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The infimum is attained at ~z5 = z5=� if jz5j � �4 and at ~z5 = 0 if
jz5j � �4. This, together with the estimate (14) of ~d, gives the estimate
of d(x1; x), with c = ~c and C = ~C . The expression of � is easily
derived from (10).

Having proven the result on a compact neighborhood Nx of each
x0 2 V46, let now S be a compact subset of V46. The union of the
interiors Vx of Nx , x0 2 S, is a covering of S by open sets, from
which we can extract a finite covering[Vi; equation (12) holds on each
Vi with constants ci, Ci and �i. Setting � = mini �i, c = mini ci, and
C = maxi Ci, the thesis follows.

Note the following points.

• The estimate does not depend on the choice of the lifting.
• When x1 is a singular point, the continuous function � equals
zero and Theorem 2 is simply the Ball-Box Theorem at a singular
point. On the other hand, when x1 is regular and far enough from
the singular locus, it may be certainly assumed that � > � (re-
ducing � if needed). In this case, condition d(x1; x) < � implies
jz5j � �4, and Theorem 2 turns out to be the Ball-Box Theorem
at a regular point.

• A uniform estimate of the form (12)–(13) holds for compact sub-
sets of the generic Vij , with the privileged coordinates defined by
APnh

ij and �ij = det�r=det �ij in place of �. The same is true
on compact subsets ofVr , with the privileged coordinates defined
by APr and � = �r = 1 in place of �; in this case, the estimate
(12)–(13) coincides with that of the classical Ball-Box theorem.

If V46 covers the whole state space, Theorem 2 directly provides a
uniform estimation of d on IR5. Even in the general case, however, it
is possible to obtain the same result; in fact, given any compact subset
K � IR5, we can write K =

i;j
Kij [ Kr , having set Kij =

K \Dij andKr = K \Dr . Estimate (12)–(13) holds onKr as well
as each Kij ; a uniform distance estimation over K is then obtained
by computing the appropriate extremal values of c, C and � over the
subset.
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Control With Disturbance Preview and
Online Optimization

Zachary Jarvis-Wloszek, Douglas Philbrick, M. Alpay Kaya,
Andrew Packard, and Gary Balas

Abstract—We present a intuitive and self-contained formulation of a sta-
bility preserving receding horizon control strategy for a system where lim-
ited preview information is available for the disturbances. The simplicity of
the derivation is due to (and its benefits somewhat offset by) a set of strin-
gent and highly structured assumptions. The formulation uses a suboptimal
value function for terminal cost, and relies on optimization strategies that
only require a trivial improvement property, allowing implementation as
an “anytime” algorithm. The nature of this strategy’s performance is clar-
ified with linear examples.

Index Terms—Anytime, disturbance preview, model predictive control,
receding horizon control.

I. INTRODUCTION

Performance advances in microprocessors have spurred the interest
in receding horizon, also termed model predictive, control strategies.
An excellent review of the growth of the field is given in [1]. Of par-
ticular interest to this note are [2], [3], especially [4], [5], and the sub-
optimality results of [6].

We extend the methods of receding horizon control to the case where
a discrete nonlinear dynamic system is driven by disturbances, and
where consistent finite length previews of these disturbances are avail-
able. We consider the problem as a dynamic game between control
and disturbance. From this perspective, it is generally the case that ad-
vanced knowledge of the disturbance is both desirable and expensive.
Hence, in some cases a limited preview will be available through ad-
ditional sensors, intelligence, or short term predictive models (e.g., the
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weather). While it may be conservative to assume that the disturbance
works in the worst case manner beyond the prediction horizon, it may
prove prudent in certain situations. From an aerospace perspective, lim-
ited finite previews of disturbances may correspond to situations where
an outer guidance loop (based on current measurements) can only cal-
culate a desired trajectory a limited interval into the future. References
[7] and [8] consider a similar tracking problem where the signal comes
from a stable exosystem.

Our approach, which expands the results in [9], uses a suboptimal
value function as a terminal cost and requires improvement, not opti-
mality, in the optimization step. The ability to terminate the optimiza-
tion early (local minima or reduced computational resources) makes
our approach implementable as an “anytime” algorithm.

