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Improved Delay-Dependent Stability Criteria for
Time-Delay Systems

Shengyuan Xu and James Lam

Abstract—This note provides an improved asymptotic stability condi-
tion for time-delay systems in terms of a strict linear matrix inequality.
Unlike previous methods, the mathematical development avoids bounding
certain cross terms which often leads to conservatism. When time-varying
norm-bounded uncertainties appear in a delay system, an improved robust
delay-dependent stability condition is also given. Examples are provided to
demonstrate the reduced conservatism of the proposed conditions.

Index Terms—Delay-dependent condition, linear matrix inequality
(LMI), time-delay systems, uncertain systems.

I. INTRODUCTION

Over the past decades, there has been a growing interest in the
stability analysis of time-delay systems since time delays are often the
sources of instability and encountered in various engineering systems
such as chemical processes, long transmission lines in pneumatic
systems [3]. Existing criteria for asymptotic stability of time-delay
systems can be classified into two types; that is, delay-independent
stability and delay-dependent stability [3], [12]; the former does
not include any information on the size of delay while the latter
employs such information. It is known that delay-dependent stability
conditions are generally less conservative than delay-independent ones
especially when the size of the delay is small. A great number of
delay-dependent stability results have been reported in the literature;
see, e.g. [1], [9]–[11], and the references therein. All these stability
results provide sufficient conditions and have, to some yet different
extent, conservatism. It is now known that the conservatism of the
delay-dependent conditions stems from two causes; the first is the
way adopted to transform the original delay model to an appropriate
one for analysis and the second is the method for evaluating the
bounds on some weighted cross products arising in the analysis
of the delay-dependent stability problem. Over the past decade, a
large number of results have been published aiming at reducing the
conservatism of stability criteria. It is generally recognized that to
further improve the quality of delay-dependent stability criteria is
a very difficult task. The aim of this note is to provide a further
contribution to improving delay-dependent stability conditions.

In this note, an enhanced delay-dependent stability condition for
linear systems with time-invariant delays is obtained in terms of a strict
linear matrix inequality (LMI). Compared to earlier works, the the-
oretical development is simpler and, unlike previous methods in de-
riving the delay-dependent stability criteria in the literature, an upper
bounding on the weighted cross products of the state and the delayed
state is avoided (and hence no inequalities are needed for bounding
these cross terms). It is worth pointing out that increasing attention has
been focused on the improvement of such bounding technique in the

Manuscript received July 23, 2003; revised January 28, 2004, June 6, 2004,
and November 20, 2004. Recommended by Associate Editor Y. Ohta. This work
was supported by CRCG 10205878, the Foundation for the Author of National
Excellent Doctoral Dissertation of P. R. China under Grant 200240, the National
Natural Science Foundation of P. R. China under Grant 60304001, and the Fok
Ying Tung Education Foundation under Grant 91061.

S. Xu is with the Department of Automation, Nanjing University of Science
and Technology, Nanjing 210094, P. R. China.

J. Lam is with the Department of Mechanical Engineering, University of
Hong Kong, Hong Kong.

Digital Object Identifier 10.1109/TAC.2005.843873

past which, by the present work, is shown to be unnecessary. Also, no
model transformation is involved in the derivation of our stability con-
dition. It is theoretically established that the stability result in this note
is less conservative than that in [9]. Based on the derived delay-de-
pendent stability condition, an improved delay-dependent robust sta-
bility condition is proposed for delay systems with time-varying norm-
bounded parameter uncertainties. Examples are provided to demon-
strate the less conservatism of the obtained results.
Notation: Throughout this note, for real symmetric matricesX and

Y , the notation X � Y (respectively, X > Y ) means that the matrix
X � Y is positive semidefinite (respectively, positive definite). I is an
identity matrix with appropriate dimension. The superscript “T ” rep-
resents the transpose. The notation j � j refers to the Euclidean vector
norm. We use �min(�) to denote the minimum eigenvalue of a sym-
metric matrix. Matrices, if not explicitly stated, are assumed to have
compatible dimensions.

II. MAIN RESULTS

Consider the following time-delay system:

(�) : _x(t) =Ax(t) +Ahx(t� h) (1)

x(t) =�(t) 8t 2 [�h; 0] (2)

where x(t) 2 n is the state, and �(t) is the initial condition. The
scalar h > 0 is the delay of the system, A and Ah are known real
constant matrices.

