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A Universal Approach to Queuing With Distortion Control

Stark C. Draper, Mitchell D. Trott, and Gregory W. Wornell

Abstract—An efficient buffer-management algorithm is developed
for queues that handle distortion-tolerant data under finite memory
limitations. We avoid overflows and realize significant performance gains
through the use of multiresolution source codes. These codes enable us to
reduce the fidelity of signal descriptions in a controlled progressive manner.
The proposed approach is universal, i.e., it works without knowledge of
queue arrival and departure statistics. More strongly, we show that its
performance is sample-path optimal, i.e., it achieves an average distortion
equal to the best achievable by any algorithm, including those designed
with full noncausal knowledge of queue arrival and service times.

Index Terms—Buffer management, congestion control, multimedia com-
munications, multiresolution source coding, queuing analysis, successive
refinement, transcoding.

I. INTRODUCTION

If arrivals to a finite-memory queue outpace departures over a span
of time, the queue will overflow. The ensuing uncontrolled data loss
can seriously reduce system performance. If, however, the queue
buffers distortion-tolerant data such as audio, video, or images, the
queue can use this characteristic to adjust fidelity as new signals
arrive. In this note, we show how to exploit distortion-tolerance to
lower signal fidelity in a controlled manner, thereby freeing memory
resources, avoiding overflows, and increasing end-to-end fidelity in a
dynamic fashion. The resulting buffer-control mechanism implements
a type of congestion control that takes into account the relative value
of enqueued signal information.

We use multiresolution source codes (e.g., see [2], [7], and the
references therein) to exploit the inherent distortion-tolerance of sig-
nals. These codes prioritize source information from most significant
to least significant. Such structure lends itself naturally to a pair of
storage and transmission algorithms. On the one hand, if the buffer is
close to overflow, least significant information should be deleted to free
memory space. This leaves more significant information undisturbed.
Conversely, most significant information should be transmitted first.
This guarantees that such information is not lost in future overflows,
and allows the source to be reconstructed progressively as the code
stream becomes available at the queue output.

We formalize these intuitive ideas and show they form the basis for
an optimal approach to buffer management. Regardless of arrival and
departure times, no algorithm can attain a lower average distortion than
the one proposed. The approach is universal and sample-path optimal:
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It operates without knowledge of the statistics of the arrival and depar-
ture processes, and its performance cannot be bettered by any algorithm
over any set of arrival and departure times.

This buffer-management policy is a form of distortion-measure-de-
pendent priority queuing. Whenever bits enter the system, they are as-
signed to queues of differing priorities according to their individual
utilities. Bits in the highest-priority queue are transmitted first, and
bits in the lowest-priority queue are dropped first. If a number of bits
constitute one “signal,” then there is often an explicit ordering to the
bits—some bits are useless without knowledge of others. In these cases
we assume that the bits are arranged in order of decreasing utility,
which is analogous to the utility function being convex. Further, we
assume an observation-type model of arrivals, whereby all the bits that
constitute each signal arrive at the queue concurrently.

Consider image storage in a digital camera as one application of
these ideas. The first pictures taken can be stored in memory (the buffer)
at high resolution. As more pictures are taken, the resolution of all im-
ages can be progressively lowered in parallel to accommodate new data.
The algorithms we develop provide a structured way to manage this
resolution versus number-of-images trade off. We can also prioritize
pictures so that favored pictures experience slower (or even zero) low-
ering of resolution. Such a system could prove useful in an autonomous
sensor vehicle, such as a submarine, an interplanetary probe, or a crop
monitor. System unpredictability may exist in both input and output
processes: in the input process because the vehicle does not know a
priori when it will observe phenomena of interest, and in the output
process because achievable communication rates may vary as a result
of changing environmental conditions.

Our setting is most closely related to that considered in a family of
work on quantization for queuing (see, e.g., [3], [4], and [8]). In these
papers, a variable-length source coder feeds a finite-memory queue that
transmits the buffered information over a fixed-rate channel. The quan-
tization rate is controlled based on the state of the queue to avoid over-
flows and to minimize average distortion. Our work differs because,
by using multiresolution source codes, we effectively can change the
quantization rate long after the source is quantized by deleting least
significant information. Our ideas are also somewhat related to joint
source-channel coding and multiple description coding for networks
with packet losses (see, e.g., [1] and [5]). However, because we focus
on a single-queue system, and assume a reliable output link, the appli-
cation of our results to such networks is not direct. On the other hand,
in our focused context, we are able to make much stronger statements
about the optimality of our scheme.