In Section II, we introduce the dynamic system and our assumptions.
Section III then gives the control objective and algorithm. In Section IV,
an important lemma unlocks the performance and stability results that
are shown in Section V. Section VI uses two linear examples to clarify
the exact behavior that the theorems in Section V guarantee.

II. DEFINITIONS, PROBLEM SETUP, AND ASSUMPTIONS

First, we need a few mathematical preliminaries and notational con-
ventions.

• K-functions:� : [0; a)! [0;1) is aK-function if it is continuous
and strictly increasing on [0, a) and �(0) = 0.

• IR+, ZI+: I + := fv 2 I : v � 0g and ZI+ := fn 2 ZI : n � 0g.
• Balls: For r�0 and n2ZI+, Bn

r :=f�2 I n :k�k�rg. When n
is clear from context, write Br .

• �[k;k+N�1]: Shorthand for the sequence f�jgk+N�1j=k .
• l2+ Spaces: 1

j=k k�jk
2 <1 , � 2 l2+.

The functions that define the dynamics and their assumptions follow.

• f : I n � I l � I m ! I n : f(0; 0; 0) = 0 and f continuous on
I n � 0 � I m.

• h : I n � I m ! I +: Continuous with h(0; 0) = 0. Also,
9 K-function � (�), h(�; �) > h(�; 0) � � (k�k), 8� 2 I n,
8� 6= 0 2 I m. Additionally, 1

j=k h(�j ; �j)<1 , � 2 l2+,
� 2 l2+.

• g : I l ! I +: g(0) = 0, and 9�1 > 0 2 I such that g(!) �
�1k!k

2, 8! 2 I l, and, 8� 2 l2+, 1

j=k g(�j) <1.
We define our dynamic system as xk+1 = f(xk; wk; uk), where

xk 2 I n is the state, wk 2 I l is the disturbance, and uk 2 I m

is the control input. Also, let the error signal at each time step be de-
fined as h(xk; uk) and let 1

j=k [h(xj ; uj)� g(wj)] be the cost of a
two player, (w;u), dynamic game. The developments of this note also
follow when g is a function of the disturbance, w, and the state, x, as
long as the requirements on h for (x; u) hold on g for (x;w).

With these system definitions we introduce the following system
properties and their explicit assumptions. Define X,W to be neigh-
borhoods that contain the origins of I n, I l as interior points, respec-
tively.

• �N : I n � I l�N � I m�N ! I n: The system flow func-
tion, which takes the system’s state forward N steps in time,
xk+N = �N(xk; w[k;k+N�1]; u[k;k+N�1]). For completeness
define �0(xk; �; �) = xk .

• � : I n ! I m The baseline controller, referred to as the legacy
controller. Let �j be the j-step flow of the system xk+1 =
f(xk; 0; �(xk)). � satisfies the following two assumptions.

1) It meets the norm bound; 8N > 0, 9rN > 0, 9�N 2 K :
8xk 2 Bn

r , kf�(�l�k(xk))g
k+N�1
l=k k � �N(kxkk).

Implying that, if xk is small, �(xk) is as well.
2) It provides the following invariance property 8xk; wk 2
X �W, f(xk; wk; �(xk)) 2 X.

• V : X ! I +: V is a continuous positive–definite function s.t.
8xk , wk 2 X �W

V f(xk; wk; �(xk)) + h(xk; �(xk))� g(wk) � V (xk): (1)

Using this inequality, V can be used as a Lyapunov function
for the system under � with w := 0 to prove local asymptotic
stability with X as its region of attraction. Recursively on the
flow of the system, the above inequality also gives 8xk 2 X,
V (xk ) � 1

j=k [h(xj ; �(xj)) � g(wj)] if wk 2 W, 8k.
Defining the worst case cost incurred starting from xk under the
system dynamics with wk 2W, 8k, as J�(xk ) with

J�(xk ) := sup
w2W

1

j=k

(h(xj ; �(xj))� g(wj)) (2)

we can use the recursive results to give the bound V (xk ) �
J�(xk ).