The following theorem gives an improved delay-dependent stability
for system (�).
Theorem 1: The time-delay system (�) is asymptotically stable for

any delay h satisfying 0 < h � �h if there exist matrices P > 0,
Q > 0, Z > 0, Y andW such that the LMI shown in (3) at the bottom
of the next page holds.

Proof: Denote

xt = x(t+ �) � 2h � � � 0

and define a Lyapunov functional candidate for the time-delay system
(�) as

V (xt) = V1(xt) + V2(xt) + V3(xt)

where

V1(xt) =x(t)TPx(t)

V2(xt) =

0

�h

t

t+�

_x(�)TZ _x(�)d�d�

V3(xt) =

t

t�h

x(�)TQx(�)d�:

Then, by the Newton–Leibniz formula, we have

x(t� h) = x(t)�

t

t�h

_x(�)d�

and

_V1(xt) = 2x(t)TP [Ax(t) + Ahx(t� h)]

= 2x(t)TP (A+Ah)x(t)� 2x(t)TPAh

t

t�h

_x(�)d�
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=2x(t)TP (A+ Ah)x(t) + 2x(t)T (Y � PAh)

�

t

t�h

_x(�)d�+ 2x(t� h)TW

t

t�h

_x(�)d�

� 2x(t)TY

t

t�h

_x(�)d�

+2x(t� h)TW

t

t�h

_x(�)d�

=
1

h

t

t�h

2x(t)T (PA+ Y )x(t)

+ 2x(t)T (PAh � Y +W
T )x(t� h)

� 2x(t� h)TWx(t� h)� 2x(t)ThY _x(�)

�2x(t� h)ThW _x(�) d� (4)

_V2(xt) =

0

�h

_x(t)TZ _x(t)� _x(t+ �)TZ _x(t+ �) d�

=

t

t�h

_x(t)TZ _x(t)� _x(�)TZ _x(�) d�

=

t

t�h

(Ax(t) + Ahx(t� h))T Z

� (Ax(t) +Ahx(t� h))� _x(�)TZ _x(�) d�

=
1

h

t

t�h

x(t)ThAT
ZAx(t)

+ 2x(t)ThAT
ZAhx(t � h)

+ x(t� h)ThAT

hZAhx(t� h)

� _x(�)ThZ _x(�) d� (5)

and

_V3(xt) =x(t)TQx(t)� x(t� h)TQx(t� h)

=
1

h

t

t�h

x(t)TQx(t)�x(t�h)TQx(t�h) d�: (6)

It then follows from (4)–(6) that

_V (xt) =
1

h

t

t�h

�(t; �)T�(h)�(t;�)d� (7)

where �(t; �) and �(h) are defined at the bottom of the page holds
true. Now, applying the Schur complement equivalence to (3) gives
that Z > 0 and

PA + ATP + Y + Y T +Q PAh � Y +W T

AT

hP � Y T +W �Q�W �W T
+

�h
�Y ATZ

�W AT

hZ

Z�1 0

0 Z�1
�Y T �WT

ZA ZAh

< 0:

Therefore, for all h satisfying 0 < h � �h, we have

PA + ATP + Y + Y T +Q PAh � Y +W T

AT

hP � Y T +W �Q�W �W T

+ h
�Y ATZ

�W AT

hZ

Z�1 0

0 Z�1
�Y T �WT

ZA ZAh

�
PA + ATP + Y + Y T +Q PAh � Y +W T

AT

hP � Y T +W �Q�W �WT

+ �h
�Y ATZ

�W AT

hZ

Z�1 0

0 Z�1
�Y T �WT

ZA ZAh

< 0

which, by the Schur complement equivalence, gives that for all h sat-
isfying 0 < h � �h

�(h) < 0:

This, together with (7), implies

_V (xt) � �a kx(t)k
2 (8)

where

a = �min (��(h))> 0:

Finally, along a similar line as in the proof of [13, Th. 1], it follows
from (8) that the time-delay system (�) is asymptotically stable for
any delay h satisfying 0 < h � �h. This completes the proof.
Remark 1: In the derivation of Theorem 1, two slack variables Y

andW are introduced, the purpose of which is to reduce some conser-
vatism in the existing delay-dependent stability conditions. From the
proof of Theorem 1, it can be seen that _V1(xt) in (4) remains unaf-
fected when introducing Y and W , and hence leads to a more flexible
LMI condition in (3). In other words, the rationale behind the intro-
duction of slack variables is to reduce the conservatism of the LMI in
Theorem 1 which guarantees the asymptotic stability of a given delay
system. The advantages of these introduced variables can be seen from
the numerical examples in Section III.

