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Antiwindup Design With Guaranteed Regions of Stability:
An LMI-Based Approach

João Manoel Gomes da Silva, Jr. and Sophie Tarbouriech

Abstract—This note addresses the design of antiwindup gains for ob-
taining larger regions of stability for linear systems with saturating inputs.
Considering that a linear dynamic output feedback has been designed to
stabilize the linear system (without saturation), a method is proposed for
designing an antiwindup gain that maximizes an estimate of the basin of
attraction of the closed-loop system. It is shown that the closed-loop system
obtained from the controller plus the antiwindup gain can be modeled by a
linear system with a deadzone nonlinearity. A modified sector condition is
then used to obtain stability conditions based on quadratic Lyapunov func-
tions. Differently frompreviousworks these conditions are directly in linear
matrix inequality form. Some numerical examples illustrate the effective-
ness of the proposed design technique when compared with the previous
ones.

Index Terms—Actuator saturation, antiwindup, linear matrix inequality
(LMI), stability.

I. INTRODUCTION

The basic idea underlining antiwindup designs for linear systems
with saturating actuators is to introduce control modifications in
order to recover, as much as possible, the performance induced by a
previous design carried out on the basis of the unsaturated system.
First results on antiwindup consisted on ad-hoc methods intended to
work with standard proportional–integral–derivative (PID) controllers
[1], [2] which are commonly used in present commercial controllers.
Nonetheless, major improvements in this field have been achieved in
the last decade as it can be observed in [3]–[10] among others.

Several results on the antiwindup problem are concerned with
achieving global stability properties. Since global results cannot be
achieved for open-loop unstable linear systems in the presence of actu-
ator saturation, local results have to be developed. In this context, a key
issue is the determination of domains of stability for the closed-loop
system (estimates of the basin of attraction). With very few exceptions,
most of the local results available in the literature of antiwindup do
not provide explicit characterization of the domain of stability.

Recently, in [11] and [12], theoretical results have been developed
in order to fill in this gap by providing design algorithms that explic-
itly optimize a criterion aiming at maximizing a stability domain of the
closed-loop system. In [11], the modeling of the nonlinear behavior of
the system under saturation is made by using a polytopic differential in-
clusion and quadratic Lyapunov functions. On the other hand, in [12],
based on a transformation of the saturation term in a deadzone nonlin-
earity, classical sector condition and S-procedure techniques are used
to derive stability conditions considering both quadratic and Lure type
Lyapunov functions. The main drawback of the approaches above is
that the conditions allowing to compute the antiwindup gains are given
in terms of bilinear matrix inequalities (BMIs). In order to overcome
this difficulty, iterative algorithms based on linear matrix inequalities
(LMIs) are proposed to solve the synthesis problem. It is well known
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that, in general this kind of approach leads only to local optimal solu-
tions and are very sensitive to the initialization [13].
In this note, we propose a new approach for synthesizing antiwindup

gains taking into account an associated region of asymptotic stability
for the closed-loop system. As pointed in [11] and [12], this problem is
implicitly related to the problem of enlarging the region of attraction by
means of antiwindup schemes. Our results are based on the proposition
of a modified sector condition. Based on this new sector condition, the
stability conditions can be formulated directly in LMI form. It is shown
that the results of [12] appears as a particular case of the new conditions.
On the other hand, the results are potentially less conservative than the
ones of [11].
The note is organized as follows. The problem to be treated is for-

mally stated in Section II. The theoretical results allowing to determine
the antiwindup gain and an associated region of stability are presented
in Section III. Section IV is devoted to the presentation of a convex
optimization problem in order to compute the antiwindup gain aiming
at enlarging the basin of attraction of the closed-loop system. The ex-
tension of the methodology to the case where the inputs are delayed is
presented in Section V. The effectiveness of the proposed approach is
illustrated by means of examples in Section VI. Some concluding re-
marks ends this note.
Notations: The ith component of a vector x is denoted by x(i). The

elements of a matrix A 2 <m�n are denoted by A(i;l), i = 1; . . . ;m,
l = 1; . . . ; n.A(i) denotes the ith row of matrixA. For two symmetric
matrices, A and B, A > B means that A � B is positive definite. A0

denotes the transpose ofA. diag(x) denotes a diagonalmatrix obtained
from vector x. Im denotes them-order identity matrix. Cof:g denotes
a convex hull.