• JN : I n� I l�N� I m�N! I : The cost-like function

JN(xk; w[k;k+N�1]; u[k;k+N�1])

:=

k+N�1

j=k

h �j�k(xk; w[k;j�1]; u[k;j�1])

x

; uj � g(wj)

+ V �N(xk; w[k;k+N�1]; u[k;k+N�1])

x

:

Clearly, JN is only well defined when xN 2 X.
• AC;K : I m�N!2I : The constrained optimization engine,
with set valued range and constraint setK , gives trivial improve-
ment, whereby if u 2 K � I m�N and v 2 AC;K(u) then
C(v) � C(u) and v 2 K .

We will use C(�) = JN(xk; w[k;k+N�1]; �) and K(�) =
KN(xk; w[k;k+N�1]; �) such that �j(xk; w[k;j�1]; �) 2 X,
8j 2 f1; . . . ; Ng. If u is feasible, the optimization is always
feasible with v = u.

• S� : I n � I l�N � I m�N ! I m�N : A control sequence time
shift that appends a control action from the baseline controller

S�(xk; w[k;k+N�1]; u[k;k+N�1])

:= u[k+1;k+N�1]; � �N xk;w[k;k+N�1];u[k;k+N�1] :

By the properties of �, if u 2 KN (xk; w[k;k+N�1]; �), then
S�(xk; w[k;k+N�1]; u[k;k+N�1]) 2 KN (xk+1; w[k+1;k+N ]; �).

III. CONTROL STRATEGY

Using the legacy controller, the worst-case cost incurred starting
from some state xk is given by J�(xk), and our goal is to use N steps
of preview information about the disturbance, w[k;k+N�1], to choose
a value of uk that results in a lower cost and retains a guarantee of sta-
bility. We useAC;K , the constrained optimization engine, to minimize
JN , the incurred cost over anN step horizon including an appropriate
terminal state cost as the base of the algorithm.

Receding Horizon Control (RHC) Algorithm:
To generate the control signal, uk, with xk 2 X
and w[k;k+N�1] 2W

N known.
1. Compute a suboptimal control sequence û,
k = k0 (initialization)

û = f�(�j(xk; w[k;k+N�1];f�(xl)g
k+j�1
l=k ))gN�1j=0
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k > k0

û = S�(xk�1; w[k�1;k+N�2]; u
�?;k�1)

then u
�?;k 2 AJ (x ;w ;�);K (x ;w ;�)(û):

2. Set uk = u
�?;k
k , increment k and repeat.

Note that, in this algorithm, uk is functionally dependent on
w[k;k+N�1] and also that, due to the assumptions, the optimization is
always feasible.

IV. KEYSTONE LEMMA

The following lemma shows that the cost-to-go of implementing one
step of the control strategy and reoptimizing over the next N steps is
no greater than the N step preview cost starting from xk . The proof
follows along the lines of the proof for [10, Th. 2].

Lemma 1: With the control strategy shown previously, and a given
xk 2 X, w[k;k+N ] 2W

N+1

JN(xk+1; w[k+1;k+N ]; u
�?;k+1) + h(xk; u

�?;k
k )� g(wk)

� JN(xk; w[k;k+N�1]; u
�?;k):

Proof: Let �uk+1
[k+1;k+N ] = S�(xk; w[k;k+N�1]; u

�?;k
[k;k+N�1]),

and note that �uk+1
j := u

�?;k
j , 8j 2 fk+1; . . . ; k+N � 1g. Following

the definition and manipulating we get the equation chain that follows,
where for size we let k1 := k+1. Starting with the suboptimality of �u

JN(xk+1; w[k+1;k+N ]; u
�?;k+1)

�JN(xk+1; w[k+1;k+N ]; �u
k+1)

:=

k+N

j=k

h �j�k (xk ; w[k ;j�1]; �u
k

[k ;j�1])

x ; if �u and w are used

; �ukj �g(wj)

+ V �N(xk ; w[k ;k+N ]; �u
k

[k ;k+N ])

x if �u and w are used

= � h(xk; u
�?;k
k )� g(wk) + h(xk; u

�?;k
k )� g(wk)