The note is organized as follows. In Section II, we prove the main
result—the sample-path optimality of the proposed algorithm. Then, to
develop a sense of when distortion control leads to performance gains,
and how large those gains are, in Section III, we describe a simple
queuing model and develop a bound on the performance of any algo-
rithm. Section IV presents two memory management algorithms: the
sample-path optimal algorithm and a baseline algorithm for compar-
ison. Section V compares the algorithms, and Section VI concludes
the note.

II. SAMPLE-PATH OPTIMALITY OF GREEDY QUEUING WITH
DISTORTION CONTROL

The policy we analyze in this section transmits the enqueued bits of
maximum marginal utility at each transmit opportunity, and drops the
enqueued bits of least marginal utility whenever faced with an overflow.
This policy is greedy—it makes decisions that minimize the immedi-
ately resulting distortion, without looking further ahead. We show that
the following result holds for convex-like additive distortion measures:
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for all realizations of arrival and departure times, there exists no algo-
rithm that achieves a lower average decoder distortion at any time than
the one proposed. We term this sample-path optimality.

The proof is developed by establishing two intermediate results.

D All greedy protocols (defined later) achieve the same distor-
tion.
1)) Any optimal sample path can be transformed into a greedy

sample path with the same—optimal—distortion. Thus, there
exists a greedy optimal path.

Combining I and II proves that all greedy protocols are sample-path
optimal.

We simplify the proof by taking the smallest quanta of signal de-
scription and transmission to be one bit, so that sets are discrete and fi-
nite. Any other quantization size serves equally well; one can develop
a proof for continuous-valued applications by taking the limit of de-
creasing quantization size.

A. Definitions

A receive/transmit sample path is a sequence of receive events
and transmit opportunities that occur during a finite time interval
[0,T]. Each receive event ¢ = 1,...,N or transmit opportunity
i’ = 1,..., N’ occurs at some time ¢; or #;, respectively. Transmit
opportunities are described by the maximum number /;, of bits that
may be transmitted. Receive events are described by the full-length
encoding S; of the received signal (limited in length to the queue
storage size M), and by the distortion function D[] of the signal.! We
view a receive/transmit sample path as being determined by nature,
out of the control of the system designer.

A queue sample path is the result of applying a queuing discipline to
a receive/transmit sample path. In a queue sample path each transmit
opportunity is further described by the set of bits transmitted during
that opportunity. A new type of event is also included: Drop events
are described by the time #; of the event and the set of bits discarded.
We will see presently that, to minimize distortion, drop events should
immediately follow receive events, so that they may be identified using
the same set of event indexes :.

A queue sample path must satisfy the obvious state evolution rules:
receive events add to the queue, transmit and drop events subtract from
the queue, and drop events must be used to keep the queue size at or
below its maximum.

The distortion at the receiver is determined by the distortion function
of each signal and by the bits delivered to the receiver thus far. Let B; be
the set of bits available at the receiver for signal .S;. The total distortion
dr at the receiver is the sum

dr= Y DIB]

i=1,..,N

of the distortions of the individual signals. We require the distortion
function D[] to be expressible as a sum of distortion contributions of
each bit, i.e.,

D[B]=D]- Y D(b) (1

bEB;

where D[0] is a constant and D(b) > 0 is the marginal utility of bit
b. For convenience, we number the bits of .S; sequentially and assume
they are arranged in order of decreasing utility

Di(j) > Di(j+1), forj=1,2,.... )

IThe proof may be immediately generalized by using a different distortion
function for each signal.
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For many source encodings, such as the multiresolution source codes
described in Section IV-B, the jth bit of .S is worthless unless the ini-
tial bits 1,...,j — 1 are also received. We refer to this requirement
as the sequential constraint. The sequential constraint violates the ad-
ditive model (1), but—so long as the ordering constraint (2) is main-
tained—this turns out not to affect our results. We show that there is
no advantage to transmitting bits of lesser marginal utility in advance
of those of greater utility. The sequential constraint combined with the
ordering constraint (2) is a discrete analog to a convexity constraint
on the distortion function D[-]. We emphasize that convexity is an es-
sential requirement for our results in applications where the sequential
constraint prevails.