II. PROBLEM STATEMENT

Consider the continuous-time linear system

_x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

where x(t) 2 <n, u(t) 2 <m, y(t) 2 <p are the state, the input,
and the measured output vectors, respectively. Matrices A, B and C

are real constant matrices of appropriate dimensions. Pairs (A;B) and
(C;A) are assumed to be controllable and observable, respectively.
Considering system (1), we assume that an nc-order dynamic output

stabilizing compensator

_�(t) =Ac�(t) +Bcy(t)

vc(t) =Cc�(t) +Dcy(t) (2)

where �(t) 2 <n is the controller state, uc(t) = y(t) is the controller
input, and vc(t) is the controller output, has been designed in order
to guarantee some performance requirements and the stability of the
closed-loop system in the absence of control saturation.
Suppose now that the input vector u is subject to amplitude limita-

tions as follows:

�u0(i) � u(i) � u0(i); u0(i) > 0; i = 1; . . . ;m: (3)

In consequence of the control bounds, the actual control signal to be
injected in the system is a saturated one, that is

u(t) = sat (vc(t)) = sat (Cc�(t) +DcCx(t)) (4)

where each component of sat(vc(t)) is defined 8i = 1; . . . ;m by

sat vc(i)(t)
�
= sign vc(i)(t) min vc(i)(t) ; u0(i) : (5)
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In order tomitigate the undesirable effects of windup caused by input
saturation, an antiwindup term Ec(sat(vc(t)) � vc(t)) can be added
to the controller [5]. Thus, considering the dynamic controller and this
antiwindup strategy, the closed-loop system reads

_x(t) =Ax(t) +Bsat (vc(t))

y(t) =Cx(t)

_�(t) =Ac�(t) +Bcy(t) +Ec (sat (vc(t))� vc(t))

vc(t) =Cc�(t) +Dcy(t): (6)

Define now an extended state vector �(t) = [x(t)0 �(t)0]0 2 <n+n

and the following matrices:

=
A+BDcC BCc

BcC Ac

=
B

0

=
0

In
= [DcC Cc]:

Hence, from the previous definitions, the closed-loop system reads

_�(t) = �(t)� ( + Ec) ( �(t)) (7)

with the function  (v)
�
= v � sat(v). Note that, in this case,

 (v) corresponds to a decentralized deadzone nonlinearity
 (v) = [ (v(1)) . . .  (v(m))]

0, where 8i = 1; . . . ; m

 v(i)
�
=

v(i) � u0(i) if v(i) > u0(i)

0 if �u0(i) � v(i) � u0(i)

v(i) + u0(i) if v(i) < �u0(i)

: (8)

Matrix is supposed to be Hurwitz, i.e., in the absence of control
bounds, the closed-loop system would be globally stable.

The problem we aim to solve throughout this note is then summa-
rized as follows.

Problem 1: Determine the antiwindup gain matrix Ec and a region
of asymptotic stability, as large as possible, for the closed-loop system
(7).

Of course, the implicit objective in Problem 1 is to optimize the size
of the basin of attraction for the closed-loop system (7) over the choice
of the gainmatrixEc. This can be accomplished indirectly by searching
for an antiwindup gain Ec that leads to a region of stability for the
closed-loop system as large as possible.

III. STABILITY CONDITIONS

Consider a matrix G 2 <m�(n+n ) and define the following poly-
hedral set:

S
�
= � 2 <n+n ; (i) �G(i) � � u0(i); i = 1; . . . ;m : (9)

Regarding the nonlinearity (8) and the set S , the following Lemma
can be stated.