+

k+N�1

j=k

h �j�k (xk ;w[k ;j�1];u
�?;k
[k ;j�1])

x if u and w are used

; u
�?;k
j �g(wj)

+ h �N�1(xk ;w[k ;k+N�1];�u
k

[k ;k+N�1])

x if �u and w are used

; �ukk+N

� g(wk+N ) + V �N(xk ; w[k ;k+N ]; �u
k

[k ;k+N ])

x if �u and w are used

= � h(xk; u
�?;k
k )� g(wk)

+

k+N�1

j=k

h �j�k(xk; w[k;j�1]; u
�?;k
[k;j�1])

x if u and w are used

; u
�?;k
j � g(wj)

+h �N(xk;w[k;k+N�1];u
�?;k
[k;k+N�1])

x if u and w are used

;�ukk+N �g(wk+N)

+ V �N(xk ; w[k ;k+N ]; �u
k

[k ;k+N ])

x if �u and w are used

(a)

� � h(xk; u
�?;k
k )� g(wk)

+

k+N�1

j=k

h �j�k(xk; w[k;j�1]; u
�?;k
[k;j�1])

x if u and w are used

; u
�?;k
j �g(wj)

+ V �N(xk; w[k;k+N�1]; u
�?;k
[k;k+N�1])

x if u and w are used

= � h(xk; u
�?;k
k )� g(wk) + JN(xk; w[k;k+N�1]; u

�?;k)

(a) is from the definition of V , which is valid since xk+N 2 X, and
the control at k +N is from �.

V. PERFORMANCE AND STABILITY

By bounding the cost of the RHC algorithm, we can show that this
strategy achieves a cost that is no greater than our upper bound for the
worst-case cost under the legacy controller.
Theorem 1: 8w 2 l2+, with wk 2 W, 8k and 8xk 2 X, the

cost resulting from the application of the RHC algorithm is bounded as
follows:

1

j=k

h(xj ; u
�?;j
j )� g(wj) � V (xk ):

Proof: Let � > 0. From Lemma 1

JN(xk+1; w[k+1;k+N ]; u
�?;k+1)

� � h(xk; u
�?;k
k )� g(wk) + JN(xk; w[k;k+N�1]; u

�?;k):

Since the state trajectory remains inX for all time, taking this relation
for xk ; . . . ; xk +L�2, L > 0, summing and canceling we have, with
kL := k0 + L � 1

JN(xk ; w[k ;k +N�1]; u
�?;k )

� �

k +L�2

j=k

h(xj ; u
�?;j
j )� g(wj) +JN(xk ; w[k ;k +N�1]; u

�?;k ):

If we rearrange the previous equation and use the definition of
JN(xk ; w[k ;k +N�1]; u

�?;k ), we have

JN(xk ; w[k ;k +N�1]; u
�?;k )

�

k +L�2

j=k

h(xj ; u
�?;j
j )� g(wj)

+

k +N�1

j=k

h(�j�k (xk ;w[k ;j�1]; u
�?;k
[k ;j�1])

x if u and w are used

; u
�?;k
j )� g(wj)

+ V �N(xk ; w[k ;k +N�1]; u
�?;k
[k ;k +N�1])

x if u and w are used

:

Since V � 0 and h � 0, we have the following:

JN(xk ; w[k ;k +N�1]; u
�?;k )

�

k +L�2

j=k

h(xj ; u
�?;j
j )� g(wj) �

k +L�1+N�1

j=k +L�1

g(wj):
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By our assumptions on g, we know that g converges and g(w) � 0,
8w, thus, for L large enough

JN(xk ; w[k ;k +N�1]; u
�?;k ) + � �

k +L�1

j=k

h(xj ; u
�?;j
j )�g(wj) :

Since the left-hand side of the previous equation does not depend on L
and is a fixed number, it is a valid upper bound of the right-hand side
for all L large enough. Taking L!1 and rearranging yields

1

j=k

h(xj ; u
�?;j
j )� g(wj)

�JN(xk ; w[k ;k +N�1]; u
�?;k ) + �

(a)

�JN(xk ;w[k ;k +N�1]; [�(xk ); . . . ; �(xk +N�1)]) + �

(b)

�V (xk ) + �:

Inequality (a) comes from the use ofAC;K to get u�?;k from the con-
trol sequence under �. (b) results from applying (1) N times.

