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Finite Spectrum Assignment of Unstable Time-Delay using a numerical quadrature rule. In this way, one ends up with a se-

Systems With a Safe Implementation quence of control-laws of the form
q
Sabine Mondié and Wim Michiels u(t) =K <e‘4hx(t) + Zh].'qugj,un(t _ ejl’q)) ) %)
J=0

Abstract—The instability mechanisms, related to the implementation of In the past few years the effect of such a semidiscretization on the sta-
distributed delay controllers in the context of finite spectrum assignment, bility of the closed-loop system has been examined thoroughly. In [17],

were studied in detail in the past few years. In this note we introduce a i a5 demonstrated with a scalar example that for some parameter
distributed delay control law that assigns a finite closed-loop spectrum and

whose implementation with a sum of point-wise delays is safe. This property ValUes, the control law (4) mayot stabilize the system (1), farbi-
is obtained by implicitly including a low-pass filter in the control loop. This ~ trarily large valuesof ¢. In [2], [12], and [9], the underlying instability
leads to a closed-loop characteristic quasipolynomial of retarded type, and mechanism was investigated and various necessary and/or sufficient
not one of neutral type, which was shown to be a cause of instability in - ¢onditions for a safe implementation of the distributed delay as a sum
previous schemes. . . . .

of point-wise delays were provided. These conditions are all related to

Index Terms—Delay equations, finite spectrum assignment. stability properties of the functional difference equation

h
. INTRODUCTION u(t) = K / e’ Bu(t — §)d6 5)
J0

Consider the linear finite-dimensional system with input delay ~ whose spectrum provides information on the position of the high-fre-

#(t) = Ax(t) + Bult — h) 1) quency mode_s of (1)—(4). They originate the_fac'_c that when the control

law is approximated, the closed-loop equation isefitral type and
where the matriced € R"*", B € R"*" andh is the delay of the an essential spectrum which is determined by the discretization of (5),
system. The matrid is not Hurwitz and the pair4, B) is controllable. is introduced.
An approach to stabilize the system (1), called finite spectrum assignin this note, we present a simple, yet effective way to overcome the
ment [7], [18], can be interpreted as follows: first a prediction of thprevious instability problems. We will modify the control law in such
state variable over one delay interval is generated and then a feedbagkay that dinite closed-loop spectruman still be assigned through
of the predicted state is applied, thereby compensating the effect of gi@ndard design methods for linear systems, but, when the integral is
time-delay. This results in a closed-loop system with a finite numbapproximated, the closed-loop characteristic quasipolynomialris-of
of eigenvalues, which can be assigned arbitrarily. Mathematically, withrded typeand, as we will see, a sensitivity of stability w.r.t. small
rp(t1,12) the prediction of:(¢) att = t., based on values ofandu.  implementation errors is not possible. Basically, our approach consists
fort < t1, the control law of including a low-pass element in the control loop.
The note is organized as follows: a motivating example is first given.

" Then we presents and analyze a class of control laws which assign a
—K <6Ah;l'(f) + / e Bu(t — H)de) @) finite spectrum and allow a safe !mplementatlon. The note ends with a
0 numerical example and concluding remarks.

u(t) =Kuxp(t,t+h)

yields the closed-loop characteristic equation

Il. MOTIVATION
det(sI — A— BK) = 0. (3)
If the scalar system
The elimination of the delay is employed in the so-called process model
control techniques [19], as for example, the celebrated Smith Predictor @(t) = a(t) +u(t = 1) (6)
[16]. It can also be interpreted as a model transformation, the Artstein’'s
model reduction technique [1]. is subject to the control law

The finite spectrum assignment feature of these control laws is a sig- 1
nificant advantage from a design point of view because the stability and u(t) = =2z, (t,t + 1) = —2(ex(t) + / u(t—0)do)  (7)
dynamic properties of polynomials can be readily analyzed, while those 70
of quasipolynomials are usually a complex task. However, a difficultyere is one closed-loop eigenvaluesat=" —1. Approximating the
in applying a control law of the form (2) consists of the practical imintegral term with a sum of point-wise delays using tregpezoidal
plementation of the integral term, which needs to be calculated on-limgle
As explained in [7], obtaining this term as the solution to a differential 171
equation must be discarded because it involves unstable pole-zero can-  u(t) = —2 {cm(t) + - <§1lr(f/)
cellations wherd is unstable. As suggested in [7], a possibility is to 1