Lemma 1: Consider the function  (v) defined in (8). If � 2 S then
the relation

 ( �)0T [ ( �)�G�] � 0 (10)

is verified for any matrix T 2 <m�m diagonal and positive definite.
Proof: Consider the three cases that follow.

a) �u0(i) � (i)� � u0(i).
In this case, by definition,  ( (i)�) = 0 and then

 ( (i)�)T(i;i)[ ( (i)�) � G(i)�] = 0.
b) (i)� > u0(i). In this case, ( (i)�) = (i)��u0(i) . If � 2 S ,

it follows that (i)� � G(i)� � u0(i). Hence, it follows that
 ( (i)�) � G(i)� = (i)� � u0(i) � G(i)� � 0 and, since in

this case  ( (i)�) > 0, one gets  ( (i)�)T(i;i)[ ( (i)�) �
G(i)�] � 0, 8T(i;i) > 0.

c) (i)� < �u0(i). In this case,  ( (i)�) = (i)� + u0(i). If
� 2 S , it follows that (i)��G(i)� � �u0(i). Hence, it follows
that  ( (i)�)�G(i)� = (i)�+u0(i) �G(i)� � 0 and, since
in this case  ( (i)�) < 0, one gets  ( (i)�)T(i;i)[ ( (i)�)�
G(i)�] � 0, 8T(i;i) > 0.

From these three cases, provided that � 2 S , we can conclude that
 ( (i)�)T(i;i)[ ( (i)�) � G(i)�] � 0, 8T(i;i) > 0, 8i = 1; . . . ; m,
from where follows (10).
Consider now, as a Lyapunov candidate function, the quadratic func-

tion

V (�(t))=�(t)0P�(t); P =P 0 > 0; P 2 <(n+n )�(n+n )
:

(11)
Theorem 1: If there exist a symmetric positive–definite matrixW 2

<(n+n )�(n+n ), a matrix Y 2 <m�(n+n ), a matrix Z 2 <n �m

and a diagonal positive–definite matrix S 2 <m�m satisfying

W 0 + W S + Z � Y 0

S 0 + Z 0 0 � Y �2S
< 0 (12)

W W 0

(i) � Y 0

(i)

(i)W � Y(i) u20(i)
� 0; i = 1; . . . ;m (13)

then the gain matrix Ec = ZS�1 is such that the ellipsoid E(P ) =
f� 2 <n+n ; �0P� � 1g, with P = W�1, is an asymptotic stability
region for system (6).

Proof: The satisfaction of relations (13) implies that the set E(P )
is included in the polyhedral set S defined as in (9) with G = Y P

[13], [14]. Hence, from Lemma 1, for all �(t) 2 E(P ) it follows that
 ( �(t)) = �(t) � sat( �(t)) satisfies the sector condition (10).
By considering the quadratic candidate Lyapunov function as defined
in (11) and by computing its time-derivative along the trajectories of
system (7) one gets

_V (�(t))=�(t)0( 0
P + P )�(t)� 2�(t)0P ( + Ec) ( �(t)) :

Thus, by using the sector condition (10), it follows that

_V (�(t)) � _V (�(t))� 2 ( �(t))0 T ( �(t))

+2 ( �(t))0 TG�(t) (14)

for any � 2 E(P ).
The right-hand side of (14) can be written in the form

�(t)0 �  ( �(t))0
M1 M2

M 0

2 M3

�(t)

� ( �(t))

where

M1 = 0
P + P

M2 =P + P Ec �G
0
T

M3 = � 2T

:

Note now that pre- and postmultiplying (12) by

P 0

0 T

and considering W = P�1, S = T�1, and Z = EcT
�1, it follows

that

M1 M2

M 0

2 M3
< 0:

Hence, if (12) is satisfied one has _V (�(t)) < 0. Since this reasoning
is valid 8�(t) 2 E(P ), �(t) 6= 0, it follows that E(P ) is a positively
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invariant and contractive region for system (7) whichmeans that for any
�(0) 2 E(P ), the corresponding trajectory converges asymptotically
to the origin, i.e., E(P ) is a region of asymptotic stability for the closed-
loop system (7).

Theorem 1 gives a condition for the local stability of system (6) in-
side an ellipsoidal region in the state–space. On the other hand, the fol-
lowing corollary, concerning a global stability condition, can be stated.

Corollary 1: If there exist a symmetric positive–definite ma-
trix W 2 <(n+n )�(n+n ), a diagonal positive–definite matrix
S 2 <m�m and a matrix Z 2 <n �m satisfying

W 0 + W S + Z �W 0

S 0 + Z 0 0 � W �2S < 0 (15)

then, for Ec = ZS�1, system (7) is globally asymptotically stable.
Proof: ConsiderG = . It follows that (10) is verified for all � 2

<n+n . In this case, (15) corresponds to (12) and the global asymptotic
stability follows.