By Theorem1,we can obtain the following delay-dependent stability
result, which has been reported in [9] recently.

PA +ATP + Y + Y T +Q PAh � Y +W T ��hY �hATZ

AT

hP � Y T +W �Q�W �W T ��hW �hAT

hZ

��hY T ��hWT ��hZ 0
�hZA �hZAh 0 ��hZ

< 0 (3)

�(t; �) = x(t)T x(t� h)T _x(�)T
T

�(h) =

PA +ATP + Y + Y T + hATZA +Q PAh � Y +W T + hATZAh �hY

AT

hP � Y T +W + hAT

hZA hAT

hZAh �Q�W �W T �hW

�hY T �hWT �hZ
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TABLE I
COMPARISON OF DELAY-DEPENDENT STABILITY CONDITIONS OF EXAMPLE 1

(FIGURES AS REPORTED IN CORRESPONDING PAPERS)

TABLE II
COMPARISON OF ROBUST DELAY-DEPENDENT STABILITY CONDITIONS OF

EXAMPLE 2

Corollary 1: [9] The delay system (1) is asymptotically stable for
any delay h satisfying 0 < h < �h if there exist matrices P > 0,
Q > 0,X , Y and Z such that the following LMI holds:

PA+ATP+�hX+Y +Y T+Q PAh�Y �hATZ

AT

hP � Y T �Q �hAT

hZ
�hZA �hZAh ��hZ

<0 (9)

X Y

Y T Z
�0: (10)

Proof: By (9), it is easy to see that Z > 0. Then, it follows from
(10) that

X � Y Z�1Y T
� 0:

This, together with (9), implies

PA+ATP+Y +Y T+Q+�hY Z�1Y T PAh�Y �hATZ

AT

hP�Y
T �Q �hAT

hZ
�hZA �hZAh ��hZ

=

PA+ATP+�hX+Y +Y T+Q PAh�Y �hATZ

AT

hP � Y T �Q �hAT

hZ
�hZA �hZAh ��hZ

�

�h(X � Y Z�1Y T ) 0 0

0 0 0

0 0 0

< 0

which, by the Schur complement formula, gives that

PA+ATP+Y +Y T+Q PAh�Y ��hY �hATZ

AT

hP � Y T �Q 0 �hAT

hZ

��hY T 0 ��hZ 0
�hZA �hZAh 0 ��hZ

< 0:

Therefore, by Theorem 1, we have that the delay system (1) is asymp-
totically stable for any delay h satisfying 0 < h � �h.
Remark 2: From the proof of Corollary 1, it is easy to see that The-

orem 1 in this note is less conservative than Corollary 1 which was re-
ported in [9, Th. 1]. It is worth pointing out that Theorem 1 is obtained
without using the inequality introduced in [9], which was employed to
derive upper bounds of some cross terms. Although the inequality in [9]
is better than other reported ones when dealing with the delay-depen-
dent stability analysis problem for delay systems in the literature [1],
[11], using such a bounding technique still gives relatively conservative
results. Without using this bounding technique, Theorem 1 presents a
less conservative result.
Remark 3: Compared with the stability condition in [1], it is worth

noting that one of the advantages in our note is that the LMI in (3)
involves significantly fewer variables than those in [1]. Specifically, in
the case when x(t) 2 n, the number of the variables to be determined
in (3) is (n(7n+3))=2, while in [1] the number of variables is n(9n+
2). That is, the variables in [1] are around 2.6 times more than those
in Theorem 1. Therefore, from both mathematical and practical points
of view, our condition is more desirable than that in [1] even for some
cases when the two methods give the same upper bound on the delay.
Another point needs to bementioned here is that the claim that the result
in [1] is less conservative than that in [9, Th. 1] can only be shown by
numerical example, while in this note it is theoretically established that
Theorem 1 is less conservative than that in [9, Th. 1].