. .. i q—1 i 1
approximate the distributed delay by a sum of point-wise delays by n Z cz/qu(t A 56“’(75 _ 1)> } ®)
=1 q
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Fig. 1. (a) Eigenvalues of the closed-loop system (6)—(8)fer 10 (“+") and¢ = 20 (“0”). (b) Eigenvalues of (6)—(9) fof = 40 andqg = 10, 20.

that the latter are caused by the throughput at infinity of past inputshig. 1(b) for f = 40 andg = 10, 20. The low-pass filter puts an upper
(8) and, therefore, can be avoided by including a low-pass filter in tl®und on the values of the imaginary parts of the unstable eigenvalues,
control loop. Adding the filterf /s + f to (8) yields the control law independent of. Therefore, ag — oo the real parts of the introduced
shown in (9) at the bottom of the page. The closed-loop characterisgtigenvalues move to the left half plane (actually their real parts move
polynomial is now of retarded type and the eigenvalues are shownaifito minus infinity) and stability is obtained.

{z(t) = —fz(t) - 2f {ew(t) + % (%u(z‘) + 30! et — é) + Leu(t— 1))} ©
u = z(t).
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The previous ideas can be generalized. Siang strictly proper Substituting
linear system(A¢, By, C¢,0) has alow-passfiltering property, one

can construct the followingynamiccontroller for (1): h o (=)0 gy (I— 67(51711)h)(s]— _ ‘4)—1 (18)
oh 0
2(t) = Asz(t) + By (eAh;n(t) + / eAeB'u(t — 9)(10) yields
L -~ (10)
wp(t,t+h) DL (s) = (sI — A;)D(s) — ByN(s) 19
o(8) = Oy 3(8). ans(s)=( 7)D(s) = ByN( (19)

hence, the number of closed-loop eigenvalues is finite. Next, we prove

In this way the sensitivity problem of stability w.r.t. an implementatio o . - h
of the integral term is avoided. In addition, since (10) involves a prghat itis always possible to find constant matricsand 5, so that a

diction of the state, whichompensatethe input delay, the closed-loop prisrgrltézgisﬁelcltrfg ;:or;sllsr:glr%gt—l)—(z; glfgdegv?elléezs ,,ILS e(lcss,fnle)d;
system is the finite-dimensional system P ’ Poly A 9 . N

=1

n 4+ m be given with leading coefficient equal to thatdft(D(s)).

@(t) = Ax(t) + BCyz(t) 1 Th_en_, there exis_t constant matric&_ts and By such Fhat the charac-
{ L(t) = Ayz(t) + Bya(t) (11) terlst_lc polynomial of system (12) in closed-loop with the control law
(13) isp(s).
and standard design methods can be used. Proof: There always exists a polynomial matiD{f;?};[ (s) with
In the rest of this note, we will perform a detailed stability analysisolumn degrees; + 1, i = 1,...,m, same highest degree coefficient
of this type of control laws in the special case whéte= I because matrix asD(s) and determinani(s) (see, for, instance [20]). This im-
this allows serious simplifications. plies thatthe matriD 4 5, (s)— diag{s}.. D(s) has column degrees
smaller are equal than thoseBf s). The matrix polynomial (19) can
I1l. DYNAMIC CONTROL LAW be written in the form
We study the multivariable linear time-invariant system with input XD(s)+YN(s) = DX};?}# (5) — diag{s}m D(s) (20)

delayh

whereX = —A; andY” = —B;. For the previous choice db'{';";

it follows from [6] that the matrix polynomial (20) has a constant

solution. u
Remark 2: A particular case of the previous design procedure is the

clever choice ford ; and By made in [7], which clearly illustrates the

. o P filtering property of the dynamic control law, and which decouples the

u(t) = Agu(t) + By <C (1) +/0 e Bu(t - H)de) (13) " gesign in that of a pole placement controller and that of a filter. The

control law (13) with the choice

#(t) = Az(t)+ Bu(t —h), s € R*, w € R, he Rt (12)

where the pair(A, B) is controllable with controllability indices
¢;, = 1,...,m in nonincreasing order, and the control law

wheredy € R™*™ andB; € R™*". Without loosing generality, we
assume thaB has full-column rank. Note that (13) correspondsto (10) Ay = F+ KB DBj; = K(A — G) such that FIX = KG
with Cy = 1.