Remark 1: The result in [12] appears as a particular case of The-
orem 1. In that paper,  ( �) satisfies the “classical” sector condition:
 ( �)0T [ ( �)� � �] � 0, 8� 2 S( ; u�0 ), where � is a positive
diagonal matrix and the set S( ; u�0 ) is a polyhedral set defined as fol-
lows:

S ; u�0 = � 2 <n+n ; (i)� �
u0(i)

1� �(i;i)

; i=1; . . . ; m :

(16)
Following a similar procedure to the one applied in the proof of The-

orem 1, the following conditions are obtained:

W 0 + W S + Z �W 0�

S 0 + Z 0 0 � � W �2S < 0 (17)

W 1� �(i;i) W 0

(i)

1� �(i;i) (i)W 
u20(i)
� 0;

i = 1; . . . ; m: (18)

Note that these matrix inequalities are bilinear in variablesW and �.
It is easy to see that (17) and (18) corresponds to the conditions of
Theorem 1 by taking G = � . Hence, all the solutions obtained con-
sidering (17) and (18) are also feasible solutions for (12) and (13).

Remark 2: Regarding the approach developed in [11], we can state
the following comments.

• The stabilization condition proposed in [11] appears as the veri-
fication of a set of BMIs in the problem variables. Considering
m-inputs, 2m + m BMIs should be verified. In this case, the
search for the antiwindup gain that maximizes the region of at-
traction should be done by means of iterative schemes, based on
the solution of LMI problems. It is well-known that this corre-
sponds to a standard ad-hoc solution when conditions are formu-
lated in BMI form. In this case, the method is very sensitive to
the initial considered guess and only local sub-optimality can be
ensured. In this note, the stability condition appears directly in
LMI form. Considering m-inputs, only m + 1 LMIs should be
verified. Hence, the problem solution can be obtained by solving
a simple convex LMI problem. Furthermore, in this case the so-
lution is optimal, no initial guesses neither iterative schemes are
needed.

• The polyhedral sets L(H) (in [11]) and S [defined in (9)] play
the same role in the sense that they represent a set where the el-
lipsoidal contractive set E(P ) must be included in order to en-
sure that the representation of the saturated system [the polytopic
linear differential inclusion (LDI) approximation in [11] or the
proposed modified sector in the current note] is valid.

• Condition of global asymptotic stability (in the case where the
open-loop system is stable) is directly obtained as shown in

Corollary 1, which is not possible by using a polytopic model as
in [11].

Remark 3: Considering the single input case, T = t > 0 is a scalar
and condition (12) can be rewritten as

~ + ~( �G)
0

P + P ~ + ~( �G) +

0:5t�1(P ~ +G0t)(P ~ +G0t)
0

< 0

where ~ = + Ec and ~ = 0� Ec ; with 0 =
A 0

BcC Ac

.

DefiningH = ( �G) it follows that the satisfaction of conditions
(12) and (13) imply the satisfaction of the necessary and sufficient el-
lipsoidal invariance condition for single input linear systems subject to
actuator saturation, as stated in [15]. Note that in this case, condition
(12) implies that (~ + ~H)0P +P (~ + ~H) < 0 and condition (13)
is equivalent to E(P ) � L(H).

IV. ANTIWINDUP GAIN COMPUTATION

Based on the result stated in Theorem 1, in this section we aim to
present a convex optimization problem in order to obtain an antiwindup
gain matrix that ensures the local stability of the closed-loop system in
a region of the state space<n+n . In this case, we are interested in one
of the following cases.

1) A set of admissible initial conditions, �0 � <n+n , for which
asymptotic stability must be ensured, is given.

2) We aim to design the antiwindup gain in order to maximize
an estimate of the basin of attraction associated to it. In other
words, we want to compute Ec such that the associated region
of asymptotic stability is as large as possible considering some
size criterion.