A queue sample path is optimal for a given transmit/receive sample
path if there exists no other queue sample path with a lower distortion
dr attime 7. This definition of optimal is rather strong, as the queuing
discipline needed to arrive at an optimal path could be noncausal. Be-
cause the queue, events, and time horizon are finite or discrete or both,
there always exists at least one optimal path, and in general there will
be many.

A queue sample path is greedy if it meets five conditions, defined
more precisely in the lemmas that follow: a) drop events immediately
follow receive events, b) drop events discard the minimum number of
bits necessary, ) transmit opportunities are filled with the maximum
number of bits possible, d) transmit opportunities are serviced using
enqueued bits of maximum marginal utility, and e) drop events discard
enqueued bits of minimum marginal utility.

It is easy to see that the algorithm proposed at the beginning of the
section produces greedy sample paths. Moreover, we immediately have
result I): every greedy queue sample path for a given receive/transmit
sample path has the same distortion. This follows because greedy paths
may differ only in how they break ties in conditions d) and e), yet these
choices do not change the distortion. In other words, the bits used to de-
scribe signals are only distinguishable—in the sense of distortion min-
imization—by their marginal utilities, i.e., on the amount a particular
descriptive bit decreases the total distortion.

B. Proof

To prove our central result—that the algorithm proposed is sample-
path optimal—we use several variations of a common bit-swapping ar-
gument to establish result II). Specifically, we introduce a local trans-
formation of a queue sample path that either decreases distortion or
leaves it unchanged. Applying this transformation repeatedly to an op-
timal path reaches a fixed point with some desired property, estab-
lishing that there exists an optimal path with the same property.

Lemma 1: There exists an optimal path for which all drop events
immediately follow receive events.

Proof: Consider a queue sample path for which some drop event
occurs at a time t strictly between the times ¢; and ¢;4+; of the two
receive events ¢ and ¢ 4 1. Construct a new queue sample path in which
the drop event instead occurs at time ¢ = %;. It is easy to see that
this new path is feasible: queue occupancy is not increased, and all
discarded bits are enqueued at the time of the drop event. Distortion is
unchanged.

There are a finite number of drop events, hence repeated application
of this transformation to an optimal queue sample path creates an op-
timal path in which all drop events immediately follow receive events.
]

Lemma 2: There exists an optimal path for which all drop events
discard the minimum number of bits necessary to meet the queue
memory constraint.

Proof: Consider a queue sample path for which there exists a
drop event ¢ that drives the queue occupancy below its maximum size



534

M. Construct a new queue sample path in which the drop event ¢ dis-
cards a subset of the bits previously discarded, the subset size selected
to meet the queue memory constraint exactly. If the queue was not full
prior to the drop event, discard no bits. Let X’ be the set of bits previ-
ously dropped but now retained in the new sample path.

The new queue sample path may be infeasible, as queue occupancy
may exceed M at various times subsequent to the modified drop event.
To correct this, consider the next receive event ¢ + 1, together with the
(optional) simultaneous drop event. If the queue occupancy exceeds M,
modify drop event: -+ 1 to discard anumber of bits in X" sufficient to meet
the memory constraint. Thisis always possible. Repeat for all subsequent
receiveeventsi+ 2,743, .. .,depleting the set X" as necessary. The final
sample pathis feasible and, since the transmit opportunities have notbeen
modified, has a distortion equal to the original.

Repeated application of this transform to an optimal queue sample
path creates an optimal path in which all drop events have the minimal
size necessary to meet the memory constraint. ]

Lemma 3: There exists an optimal path for which every transmit
opportunity is maximally exploited. That is, the number of bits trans-
mitted at opportunity i equals either the number of bits in the queue at
time ¢,/ or the number of bits /;; available in the transmit opportunity,
whichever is smaller.

Proof: Consider a queue sample path for which there exists an
underutilized transmit opportunity. Construct a new queue sample path
in which the transmit opportunity is fully utilized by arbitrarily se-
lecting additional bits from the queue for transmission. Delete these
bits from subsequent drop or transmit events. The new queue sample
path remains feasible, and its distortion is equal to or smaller than the
original.