The closed-loop system analysis and design procedure is basedvbere F € R™*™, G € R"*" and K € R"*" yields the
the concept of coprime factorizations or normal external descriptiop®sed-loop characteristic matrix
(NED) for linear systems; see, e.g., [20].

System (12) and the control (13) are, respectively, described in the Drr(s)=(sI — F)(D(s) — KLN(s))
frequency domain by

the closed-loop polynomial

(sI — A)x(s) = Be " u(s) (14)
det Dp i (s) = det(sI — F)det(s] — A — BK).
and
h
Bye"tu(s) = {sI — Ay — By / e,*”*A)"Bde} u(s). (15) IV. EFFECT OF THEAPPROXIMATION OF THEINTEGRAL TERM
J0
. 3 When the integral in (13) is approximated with a sum of point-wise
Let (N (s), D(s)) be a NED for the paitsI — A, B) such that delays, the closed-loop characteristic matrix is
(sT—A)""'B=N(s)D(s)"". (16)

q
D, s, (s)= {s[ —A; =By hj,qeoj‘q(sjA)B} D(s)
where N (s) and D(s) are right coprime, D(s) is column reduced j=1
with nonincreasingly ordered column degrees: = 1,...,m. The _Bfefh(sffA)N(s)_ (21)
invariant factors ofD(s) and ofsI — A are the same up to unitary

invariant factors and the column degreed¥dfs ) are smaller than those For such approximations based on fixed-step method [8], the sum in

of D(s)), see e.g., [20]. (21) is as follows:
Using (16) the characteristic matrix of the closed-loop system
. . . h 9
(12)—(13) can be written in the absence of uncertainty as / o (T A0 gy Z h]-’qc*oiq(“*A)
0

j=1

] h
D, (002 {o1 =t =3y [ pas | D)
0

q
_ —p/qh(sT—A)
=) e (22)
—Be" N(s)e™". (A7) p=0 ’
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whereg is the number of intervals of equal lendtfiy andy, are scalars Expressions (24) and (25) imply the existence of a radfisisuch that
that depend on the selected integration rule. The characteristic matrix

(21) can then be rewritten as sup T (Bf H(s.q.h, A, B) BD(s)D:",
R(s)>0, [s|>Ro
Da, s, (s)={sI — Ay — noB;B}D(s) x(s)7') <1 (26)
g—1
_ Z npBpe P/ 1" BD(s)e P/ 1h for all values ofy.
p=1 Given a value ofR, satisfying (26) it only remains to prove that there
— Bye" (9, BD(s)+ N(s))e ™" always exists a precise enough approximatipso that the condition

(23) is also satisfied foR(s) > 0, |s| < Ro. Recall that for a smooth
real functionf the error between the integral valligf) = 0’ F(Odc¢
and its approximatiof, ( f), obtained via a fixed-step method, depends
the value of; and is given by an expression of the form

which corresponds to an equationrefardedtype. Delay equations of
retarded type have anfinite number of roots of arbitrarily large mag-
nitude, located on logarithmic sectors in the left half-plane. Howeve(w
there are only &inite number of roots in any right half plan®(s) > «, nol
« € R, unlike equations of neutral type [5]. I(f) —1,(f) = ——Hf“”)(co)
We now prove that when the ideal closed-loop system is asymptoti- g
cally stable, the approximation of the integral term (22) preserves Slehere the pointo
bility for large ¢. We need the following technical res_ult. ~ are positive integers that depend on the chosen method (for instance,
Lemma 3: Assume that the parameteds and B in control law in the trapezoidal method, = 2, v = 2 anda = 12) [8]. Itis easy to