Both cases can be addressed if we consider a set �0 with a given
shape and a scaling factor �. For example, let �0 be defined as a poly-
hedral set described by the convex hull of its vertices

�0
�
= Co fv1; v2; . . . ; vn g ; vr 2 <n+n ; r = 1; . . . ; nr:

Recalling Theorem 1, we aim at searching for matricesW , Y , S, Z
in order to obtain ��0 � E(P ). In case 1), this problem reduces to
a feasibility problem with � = 1 whereas in case 2), the goal will be
to maximize �. Note that in the last case, �0 defines the directions
in which we want to maximize E(P ). The problem of maximizing
� can be accomplished by solving the following convex optimization
problem (eigenvalue problem [14]):

min
W;Z;S;Y;�

�

subject to

(i)
� v0r

vr W
� 0; r = 1; . . . ; nr

LMIs (12) and (13):

(19)

Considering � = 1=
p
�, the minimization of � implies the maximiza-

tion of �. The satisfaction of the inclusion relation ��0 � E(P ) is
ensured by the LMI (i). It should be noticed that other criteria asso-
ciated to the size of the set E(P ), (e.g. the volume or the size of the
minor axis) can be adopted in order to maximize the stability region.
A constraint of antiwindup gain limitation can be added to the op-

timization problem (19) as follows. Since Ec = ZS�1, it follows

that Ec(i;j) = Z(i;j)S
�1
(j;j). Hence, if

S(j;j)� Z(i;j)
Z(i;j) S(j;j)

� 0 by the

Schur’s complement one has � � Z(i;j)S
�1
(j;j)Z(i;j)S

�1
(j;j) � 0 which
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ensures that (Ec(i;j))
2 � �. By the same reasoning, structural con-

straints on Ec can be taken into account in (19) by fixing some of the
elements of matrix Z(i;j) as zero.

V. EXTENSION TO THE INPUT-DELAYED CASE

We consider now the case where the input is delayed by � , i.e., the
open-loop system reads

_x(t) = Ax(t) +Bu(t� � )

y(t) = Cx(t)
: (20)

In this case, given a dynamic controller as in (2), the closed-loop
system in the presence of input saturation can be rewritten as

_�(t) = 0�(t)+ d�(t��)�  ( �(t� � ))� Ec ( �(t)) (21)

where 0 =
A 0

BcC Ac

, d =
BDcC BCc

0 0
and �(t), , ,

and are defined as in Section II. System (21) admits an augmented
initial condition �(t0 + �) = ��(�), 8� 2 [��; 0]. As in Section II,
matrix = 0 + d is supposed Hurwitz by construction.

Problem 1 considering (21) has been recently addressed in [16]. In
that paper, the stabilization conditions were stated by using a “clas-
sical” sector condition, as detailed in Remark 1. As a consequence,
these conditions are BMIs. The solution of the problem is then carried
out by relaxation schemes.

Following now a similar development to the one used in [16], but
using the result stated in Lemma 1, the following Theorem can be
stated.

Theorem 1: If there exist symmetric positive definite matrices W ,
X , R, H , U 2 <(n+n )�(n+n ) and D 2 <m�m, a matrix Y 2
<m�(n+n ), a matrix Z 2 <n �m, and a diagonal positive–definite
matrix S 2 <m�m satisfying inequality (13) and

Q1 Q2 Q3

? Q4 0

? ? Q5

< 0 (22)

where

Q1 =

� ? ?

Y � Z 0 0 �2S +D ?

�S 0 0 �D

< 0

� = W ( 0 + d)
0 + ( 0 + d)W+� d(X +R+H + U) 0

d

Q2 =

�W 0

0 �W 0

d

0 0

0 0

Q3 =

0 0

�S 0 �Z 0

0 0

Q4 =
��X 0

0 ��R

Q5 =
��H 0

0 ��U

G = YW�1, then the gain matrix Ec = ZS�1 ensures
that for any initial condition ��(�) belonging to the set
�0 = f� 2 Cv2� ; k�k

2
c � �g, with ��1 = �max(W

�1) +
��max(S

�1DS�1)kGk2+(3�2=2)[�max(
0

dR
�1

d) +
�max(

0H�1 )kGk2]+(�2=2)[�max(
0

0X
�1

0) + �max(E
0

c
0

U�1 Ec)kGk
2], the trajectories of the closed-loop system converge

asymptotically to the origin.

Fig. 1. Stability domain and rajectories for E = 0:1269.