Repeated application of this transformation to an optimal queue
sample path creates an optimal path in which all transmit opportunities
are maximally exploited. |

Lemma 4: There exists an optimal path for which: i) every transmit
opportunity is serviced using the enqueued bits of maximum marginal
utility, and ii) every drop event discards enqueued bits of minimum
marginal utility.

Proof: We prove the two statements of the lemma in parallel.
Without loss of generality view a transmit (respectively, drop) event
of size [ as a sequence of  one-bit transmit (respectively, drop) events.

Consider a queue sample path in which a bit b from signal .S; is trans-
mitted (respectively, dropped) at time ¢. The marginal utility of b is D( b).
Let b be a bit of greatest (respectively, least) marginal utility over all en-
queued bits at time £. If b and b have the same marginal utility, then do
nothing. Otherwise, looking into the future up to time 7', the bit b may be
transmitted, dropped, or left in the queue. Construct a new queue sample
pathinwhich bistransmitted (resp.discarded)attimef and b meetsthe fate
previously assigned to b.1tis easy to see that this transformation cannot
increase distortion, for if both bits are transmitted (respectively, dropped
or held) the distortion does not change, while if b was dropped or held
(respectively, transmitted) distortion decreases.

Repeated application of this transformation to an optimal queue
sample path, working sequentially from time O to 7', creates an optimal
path in which all transmit opportunities are serviced using enqueued
bits of maximum marginal utility and all drop events discard enqueued
bits of least marginal utility. |

Combining Lemmas 1-4 proves that there exists a greedy optimal
path, thereby establishing result I and completing the proof.

III. SYSTEM MODEL AND PERFORMANCE BOUND

In order to develop a sense of the performance gains of distortion-
controlled queuing, we now provide a simple system model. At a high
level, signals arrive at the queue, are stored for some time, and then
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are sent on to their destinations (one or many decoders) over a shared
packetized link. Two aspects of the model are important to note. First,
each arrival is a “full-resolution” signal in that all information relevant
to that signal arrives concurrently. This is particularly well matched
to situations where arrivals are sensor observations that must be quan-
tized before being stored. Second, each packet departs over a shared
link. This allows information about different signals to be concatenated
into a single packet. It is most appropriate for settings where there is a
single destination for all data, as in the sensor vehicle example, or in
a broadcast setting where all destinations can listen in on a common
transmission.

In the interval [0, T], there are Na,. signal arrivals where the ith
signal to arrive is denoted S;. Let B; denote the number of bits de-
scribing .S; transmitted to its destination by time 7". The distortion in
S; at time T is given by the distortion function D[B;]. The maximum
distortion, incurred when the decoder has no information about a signal,
iS dmax = DJ[0]. Equivalent to minimizing the total distortion dr, we
can minimize the average distortion dr where

1 Narr

-Z\Tarr Z b [B,] '

=1

- 1
g -Zvar T ’

Ideally, we minimize this function for all 7".

We assume that D[B;] is convex and bounded (hence monotonic and
continuous) and—to simplify derivations—differentiable.? In order to
ease the presentation of key ideas, for the rest of the note we focus on a
common distortion measure for all S;, and treat bits as infinitely divis-
ible, thereby avoiding integer constraints in the optimization problems.

In the interval [0, T'] there are also N4, departures (i.e., transmis-
sion opportunities). Each departure is a packet of up to P bits. Putting
this together with the N,,, arrivals gives

Narr

> Bi < PNag (3)

=1

where equality can be achieved, e.g., if the queue never empties once
the first signal arrives.

We now derive a lower bound on d7 that is independent of memory
size

;
Narr

- 1
dTZD[MZBi

=1

Z D |:PNdCP:| (4)

AT
N arr

where the first inequality follows from Jensen’s inequality,
and the second from (3). Assuming that the limits exist, de-
fine A = limy_co Nae/T to be the average arrival rate,
= lm7_. Ngep/T to be the average departure rate, and p = A/
to be the system utilization. A simple lower bound on the long term
average distortion d = limy . dy follows. Since (4) holds for all T'

12 0[P e =0 [F]=p [T o
We can move the limit inside and take the limits individually because
D[] is continuous, and because both limits exist by assumption. This
bound indicates that a good design minimizes the variance among de-
scription rates while maximizing individual description rates. If all sig-
nals are described at P/p, the average system throughput in bits per
signal, then the bound is achieved.