(13) are such that the ideal closed-loop (19) is Hurwitz. Then, the o this result to a smooth functign TR — C and obtain a bound
closed-loop characteristic matrix (21) is asymptotically stable if )

belongs to the intervdl- k., 0] and wherev, 3 and

of the form
7 (BfH(s,q,h‘A,B)BD(:S)D%‘??;;/(S)il) <1 (23) I(g) - I,(9)| < %0 s ]|g(7)(9)|‘ @7
g~ 0€[—h,0
where Let); (i = 1,..., k) denote the eigenvalues of matrixandy; the
N . order of multiplicity of A; with respect to the characteristic polynomial
H(s.q,h, A, B) £ / SUED DU of 4, and letZ;, (i = 1..... k. j =1,....1;) be the components of
0 =0 matrix A (see [4, Ch. 5]). We then have
. P 0 q
forall s € C with R(s) > 0. _ H(s.q.h, A, B) = / LT=4) 1 anc—P/qh(sT—A)
Proof: The characteristic equation of the closed-loop system can J_n =
be written as -
. = ZZZ,] I Hj_leg(s_)‘i)
det {DAf,Bf(S)} = det {Dﬂ‘ff};/ (5)} i=1 j=1 ( ( )
. J=1 0(s=X;
- det {I+B/ H(s,q,h,A,B)BD(s)ijj“gf(s)*l}, -1, (97 o )))

Under the assumption of (23) the second determinant has no roots in'déng inequality (27) witty(¢) = 67~ "¢~ it is straightforward
closed right half planeD{s"s  (s) is Hurwitz by hypothesis, hence, 10 prove that there is a constantsuch that
the lemma is proven. ] m
The main result is as follows. sup 7(H(s,q,h, A, B)) < —. (28)
Proposition 4: Assume that the parametets and B/ in the con- ()20, [s|<Ho '
trol law (13) are such the ideal closed-loop (19) is Hurwitz. Whe‘% ideal

=

the integral term in (13) is approximated by a fixed step method énc.eDA.f’Bf(s) has no roots inthe compact $&ts) > 0N|s| < Ro,
(22), then there exists a precision of the approximation such that Y implies
closed-loop characteristic matrix (21) is asymptotically stable.
Proof: It is sufficient to prove that the condition of Lemma 3 is;
satisfied for largey. deal 1
For all s with ®(s) > 0, we have X(s)DA} B, (s) ) <1

h 4 ) \
Bf / 6—(5[—44)0(19 _ z :7’ E—p/qh(sI—A) B
] { 0 P

p=0
h

<[ v
0

q
dg + Z Tp
p=0
whereM can be chosemdependenof g.
ideal

The column degrees db;°5% (s) are those ofD(s) plus one. As a
consequence

sup o (By H(s,q,h, A, B) BD

A(5)20, [s|< Ro

for largeq and the proof is complete. [ ]

Remark 5: The proof of the proposition isonstructive Using (24),
(25), and (28), a minimal precisiap (and the radiug?,) can be com-
puted explicitly.

Because the closed-loop characteristic matrix (21) isetdrded
type, the achieved stability will not be sensitive to arbitrarily small per-
turbations of the parametets ,, 9, , of the integration rule; see [5].
Proposition 4 extends to other types of quadrature rules under mild con-
ditions, since basically only a generally satisfied convergence result of
I,(f)toI(f)asq — oc is required in its proof. Notice that these two
properties do not hold in general for the discretization of the classical
— Oas [s| — oo, (25)  FSA controller (4) as a sum of point-wise delays, as shown in [9].

Bfep/thBH <M (24)

|p)D%;, (9




IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 12, DECEMBER 2003

1=1

2211

120

100

80

60

40

20

Fig. 2. Stability region of the closed-loop system (29)—(30).

If the precision of the approximatianis such that the approximation robustness property is obtaineddynamicfeedback, which makes the

of the integral is not an issue, the stability of the closed-loop systerontrol law behave as a low-pass filter. The idea of adding low pass
when the system’s delay differs from the nominal one can be studieléments to overcome the problem of sensitivity with respect to ap-
by using numerical continuation [3]or the analytical approach spellgdoximation method and to infinitesimal delay variations also applies

out in [11], [13]. It is also possible to perform a robustness analysis other predictor-based control laws such as the Smith Predictor.

with respect to parameter uncertainty based on the concerlufity
radii [10], [14].