The proof of the Theorem 1 is omitted for reasons of place. It can be
obtained from the application of Lemma 1 to the proof of the results in
[16], as detailed in [17].
Note that, differently from [16], the condition (22) and the inclusion

relation (13) are now LMIs in variablesW ,X ,R,H , U ,D, S, Y , and
Z . Furthermore, (22) is simpler than the equivalent one in [16]. The
synthesis of Ec aiming at the maximization of the set of admissible
initial conditions can then be carried out by using the optimization cri-
terion discussed in [16].

VI. ILLUSTRATIVE EXAMPLES

Example 1: Consider the following linear open-loop unstable
system [12]:

_x(t) = 0:1x(t) + u(t)

y(t) =x(t)

and the stabilizing PI controller

_�c(t) = � 0:2y(t)

vc(t) = �c(t)� 2y(t):

Let the shape set �0 be defined by a square region in the space <2

�0 = Co
1

1
;

1

�1
;
�1

1
;
�1

�1
:

Considering the control bound u0 = 1 and a scaling factor �, we
aim to compute an antiwindup gain Ec in order to obtain a region of
stability ��0 � E(P ) with � as large as possible. Hence, solving the
LMI problem (19) one obtains

� = 6:5956 W =
99:9997 32:3392

32:3392 145:3100
Ec = 0:1269:

It is worth noticing that, with the computedEc gain, the closed-loop
system presents unstable equilibrium points in �[10 3:2339]0. These
points are very close to the boundary of the stability domain obtained,
thus showing that the method can provide a potentially good approx-
imation of the basin of attraction. Fig. 1 depicts the stability domain
obtained and state closed-loop trajectories. As expected, the value of �
obtained is bigger than the one obtained in [12] from the classical sector
condition (� = 5:6872). On the other hand, considering Ec = 0 [i.e.,
considering Z = 0 in (12)] one obtains � = 4:3514, which shows that
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Fig. 2. Proposed approach (continuous). Approach presented in [12]
(dashed–dotted). E = 0 (dotted).

the antiwindup gain is useful for enlarging the basin of attraction of the
closed-loop system. Fig. 2, depicts the domains of stability obtained in
the previous cases.

Example 2: Consider the following multivariable linear open-loop
unstable system described by the following matrices [12]:

A =
0:1 �0:1

0:1 �3
B =

5 0

0 1
C = I2

and the stabilizing dynamic controller given by

Ac =
�171:2 27:2

�68 �626:8
Bc =

�598:2 5:539

�4:567 149:8

Cc =
0:146 0:088

�6:821 �5:67
Dc = 02:

The control bounds are given by u0 = [5 2]0 and we consider

�0 = Co

1

1

0

0

1

�1

0

0

�1

1

0

0

�1

�1

0

0

:

This choice corresponds to maximize the estimate of the region of
attraction in the states of the plant. The solution of (19) gives the fol-
lowing optimal results:

� = 250:8677 Ec = 104
2:4176 �0:0169

0:3590 0:0011
:

As in the previous example, the value of � obtained is bigger
than the one obtained in [12] from the classical sector condition
(� = 124:71). Fig. 3 depicts the projection of the stability do-
mains on the plane (x1; x2) (corresponding to the states of the
plant) obtained from each approach. With the computed Ec gain,
the closed-loop system presents unstable equilibrium points in
�[259:3103 9:3103 � 70:3493 21:3140]0. These points are also
very close to the boundary of the stability domain obtained.

Fig. 3. Stability domains: Proposed approach (continuous). Approach
presented in [12](dashed).

Example 3: Consider the following data of the benchmark example
used in [11]:

A =
�0:1 0

0 �0:1
B =

1:5 4

1:2 3
C =

1 0

0 1

Ac =
0 0

0 0
Bc =

�1 0

0 �1

Cc =
0:3333 0

0 �0:1
Dc =

�3:3333 0

0 1
:

The control bounds are given by u0 = [1 1]0.
In this case, the open-loop system is stable. Then, by applying the

condition stated in Corollary 1 with a gain constraint E2
c(i;j) � 100,

one obtains Ec =
9:6593 3:9260

8:2607 �0:7235
which stabilizes the system

globally. It is worth to notice that the gain computed in [11] is only
locally stabilizing.

