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Controllability of Quantum Harmonic Oscillators

Mazyar Mirrahimi and Pierre Rouchon

Abstract—It is proven in a previous paper that any modal approxima-
tion of the one-dimensional quantum harmonic oscillator is controllable.
We prove here that, contrary to such finite-dimensional approximations,
the original infinite-dimensional system is not controllable: Its controllable
part is of dimension 2 and corresponds to the dynamics of the average posi-
tion. More generally, we prove that, for the quantum harmonic oscillator of
any dimension, similar lacks of controllability occur whatever the number
of control is: the controllable part still corresponds to the average position
dynamics. We show, with the quantum particle in a moving quadratic po-
tential, that some physically interesting motion planning questions can be
however solved.

Index Terms—Nonlinear controllability, quantum systems, Schrödinger
equation.

I. INTRODUCTION

Schirmer et al. have considered for any integer n > 0, the following
controlled Schrödinger equation (state  2 n+1 and control u 2 )

{
d

dt
 = (H0 + uH1) 

where H0 and H1 are the following (n + 1) � (n + 1) Hermitian
matrices:
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Using the general controllability result of [8], they have proved that this
system is controllable. Such a system is the truncation, up to the first
n + 1 eigenstates whose energies are between 1=2 and n + (1=2), of
the harmonic oscillator
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q2 � u(t)q  (1)

where the probability amplitude (t; q) 2 is a function of q 2 and
t. We prove here that such system is not controllable: Its controllable
part corresponds to the classical harmonic dynamics followed by the
average position hqi = +1

�1
j (t; q)j2q dq

d2

dt2
hqi = �hqi+ u:
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For the N -dimensional approximation, the commutation [q; p] = {
does not hold, what results in a controllability Lie algebra N2, while
for the infinite-dimensional description the Lie algebra is of dimension
4.
In fact we provide the decomposition into the controllable part (the

previous second-order equation) and its uncontrollable part (an au-
tonomous Schrödinger equation). This decomposition extends directly
to any arbitrary space dimension n and control numberm :

{
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@t
(t; q) = �1

2
� +
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2
(Aq; q)  �

m

i=1

ui(bi; q)  (2)

where � n 3 (t; q) 7!  (t; q) 2 is the probability amplitude,
� = n

i=1
(@2)=(@q2i ) the Laplace operator in

n; A is a symmetric
matrix of ordern, the bi’s are vectors of n and (:; :) is the Euclidian
product in n.
Although such strong lack of controllability tends to indicate that

severe obstructions to the control of harmonic oscillators exist, the
situation is not as disappointing as one might think. Assume that u
corresponds to an acceleration �u = �%. Then, (1) can be interpreted
as the Schrödinger equation of a particle in a non-Galilean frame
admitting the acceleration �%. The control is then directly related
the absolute position of this frame % and the physical interpretation
becomes clear: the particle is trapped in a box described by the
quadratic potential q2=2. This box is moving and the control is the
position of the box. This configuration is very similar to a classical
one: the slosh problem where a tank filled with liquid is moved. The
quantum particle plays the role of the liquid with its surface waves.
The quadratic potential corresponds then to the tank that contains
the liquid. We have then partial controllability properties similar to
those obtained in [7] for the slosh problem: for any initial a and
final position b of the box % and any steady-state  n of energy
n + 1=2, we describe explicitly the control t 7! u(t) steering (1)
from box position a with  =  n at t = 0 to box position b with
 = exp({�) n at t = T (T > 0 is any transition time) where
� 2 is some physically meaningless phase shift.
The note is organized as follows: next section deals with the one di-

mensional case and its decomposition into controllable and uncontrol-
lable parts. In Section III, we consider the n-dimensional cases withm
controls. In Section IV, we consider the moving potential and solve by
elementary computations some motion planning problems admitting a
simple physical meaning.
Preliminary versions of these results can be found in [10], [9].