When time-varying norm-bounded parameter uncertainties appear
in the time-delay system (�), that is, system (�) becomes

(�̂) : _x(t) = (A+�A(t))x(t)

+ (Ah +�Ah(t))x(t� h) (11)

x(t) =�(t) 8t 2 [�h; 0] (12)

where

[�A(t) �Ah(t)] = DF (t)[E Eh]

with F (t) 2 k�l being an unknown time-varying matrix function
with Lebesgue measurable elements bounded by

F (t)TF (t) � I 8t (13)

we have the following robust delay-dependent stability results.
Theorem 2: The uncertain time-delay system (�̂) is robustly

asymptotically stable for any delay h satisfying 0 < h � �h if there
exist a scalar � > 0 and matrices P > 0, Q > 0, Z > 0, Y , and W
such that the LMI shown in (14) at the bottom of the page holds.

The proof of Theorem 2 can be carried out by using Theorem 1 and
following a similar line as in [13, Th. 2], and hence it is omitted.

III. NUMERICAL EXAMPLES

Example 1: Consider the time-delay system in [5] in the form of (1)
with

A =
�2 0

0 �0:9
Ah =

�1 0

�1 �1
:

The results are compared in Table I. It can be seen that the delay-de-
pendent stability condition in this note is less conservative in the sense

PA+ ATP + Y + Y T +Q+ �ETE PAh � Y +W T + �ETEh ��hY �hATZ PD

AT

hP � Y T +W + �ET

hE �Q�W �W T + �ET

hEh ��hW �hAT

hZ 0

��hY T ��hWT ��hZ 0 0
�hZA �hZAh 0 ��hZ �hZD

DTP 0 0 �hDTZ ��I

< 0 (14)
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TABLE III
COMPARISON OF ROBUST DELAY-DEPENDENT STABILITY CONDITIONS OF EXAMPLE 3

that either the computed maximum delay bound is larger or involving
fewer computation variables. In this example, the number of variables
used in [1] is 40, and ours is only 17.
Example 2: Consider the uncertain time-delay system in [5]

A =
�2 0

1 �3
Ah =

�1 0

�0:8 �1

D =
0:2 0

0 0:3
E = Eh =

1 0

0 1
:

For this uncertain system, we compare the results in Table II. It can be
shown that this example is robustly stable for any h > 0 (that is, �h can
be an arbitrarily large positive scalar). The results have demonstrated
that the robust delay-dependent stability condition in this note is less
conservative.
Example 3: Consider the following uncertain delay system:

_x(t) = (A+�A(t))x(t) + (Ah +�Ah(t))x(t� h)

where

A =
�0:6 �2:3

0:8 �1:2
Ah =

�0:9 0:6

0:2 0:1

and the uncertain matrices �A(t) and �Ah(t) satisfy

k�A(t)k � � k�Ah(t)k � �; � > 0:

This system is of the form in (11)–(13). Then, we can write

D = �I E = Eh = I:

Table III gives the comparisons of the maximum allowed delay �h for
various parameter �. It can be seen that the results demonstrate that the
delay-dependent robust stability condition in this note is less conserva-
tive than those in [2] and [4]. Notice that the delay-dependent robust
stability results contained in [2] and [4] can be shown to be equivalent
to each other.

IV. CONCLUSION

This note has provided an improved delay-dependent stability con-
dition for linear systems with time-invariant delays in terms of an LMI.
The previously used bounding technique has shown to be unneces-
sary in deriving the delay-dependent stability results. An improved
delay-dependent robust stability condition has also been proposed for
delay systems with time-varying norm-bounded parameter uncertain-
ties. Numerical examples have demonstrated the effectiveness of the
proposed results.
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On State-Dependent Dynamic Graphs and Their
Controllability Properties

Mehran Mesbahi

Abstract—We consider distributed dynamic systems operating over
a graph or a network. The geometry of the network is assumed to be a
function of the underling system’s states—giving it a unique dynamic char-
acter. Certain aspects of the resulting abstract structure, having a mixture
of combinatorial and system theoretic features, are then studied. In this
venue, we will explore an interplay between notions from extremal graph
theory and system theory by considering a controllability framework for
such state-dependent dynamic graphs.

Index Terms—Dynamic graphs, graph controllability, state-dependent
graphs, Szemerédi’s regularity.

I. INTRODUCTION

This note is motivated by system theoretic problems in the area of
control and coordination of distributed dynamic systems operating over
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