2The results of the note could, equivalently, be developed in terms of the con-
cave utility function d,,,... — D[B,]. We choose to develop the results in terms
of distortion to highlight the potential benefits of accommodating interaction
between source coding (typically an application-layer function) and congestion
control (typically a transport or network-layer function).
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IV. ALGORITHM DESIGN

In this section, we present two queue management algorithms. The
first is a baseline algorithm which sets a fixed description length for
each signal. The second, universal algorithm, uses the ideas of Sec-
tion II, implemented through multiresolution source coding, to adjust
(in particular, shorten) signal description lengths dynamically to match
the evolving state of the queue.

A. Baseline Algorithm

The following algorithm is computationally simple to implement,
but its performance is quite dependent on parameter settings. Say that
S; arrives and there is space in the buffer. The queue stores S; at some
predetermined precision of @ bits. If the buffer can store at most M
bits, then it can store at most K’ = | M /()] signals. If buffer is full, S;
cannot be stored, and is lost. Signals are transmitted one at a time in a
first-in—first-out (FIFO) manner.

Of the N, signals that arrive in [0, 7], and the Ny < K signals in
the queue at time 0, some number are handled by the queue while the
rest overflow and are lost. Let Niost < Napr denote the number of the
latter. The average distortion dr can be bounded as

7 ]vlost
<dr — |1 - ———
0 = |:< Zvarr + ZVU

]vlos t

7dnlax
N arr T N 0

)D[Q] +

K
i
- A’?Varr + JVCl

The gap between the upper and lower bounds arises from signals that
arrive before T, but are assumed to have all their bits still enqueued at
time 7'. As V.., grows much larger than J{ with T, the right-hand side
of (6) approaches zero and the bounds converge, yielding the approx-

imation
(ZT ~ <1 —

A higher quantization rate leads to a smaller first term in (7), but it also
increases the likelihood of overflow, thereby increasing the second term
in (7).

JVIO st

N os
! ) DIQ]+ X . ™

Narr

B. Multiresolution Source Codes

Multiresolution source codes are composed of ordered sub-codes
C1.Co,... of rates Ry, R, ..., respectively. Distortion D[Zle R;]
is achieved for k¥ = 0,1, 2, ... when the first k¥ codewords are avail-
able to the decoder. If a multiresolution source code is optimal at each
step, i.e., if R(D[Zf:1 R))) = Zle R;, where R(-) is the rate-dis-
tortion function for the source-distortion pair under consideration, it is
called a successively refinable source code [2], [6].

C. Universal Algorithm: Distortion Control

While multiresolution source codes encode a source in a manner
compatible with the distortion control policy presented in Section II,
determining what to keep in memory and what to transmit as the
number of arrivals and departures grow becomes complicated. We
now show how to optimize these decisions. First, we show how to
choose the contents of any packet transmission. Suppose signals
Si,...,Sm—1 have arrived in the interval [0,¢] and the next event
is a packet departure. Define B and Q); , ¢ = 1,...,m — 1, re-
spectively, as the number of bits describing S; already at the decoder
and still enqueued at time ¢. If §; bits from signal ¢ are included in
the next packet, the total distortion after the packet is transmitted is
S DB where B = B + 6.

We use Lagrange multipliers to optimize the ;. The problem is con-
strained so that the number of transmitted bits does not exceed the size
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Fig. 1. Determine packet contents by “water-filling” to v (the dashed
line). This attempts to equalize signal description rates at the destinations.
After transmission, the decoder has Bf = B + 6; bits and the queue
Qf = Q; — &, bits.

of the packet, i.e., Z:’;l 6; < P,andsothat 0 < 6; < @, forall .