Lemma 2: Using the RHC algorithm with any known disturbance
trajectory w 2 l2+ and wk 2W, 8k, and any initial condition xk 2
X results in a state trajectory in l2+.

Proof: Theorem 1 gives us

V (xk ) �

1

j=k

h(xj ; u
�?;j
j )� g(wj) :

We know that for x 2 X, V (x) < 1, and by assumption g con-
verges for any w 2 l2+, yielding

1

j=k

h(xj ; u
�?;j
j ) <1

which by the assumptions on h gives x 2 l2+.
This gives the result that ifw 2 l2+ then x 2 l2+, implying xk ! 0

as k ! 1, and we can use result in the following theorem to have
local asymptotic stability.

Theorem 2: Using the RHC algorithm withw := 0, the closed-loop
system xk+1 = f(xk; 0; u

�?;k
k ) with

u
�?;k 2 AJ (x ;0;�);K (x ;0;�) S�(xk�1; 0; u

�?;k�1)

is locally asymptotically stable about the origin with region of attrac-
tion X.

Proof: This proof is based on the time-varying Lyapunov
stability proof in [6]. Using V (0) = 0 and the continuity of JN (from
continuity of f , h, g, and V ) allows us to upper bound JN around the
origin, so 9K-function � and 9r1 > 0 such that 8� 2 Bn

r � X,
8� 2 Bm�N

r � KN(�; 0; �), JN(�; 0; �) � �(k�k + k�k).
Using the positivity of V and h along with the other assump-
tions on h we get 8� 2 X, 8� 2 KN (�; 0; �) it follows that
JN(�; 0; �) � h(�;0) � � (k�k). From the assumptions on �,
8xk 2 Bn

r , kf�(�l�k(xk))g
k+N�1
l=k k � �N(kxkk). From the key-

stone lemma, 8k � k0, JN(xk; 0; u
�?;k) � JN(xk ; 0; u�?;k ). Now,

for any � > 0 pick �� > 0 so that �� < min(rN ; r1), �N(��) < r1,
and �(�� + �N(��)) < � (�). Then for any xk 2 Bn

� we have
kf�(�l�k (xk ))gk +N�1

l=k k � �N(kxk k) � �N(��) < r1, which
implies that f�(�l�k (xk ))gk +N�1

l=k 2 Bm�N
r .

We can now build the following chain for all k � k0:

� (kxkk) � JN(xk; 0; u
�?;k) � JN(xk ; 0; u

�?;k )

� JN(xk ; 0; f�(�l�k (xk ))gk +N�1
l=k ):

(a)

(b)

Fig. 1. (a) (Example 1): preview information causing worse disturbance
rejection at all frequencies. (b) (Example 2): increased preview length leading
to the worsening of disturbance rejection.

Using the upper bound on JN , we get

� (kxkk) ��(kxk k+ kf�(�l�k (xk ))gk +N�1
l=k k)

��(�� + �N(��)) � � (�)

showing that if xk 2 Bn
� then xk 2 Bn

� 8k � k0, yielding stability.
Since w meets the conditions of Lemma 2 we have xk ! 0, implying
that, if xk 2 X then eventually xk 2 B� , resulting in local asymp-
totic stability.

VI. WHAT THE THEOREMS DON’T SAY …

It is tempting to sloppily summarize the result in Theorem 1 as “the
RHC controller always does as well as the legacy controller.” This is
false. In order to show that certain results are not true in general, we
consider the simplest framework which fits within the theorem.