V. ILLUSTRATIVE EXAMPLE
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We consider the monovariable system

#(t) = z(t) + u(t — h) (29)
and the control law 0
)= —f2(t)+ fhdeat) + [Felult — 6)do
{’ ==+ {0+ [ =0} gy
u(t) = z(t)
which corresponds to (13) with; = f andB; = f.k. This controller 3l

parametrization iri 7, k) is used because, for largeit can be seen as
a cascade of the classical FSA controllét) = k «, (¢, ¢+ ) and the
prefilter /(s + f).

When the computation of the integral is exact, the closed-loop [4]
quasipolynomiap(s) = s* + (f — 1)s — f(k + 1) is stable for pairs [5]
f, ksuchthatf > 1 andk < —1.

When the integral is approximated, as in (7)—(8), the effect of the [g]
low-pass filtering property of the control law (30) on the introduced

eigenvalues and the effect of increasing the precisjonf the [7]
approximation have already been illustrated in Section Il. ket
1 and different values ofy, a D-subdivision analysis leads to 8]

the stability-instability boundaries of the closed-loop system in the
(k, f)-plane, depicted in Fig. 2. [9]

VI. CONCLUSION [10]

We proposed a distributed delay control law for multivariable input

delay systems that assigns a finite closed-loop spectrum and allowsjgy]
safe implementation of the integral term with point-wise delays. This

Minister’s Office for Science, Technology, and Culture (IAP P5).
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"C”Oeni:ofésrfsngift;%’nztiﬁ_fai?]tt’,aég’_ Wig’gg(’)‘:}'f‘b’_\l"(e.:”;%?:r'ge?g;'ri”:fﬂsyshould globally asymptotically track a reference trajectory generated
1993, pp. 210-248. by a reference model. Indeed, this tracking control problem should also
include stabilization and output tracking/regulation problems studied
in the above-mentioned papers.

This note provides a simple positive answer to the above challenging
problem. The new result is facilitated by a global exponential observer,
some nonlinear global coordinate transformations, Lyapunov’s direct

On Global Tracking Control of a VTOL Aircraft Without ~ method and an extension of applying the backstepping technique.
Velocity Measurements Numerical simulations illustrate the soundness of the proposed

methodology.

K. D. Do, Z. P. Jiang, and J. Pan
1. PROBLEM FORMULATION

Abstract—This note develops a nonlinear output-feedback controller to A scaled mathematical model of a VTOL aircraft can be described

force a nonminimum phase, underactuated vertical take-off and landing as [1]
aircraft to globally asymptotically track a reference trajectory generated

by a reference model. The control development is based on a global expo- 1 =w2

nential observer, some global coordinate transformations, Lyapunov’s di- iy = — uy sin(8) + 2us cos(8
rect method and an extension of the backstepping technique. Interestingly, T2 =TS eu cos(f)
the proposed methodology also yields new results for the previously studied Y1 =y>
problems of stabilization and output tracking or regulation. Numerical sim-

ulations illustrate the effectiveness of the proposed controller. Y2 =t cos(f) + cug sin(f) — g

Index Terms—Backstepping, Lyapunov’s direct method, output-feed- o =uw
back, vertical take-off and landing (VTOL). & =uo Q)

wherery, y;, # denote position of the aircraft center of mass and roll
. INTRODUCTION anglezs, y2, w denote linear and roll angular velocities of the aircraft,

Over the last few years, controlling a vertical take-off and |andingespectivelyu1 andu» are the vertical control force and rotational mo-
(VTOL) aircraft has received a lot of attention from the control comM€nt.g > 0 is the gravitational acceleration ands the constant cou-
munity. The main difficulty with controlling VTOL aircraft is that itis Pling between the roll moment and the lateral force. It is seen that the
underactuated and nonminimum phase. An approximate input-outgifraft model (1) is underactuated and that its zero dynamics are non-
linearization approach was used in [1], [4], [8], and [9] to develop BiNiMum phase for # 0 at the steady state when considering, )
controller for stabilization and output tracking/regulation of a VTOL2S the output and as an internal state. This phenomenon can be seen

from (1) by settinge; = y1 = 22 = y» = 0. We assume that the
reference trajectory to be tracked is generated by
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