II. ONE-DIMENSIONAL CASE

Denote by p = �{(@)=(@q) the momentum operator and by q the
multiplication by q. Then, (1) reads

{
d

dt
 =

1

2
(p2 + q2) � uq = H0 + uH1 

where H0 = (1=2)(p2 + q2) and H1 = �q. Following [8], let
us compute the Lie algebra generated by {H0 and {H1, using the
standard commutation relations: [q; p] = {; [q; F (p)] = {F 0(p), and
[F (q); p] = {F 0(q) for any function F . We have

[H0; H1] = {p [H0; p] = �{q [H1; p] = �{:

Thus, this Lie algebra is of dimension 4 and the system is not
controllable.
In fact, the controllable part coincides with the dynamics of the av-

erage position hqi =
+1

�1
qj (t; q)j2 dq. Its dynamics given by the
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classical Ehrenfest theorem (see, e.g., [6]) corresponds then to the clas-
sical oscillator

d

dt
hqi = hpi

d

dt
hpi = �hqi+ u (3)

which is trivially controllable.
The uncontrollable part corresponds to a Schrödinger dynamics

without control. Consider the following change of independent
variables (t; q) 7! (t; z = q � hqi). Then, the Schrödinger equation
reads with  (t; q) = exp({hpiz)�(t; z)

{
d

dt
� = (P 2=2 + Z2=2)�+ (hqi2=2� hpi2=2� uhqi)�

where P � {(@)=(@z) and Z � z. The following phase change:

�(t; z) = exp �{
t

0

(hqi2=2� hpi2=2� uhqi) '(t; z)

(gauge transformation since � and ' represent the same physical
system) yields

{
d

dt
' = (P 2=2 + Z2=2)': (4)

The dynamics of �(t; q) can be decomposed into two parts, a
controllable one of dimension two (3), an uncontrollable one of
infinite dimension (4).
The aforementioned computations are classical (see, e.g., [1]). Less

classical is the interpretation as decomposition into controllable and un-
controllable parts. It is the infinite dimensional analogue of decomposi-
tion for the nonlinear system of finite dimension (d)=(dt)� = f(�; u)
via a nonlinear change of coordinates � 7! � (see, e.g., [4]) where

� = (�1; �2)
d

dt
�1 = g1(�1)

d

dt
�2 = g2(�1; �2; u):

The uncontrollable part corresponds then to the autonomous dynamics
on �1. The following question becomes then natural. Take the con-
trolled Schrödinger equation (infinite-dimensional case) with general
Hermitian operators H0 and H1

{
d

dt
 = H0 +

n

1

uiHi  :

Assume that the Lie algebra spanned by the skew-Hermitian operators
H0={ andH1={ is of finite dimension. Does there exists a decomposi-
tion into a finite-dimensional controllable part and an infinite-dimen-
sional uncontrollable part, similar to the caseH0 = p2=2+q2=2;H1 =
�q?

III. N -DIMENSIONAL CASE

In contrast to the control equation for the wavefunction, which is
bilinear with drift, the control equations for the average position and
momentum of a harmonic oscillator in an n-dimensional configura-
tion space are linear, and hence standard results for linear control are
applicable.
Consider (2). By the Ehrenfest theorem, we have

d

dt
hqi = hpi

d

dt
hpi = �Ahqi+Bu (5)

where B = (b1; . . . ; bm); hqi 2 n and hpi 2 n are the average
position andmomentum. This finite-dimensional system is controllable
as soon as the rank of its Kalman controllability matrix is 2n [5]. This
is equivalent to the rank of (B;AB; . . . ; An�1B) equals n.

Consider the following change of variables (t; q) 7! (t; z = q �

hqi). Let

 (t; q) = exp(i(hpi; z) )�(t; z):

Then, (2) becomes
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dt
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where P = {((@)=(@q1); . . . ; (@)=(@qn)) and Z = (z1; . . . ; zn).
Now, we use a gauge transformation
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where ' obeys an autonomous equation

{
d

dt
' =
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2
+

1

2
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To summarize: The controllable part of (2) corresponds to the con-
trollable part of the 2n-dimensional linear system (5). Its dimension
is the double of the rank of its “Kalman controllability matrix”
(B;AB; . . . ; An�1B).