Temporarily ignoring the latter constraints, the cost functional is

m—1 m—

1
L= DB +&]+7)_ b
=1 =1

If the optimal 8; are between zero and (); for all 7, they can be found
via differentiation

e
dé;

=D'[B] +&]+v=0. 3

The convexity of D[] implies that D’[-] is monotonic, hence (8) tells us
that the best policy is to even out the description rates at the decoders.
Often, we cannot equalize the rates because of constraints on packet
size or because the 6; > 0. To take into account these active constraints
we use the Kuhn—Tucker conditions, giving:

Theorem 1 (Transmit Packet): Let D[-] be convex, and let {Q] }
and {B; } define the queue and decoder contents, respectively, prior
to transmission. Then, the number of bits {4; } to transmit to minimize
the distortion 37" D[B] + 6] is

0, ifA; <0
b =< Ay, ifA; €10, Q7 ]
Q. ifA > Q;
fori =1,...,m — 1, where A; = v — B, and where v is chosen to

fill the departing packet, i.e., /"' 8; = P. If fewer than P bits are
enqueued, all are transmitted.

This method for determining which bits to transmit is akin to “water-
filling” for colored Gaussian channels in channel-coding theory. This
is illustrated in Fig. 1 where v the water-filling level. We can interpret
these results in terms of priority queuing by considering each level-line
(for instance, the dashed line) to correspond to a different priority. The
lower the level, the more significant the information, and the higher the
priority.

A similar optimization dictates what to throw out when faced with
an overflow. Say that the overflow event is the arrival of signal S, . The
Q; upper-bound the buffer contents Q; after S,,, is stored. Since, at
most, all M bits of memory can be assigned to S,.,, for convenience set

m = M . Define the 6; to be the number of bits discarded from each
signal to store S,,,. We determine the {6; } that minimize the a posteriori
cumulative distortion across the system, ., D[Q; + B, — 6;]. We
include bits still in the queue as they may yet be transmitted.

The number of enqueued bits cannot exceed the queue memory, i.e.,
S AQT —8&) =3, QF < M where 0 < 6, < Q; forall i.
Making the queue memory constraint an equality yields the Lagrangian
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Fig. 2. Long term average distortion versus inverse utilization rate for various-rate baseline algorithms, universal algorithm, and bound.

cost functional £ = > | D[B; + Q7 — &] — vy o (Q7 — &),
giving the following.

Theorem 2 (Store Signal): Let D[] be convex and let {Q; } and
{B]"} define the queue and decoder contents, respectively, prior to the
storage of signal S,,, where Q),, = M and B,, = 0. The number
of bits {é;} to discard to minimize system distortion Y.~ | D[Q; +
B,_ - (52] iS

0, if A; <0
6 = A;, ifA; € [0, Q:]
Q; . ifA > Q7

where A; = B +(Q); —v, and v is chosen to keep the queue memory
full, i.e., Y (Q; — ;) = M.If the queue has sufficient memory
available to store S, losslessly, no bits are discarded.

V. ANALYSIS AND COMPARISON OF ALGORITHMS

In this section, we compare the long term average performance of
the baseline and universal algorithms for a simple queuing process.
The arriving stream is a Poisson process of rate A. At the output of
the queue, packets of P bits are emitted according to Poisson process
of rate p that is independent of the arrival process. If, for instance, the
quantization rate () of the baseline algorithm equals the packet size P
then the processes form a standard M /M /1 queue.

A. Steady-State Performance of Baseline Algorithm

The steady-state performance of the baseline algorithm provides a
benchmark against which we compare the performance of the universal
algorithm. The approximation (7) to the average baseline distortion dr
becomes exact as T gets large. Letting d = limr_ .. dr, we get

d= Tlim d =(1—Pr[signal loss]) D[Q] + Pr[signal 10ss]dmax

where Pr[signal loss] = lim7p_.oc Niost/Narr. Because the Poisson
processes is memoryless the steady-state probability of signal loss
equals the steady-state probability that the queue is full. If the utiliza-
tion rate p = A/p is known, the designer can optimize the precision

() at which signals are stored. We term this the “optimized” baseline
algorithm.

B. Comparison of Algorithms

We now present simulation results for both algorithms. We use an
exponential distortion function, D[B;] = exp(—0.1B;). In Fig. 2, we
plot the long term average distortion performances of the algorithms
versus p~ !, for total memory M = 1200 and packet size P = 30. The
experimental performance of the baseline algorithm for three different
quantization rates is plotted with the dotted curves. Experimental points
are indicated by es, +s, and Xs, respectively. The first is a low-rate
situation (three signals per packet). The second is a medium-rate situ-
ation (one signal per packet), and the third is a high-rate situation (two
packets per signal). The dashed curve plots the performance of the op-
timized baseline algorithm; data points are indicated by *s. The solid
line is the performance bound (5). The experimental performance of
the universal algorithm, indicated by os, is close to the bound.