Considering now the matrix A =
0:1 0

0 �0:1
and keeping the

other matrices as before, the closed-loop system without input satura-
tion is still stable. As in [11], we take �0 = [0:6 0:4 0 0]0 Hence, from
(19), and considering the gain limitation E2

c(i;j) � 10000, one obtains

� = 36:6119 Ec =
96:1286 �88:9092

99:9998 �100
:

Without gain constraints the maximal achievable � is 71.72.
Taking the gain computed in [11] and applying the condition given in

that paper in an analysis context it turns out that themaximal achievable
�1 is 36.2187. In this case, the solutions of the two approaches are com-
parable. However, it should be noticed, that the solution given in [11]
is obtained from a particular initialization of the iterative algorithm. In
our case, the solution is direct and independent of any initialization.

VII. CONCLUDING REMARKS

Given a dynamic output compensator that stabilizes the original
system in the absence of saturation, we have proposed a method that
allows to compute an antiwindup gain and an associated region of
asymptotic stability for the closed-loop system with control saturation.
In particular, we have focused on the problem of enlargement of the
basin of attraction of the closed-loop system by using antiwindup
gains. This problem has been indirectly addressed through a convex

1The value of 61.29 given in the note is apparently incorrect.
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optimization problem that allows to compute the antiwindup gain that
leads to the maximization of an estimate of the basin of attraction.

The obtained stability conditions are based on a modified sector con-
dition, that at our knowledge is new and original. The main advantage
of the proposed approach with respect to the previous ones ([11] and
[12]), is that the conditions are directly in an LMI form. Considering a
criterion associated to themaximization of the stability region (estimate
of the basin of attraction) is then possible to formulate the antiwindup
synthesis problem directly as a convex optimization problem, avoiding
the iterative schemes present in the previous approaches. Furthermore,
it is shown that the results obtained with a classical sector condition
are particular cases of the present one. On the other hand, compared
with the approach that uses polytopic differential inclusions, the pro-
posed condition is less complex. The effectiveness of the approach has
been illustrated in a numerical example. It has also been shown that the
proposed approach can be easily extended to treat systems presenting
time-delays. On the other hand, following the ideas in [12], it should
be possible to extend the approach to consider domains associated to
Lure–Lyapunov functions.
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Output Feedback Tracking: A Separation
Principle Approach

Manfredi Maggiore and Kevin M. Passino

Abstract—We study the practical and asymptotic tracking problems for
nonlinear systemswhen only the output of the plant and the reference signal
are available for feedback. We provide sufficient conditions and a control
topology yielding practical tracking. In the special case when the reference
signal is generated by an exosystem and there exists an internal model sat-
isfying suitable observability properties, tracking becomes asymptotic.

Index Terms—Nonlinear control, nonlinear observer, output feedback,
tracking.

I. INTRODUCTION

Consider the nonlinear system

_x = f(x; u)

y =h(x) (1)

where x 2 n denotes the state of the system, u 2 m is the control
input, and y 2 m is the measurable output. The vector field f and
the function h are assumed to be sufficiently smooth. In this note, we
address the following problem.

Problem 1 (Output Feedback Practical Tracking): Given the dy-
namical system (1), a sufficiently smooth reference trajectory1 r(t) =
[r1(t); . . . ; rm(t)]>, and any real number e0 > 0, find, if possible, an
output feedback

_xc = fc(xc; y; r)

u =hc(xc; y) (2)

with the property that for the closed-loop system (1) and (2), there ex-
ists a positive real number T and a closed set A such that any integral
curve (x(t); xc(t)) leaving from A is defined for all t � 0, bounded,
and ky(t)� r(t)k � e0 for all t � T .
If Problem 1 can be solved with e0 = 0 and T = 1, we say that (2)

solves the output feedback asymptotic tracking problem. Additionally,
if the projection fx 2 n : (x; xc) 2 Ag can be made arbitrarily
large by a suitable choice of the controller, we say that the solution to
Problem 1 is semiglobal.
Problem 1 has been solved globally and asymptotically for systems

in output feedback form [1], [2]. When the reference trajectory is
generated by an exosystem, Problem 1 is included in the more general
class of output regulation problems [3], where exosystem-generated
disturbances and parametric uncertainties are allowed to affect the
plant (our approach does not handle these). It has been shown, for
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