IV. PARTICLE IN A MOVING QUADRATIC POTENTIAL BOX

Take (1) and assume that u = ��% with % the position of the non
Galilean frame associated to q. From Section II, we consider the finite-
dimensional system

�hqi = �hqi+ u �% = �u:

This system is controllable with y = % + hqi, the average position in
the Galilean frame, as Brunovsky output [5]

hqi = ��y % = y + �y u = �y + y(4):

Assume now that our goal is to steer the particle from one spatial lo-
cation described by its average position a at t = 0 to another position
b at t = T > 0. Assume that the initial state  (0; t) is a steady-state
 n(q) with energy n + 1=2; n 2 . Our goal is also to recover this
energy and its corresponding state at the end of the motion: we just
want to translate the particle leaving its energy unchanged at the end.
To perform such motions in a smooth manner, it suffices, using flatness
based motion planning methods [2], [3], to set

u = �& + &(4)

where & is any C4 time function such that &(0) = a; &(T ) = b, and
&(i)(0) = &(i)(T ) = 0, for i = 1; 2; 3; 4. One can take, for example

&(t) =
a 1� t

T

�
+ b t

T

�

1� t

T

�
+ t

T

� ; t 2 [0; T ]

with � � 4. The decomposition into the controllable and uncontrol-
lable parts, (3) and (4), implies that the solution of (1) with  (0; q) =
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 n(q) and u(t) = �&(t)+&(4)(t) is explicit. For t 2 [0; T ], the solution
 (t; q) is equal to

exp �{
(2n+ 1)t

2
+ &

(3)(q + �&)

+
t

0

�&2

2
�

(&(3))2

2
+ �& + &

(4) �&  n(q + �&):

This results directly from Section II because

hqi = ��& hpi = �&(3):

Since we have also % = &+�& , we conclude that such open-loop control
steers the particle from the average position a to b without changing its
energy. The transition time T can be arbitrary small and the control u
could be very large. Using Section III, our motion planning method can
be easily extended to n particles in n quadratic potential box moving
simultaneously in the three-dimensional physical space.

V. CONCLUDING REMARK

The fact that the only controllable part corresponds to the “classical”
dynamics of the average positions is a rather surprising result. Since
harmonic oscillators appear naturally in quantum-electrodynamics, we
wonder if such results cannot be a starting point to imagine the control
of the quantum dynamics of an electromagnetic field. In a certain sense,
the question is: what is the quantum analogue for the boundary control
of a classical wave equation.
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Dissipativity Theory for Nonnegative and Compartmental
Dynamical Systems With Time Delay

WassimM. Haddad, VijaySekhar Chellaboina, and Tanmay Rajpurohit

Abstract—Nonnegative and compartmental dynamical system models
are derived from mass and energy balance considerations that involve
dynamic states whose values are nonnegative. These models are widespread
in engineering and life sciences and typically involve the exchange of
nonnegative quantities between subsystems or compartments wherein each
compartment is assumed to be kinetically homogeneous. However, in many
engineering and life science systems, transfers between compartments are
not instantaneous and realistic models for capturing the dynamics of such
systems should account for material in transit between compartments.
Including some information of past system states in the system model
leads to infinite-dimensional delay nonnegative dynamical systems. In
this note, we develop dissipativity theory for nonnegative dynamical
systems with time delay using linear storage functionals with linear
supply rates. These results are then used to develop general stability
criteria for feedback interconnections of nonnegative dynamical systems
with time delay.

Index Terms—Compartmental systems, dissipativity theory, feedback
systems, linear storage functionals, linear supply rates, nonnegative
systems, time delay.

I. INTRODUCTION

Modern complex engineering systems are highly interconnected
and mutually interdependent, both physically and through a multitude
of information and communication networks. By properly formulating
these systems in terms of subsystem interaction and energy/mass
transfer, the dynamical models of many of these systems can be
derived from mass, energy, and information balance considerations
that involve dynamic states whose values are nonnegative. Hence, it
follows from physical considerations that the state trajectory of such
systems remains in the nonnegative orthant of the state space for
nonnegative initial conditions. Such systems are commonly referred
to as nonnegative dynamical systems in the literature [1]–[3]. A sub-
class of nonnegative dynamical systems are compartmental systems
[3]–[13]. Compartmental systems involve dynamical models that are
characterized by conservation laws (e.g., mass and energy) capturing
the exchange of material between coupled macroscopic subsystems
known as compartments. Each compartment is assumed to be kinet-
ically homogeneous; that is, any material entering the compartment
is instantaneously mixed with the material of the compartment. A
key physical limitation of such systems is that transfers between
compartments are not instantaneous and realistic models for capturing
the dynamics of such systems should account for material, energy,
or information in transit between compartments [11], [14]. Hence,
to accurately describe the evolution of the aforementioned systems,
it is necessary to include in any mathematical model of the system
dynamics some information of the past system states. This of course
leads to (infinite-dimensional) delay dynamical systems [15]–[17].
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