS systems. This is a discrete-time counterpart of the continuous-time results in [4]. Wehave presented an example that motivates our results in the case when a discrete-time controller for asampled-data plant is based on its approximate discrete-time model.References[1] D. Angeli, E. D. Sontag and Y. Wang, \A characterization of integral input to state stability,"IEEE Trans. Automat. Contr., vol.45 no. 6 pp. 1082-1097, 2000.[2] B. Ingalls and E. D. Sontag, \A small-gain theorem with applications to input/output systems,incremental stability, detectability, and interconnections," J. of The Franklin Institute, vol. 339,pp. 211-229, 2002. 10



[3] Z. P. Jiang, A. R. Teel and L. Praly, \Small-gain theorem for ISS systems and applications," Math.Control Signals Systems, vol. 7, pp 95-120, 1994.[4] Z. P. Jiang, I. M. Y. Mareels and Y. Wang, \A Lyapunov formulation of the nonlinear small-gaintheorem for interconnected ISS systems,"Automatica, vol. 32, no. 8, pp. 1211-1215, 1996.[5] Z. P. Jiang and Y. Wang, \Input-to-state stability for discrete-time nonlinear systems,"Automatica,vol. 37, pp. 857-869, 2001.[6] D. S. Laila and D. Ne�si�c, \Changing supply rates for input-output to state stable discrete-timenonlinear systems with applications", to appear in Automatica, June 2003.[7] D. Ne�si�c, A. R. Teel and P. Kokotovi�c, \Su�cient conditions for stabilization of sampled-datanonlinear systems via discrete-time approximations," Syst. Contr. Lett., vol. 38, pp. 259-270, 1999.[8] D. Ne�si�c and A. R. Teel, \A framework for stabilization of nonlinear sampled-data systems basedon their approximate discrete-time models", accepted subject to minor revision in IEEE Trans.Automat. Contr., 2002.[9] D. Ne�si�c and D. S. Laila, \A note on input-to-state stabilization for nonlinear sampled-data sys-tems,"IEEE Trans. Automat. Contr., vol. 47, pp. 1153-1158, 2002.[10] D. Ne�si�c and A.R. Teel, \Changing supply functions in input-to-state stable systems: the discrete-time case", IEEE Trans. Automat. Contr., vol. 46, pp. 960-962, 2001.[11] L. Praly and Y. Wang, \Stabilization in spite of matched unmodeled dynamics and an equivalentde�nition of input to state stability," Math. Control Signals Systems, vol. 9, pp. 1-33, 1996.[12] E. D. Sontag \Smooth stabilization implies coprime factorization," IEEE Trans. Automatic Con-trol, vol. 34, pp. 435-443, 1989.[13] E. D. Sontag, \The ISS philosophy as a unifying framework for stability-like behavior," in Nonlin-ear Control in the Year 2000 (Volume 2) (Lecture Notes in Control and Information Sciences, A.Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, eds.), Springer, Berlin, 2000, pp. 443-468.[14] A. R. Teel, \A nonlinear small gain theorem for the analysis of control systems with saturation,"IEEE Trans. Automat. Contr., vol. 41, pp. 1256-1270, 1996.[15] M. P. Tzamtzi and S. G. Tzafestas, \A small gain theorem for locally input to state stable inter-connected systems,"J. of The Franklin Institute, vol. 336, pp. 893-901, 1999.6 AppendixThe following technical lemmas are used to prove the main result.
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Lemma 6.1 [4] Let �1 2 K and �2 2 K1 satisfy �1(r) < �2(r) for all r > 0. Then there exists a K1function � such that� �1(r) < �(r) < �2(r) for all r > 0;� �(r) is C1 on (0;1) and �0(r) =: ~q(r) is a positive function. �Note that the above given function ~q is positive but it is not positive de�nite in general. The followinglemma is a simple consequence of [1, Lemma IV.1]Lemma 6.2 [1] Let ~q : R�0 ! R>0 be a positive function. Then there exist a positive de�nite functionq and functions q1 2 K1 and q2 2 L such that ~q(r) � q(r) � q1(r) � q2(r) ;8r � 0. �Note that the existence of q is trivial to show, whereas the existence of q1 and q2 was proved in [1].Lemma 6.3 Suppose that we are given a function � 2 K1 where q(r) := �0(r) is a positive function, apositive de�nite function �, such that (Id� T�) is positive de�nite and T 2 [0; 1). Then, we can write:max0�s��(r)(Id� T�)(s)� �(r) � �Ta1 � �(r) (61)max0��(s)�r � � (Id� T�)(s)� r � �Ta2(r) ; (62)for some positive de�nite functions a1 and a2. �Proof of Lemma 6.3: The inequality (61) follows easily from considering two cases s � �(r)2 and�(r)2 � s � �(r). In particular, we obtain a1(r) := maxf 12r; �(r)g. We now prove (62) in more detail.First, note that if 0 � �(s) � r2 , then� � (Id� T�)(s)� r � �(s)� r � �r2 : (63)Consider now �(s) 2 � r2 ; r�. First, we use the Mean Value Theorem to write:� � (Id� T�)(s)� r � maxr2��(s)�r � � (Id� T�)(s)� �(s) = q(s�)[�T�(s)] ; (64)where s� 2 [(Id��)(s); s] since T < 1. Using Lemma 6.2 we can �nd two functions q1 2 K1 and q2 2 Lsuch that�Tq(s�)�(s) � �Tq1(s�) � q2(s�) � �(s) � �Tq1 � (Id� �)(s) � q2(s) � �(s) =: �T��(s) ;where ��(�) is a positive de�nite function. Applying Lemma 6.2 again we obtain q�1 2 K1, q�2 2 L andthen using the fact that s 2 [��1(r=2); ��1(r)] we can write:�T��(s) � �Tq�1(s) � q�2(s) � �Tq�1 � ��1(r=2) � q�2 � ��1(r) =: �T�1(r) :This completes the proof of (62) with a2(r) := minfr=2; �1(r)g. �
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