Given matrices A, B1 and B2 of appropriate dimension,
with �(A) < 1, 0 � H = HT 2 I (n+m)�(n+m), parti-
tion H(1=2) =: [C1 D12], define e := C1x + D12u, and let

 > C1(zI � A)�1B1

1
. Then there exists X = XT � 0 such

that

L
;X :=
X 0

0 
2I
�

AT CT
1

BT
1 0

X 0

0 I

A B1

C1 0
� 0

(if (A;B1) and (A;C1) are, respectively, controllable and observable
and 
 = C1(zI � A)�1B1

1
, then there existsX = XT � 0 such

that L
;X � 0). Consider specific forms for f , g, h, � and V , namely
�(x) � 0 for all x, f(x;w; u) = Ax +B1w +B2u, g = 
2wTw

h(x; u) =
x

u

T

H
x

u
; and V (x) = x

T
Xx:

This set of functions satisfies all the hypotheses of Theorem 1, with
X = I n andW = I l. Denote Ĝleg(z) := C1(zI �A)�1B1, which
is both the closed and open-loop w to e transfer function. Note that
kĜlegk1 < 
.
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TABLE I
DATA FOR THE EXAMPLES

JN (xk; w[k;k+N�1]; u[k;k+N�1]) is a quadratic function of xk ,
w[k;k+N�1] and u[k;k+N�1]. Since H22 � 0 and X � 0, JN is
positive–definite in u[k;k+N�1], and the minimizing control input
u
�?;k
[k;k+N�1] (as well as it’s first entry, u�?;kk ) is a linear function of xk

and w[k;k+N�1]. With this feedback/feedforward law, Theorems 1
and 2 imply that the closed-loop system is LTI and stable, and for any
initial condition xk = �, and any w 2 l2

1

j=k

h(xj ; u
�?;j
j )� g(wj) � �

T
X�:

So, starting from initial condition xk = 0, and for any w 2 l2 we
have kek2 � 
 kwk2.

Let T denote the (noncausal, linear, time-invariant, finite-dimen-
sional) closed-loop map from w to e, and let T̂ denote the transfer
function. Let TN denote the causal, closed loop map from an N -step
advance of w to e. It is straightforward to write a realization for the
causal TN , and we use this in the upcoming computations. Both T

and TN have the same induced l2 norm, which in the frequency do-
main is kT̂k1 = kT̂Nk1. Therefore, we must have kT̂Nk1 � 
,
and in the special case where 
 is equal to kĜlegk1 it follows that
kT̂Nk1 � kĜlegk1 (i.e., guaranteed performance retention/improve-
ment in the k � k1 sense).

It is definitely not claimed that kT̂N (ej�)k � kĜleg(e
j�)k for all

�. In fact, if 
 > kĜlegk1, it is not even claimed that kT̂Nk1 �
kĜlegk1. Indeed, it is possible [see Example 1: data in Table 1 and
results in Fig.1(a)] that

�� Ĝleg(e
j�) < �� T̂N (ej�) < 
 8� 2 [0; �]:

For this example, starting from xk = 0, for any w 2 l2+ using the
RHC strategy, u�?, and separately the legacy control, �(x), results in
costs 1

j=k h(xj ; u
�?;j
j ) >

1

j=k h(xj ; �(xj)). Additionally, in-
creasing the horizon length does not necessarily improve performance
in the k�k1 sense, as is shown in Example 2 (data in Table 1 and results
in Fig.1(b)], where the magnitude of Ĝleg and T̂N , with N = f1; 2g
are shown. In both examples the plotted value of 
 (our choice) is an
upper bound to kT̂Nk1, as expected. Based on this discussion, for any
specific system, the following inequalities need not hold.

1) T̂N (ej�) � Ĝleg(e
j�) for all �.

2) T̂N
1

� Ĝleg
1

.

3) For any initial condition � = xk , and any w 2 l2,
1

j=k h(xRHCj ; uRHCj ) � 1

j=k h(xlegj ; u
leg
j ).

4) If N > M > 0, then T̂N
1

� T̂M
1

.

VII. CONCLUSION

We have shown that, in a discrete-time context, a receding horizon
control algorithm with a suboptimal minimization step, can be used
to take advantage of previews of exogenous signals, disturbances or
tracking commands, to possibly improve worst-case performance
over some nominal controller, while still guaranteeing stability of the
closed-loop system. However, these results are based on the avail-
ability of consistent disturbance previews, which does not allow for
the consideration of unknown disturbances or noise in this framework.
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