In some regimes, the optimized baseline algorithm does quite well,
in particular when p " is small (i.e., the queue is busy). If p is known in
such situations, the computational simplicity of the baseline algorithm
can be exploited with little loss in performance. If p~" is smaller (the
queue is more busy) than the baseline algorithm is designed for, distor-
tion is dominated by buffer overflow. Conversely, if p~" is bigger (the
queue is less busy) than the designer thought, distortion is dominated
by quantization noise. The performance of the baseline algorithms de-
pends markedly on knowledge of p. If the value of p is uncertain or
changing, the sample-path optimality of the universal algorithm is par-
ticularly useful.

The results of this section suggest a hybrid algorithm. Consider an
algorithm that varies the fidelity at which new signals are stored de-
pending on the observed history of queue overflows. If many signals
are lost due to overflows, the quantization rate should be reduced. On
the other hand, if the memory is free most of the time, the quantization
rate should be increased. The quantization rate is controlled as a func-
tion of the empirical probability of buffer overflow to try to stay close
to the performance of the optimized baseline algorithm. This strategy
is akin to the approaches of [3], [4], and [8]. However, the gap between
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the optimal baseline and the universal algorithm seen in Fig. 2 demon-
strates that more dynamic distortion control is required to maximize
system performance.

VI. CONCLUDING COMMENT

In this note, we focus on signals that share a common distortion mea-
sure. As mentioned in Section II, the universal policy is directly appli-
cable to situations where the distortion measure is signal specific. This
is relevant for systems that handle different classes of data, e.g., audio
versus image or video. Different distortion measures could also be used
to give different qualities-of-service to different data classes, or data
sources, and to implement a fair allocation of resources between them.
Distortion measures can be designed to give priority to delay-sensitive
data (such as voice), to favored data (as in the digital camera example),
and even to be time-dependent so that the marginal utility of each piece
of information decreases the longer it remains enqueued. As long as all
distortion measures are convex, the priority storage and transmission
protocols presented herein will remain sample-path optimal.
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It can be argued that the Holy Grail of control theory is the de-
termination of the optimal feedback control law or simply the feed-
back control law.! This is understandable given the huge success of the
linear quadratic Gaussian (LQG) theory and applications for the past
half-century. It is not an exaggeration to say that the entire aerospace
industry, from the Apollo moon landing to the latest global positioning
system (GPS), owe a debt to this control-theoretic development in the
late 1950s and early 1960s. As a result, the curse of dimensionality
notwithstanding, finding the optimal control law for more general dy-
namic systems remains an idealized goal for all problem solvers. We
continue to hope that with each advance in computer hardware and
mathematical theory, we will move one step closer to this ultimate goal.
Efforts such as feedback linearization and multimode adaptive control
[3] and [4] can be viewed as such successful attempts.

It is the thesis of this note to argue that this idealized goal of con-
trol theory is somewhat misplaced. We have been seduced by our early
successes with the LQG theory and its extensions. The simple but often
not emphasized fact is this: It is extremely difficult to specify and im-
possible to implement a general multivariable function even if the
function is known

Generally speaking, a one variable function is a two-column table, a
two-variable function is then a book of tables, a three-variable function
is a library of books, a four-variable function is a universe of libraries,
and so on. Thus, how does one store or specify a general arbitrary
100-variable function, nevermind implementing it even if the function
is God given? No amount of hardware advances will overcome this fun-
damental impossibility even if mathematical advances provide the gen-
eral solution. Exponential growth is one law that cannot be overcome
in general. Our earlier successes with LQG theory and its extensions
were enabled by the fact that the functions involved have a very spe-
cial form, namely, they decompose into sums or products of functions
of single variables or low dimensions. As we move from the control
of continuous-variable dynamic systems into discrete-event systems or
more complex human-made systems such as electric power grids, com-
munication networks, huge manufacturing plants, and supply chains,
there is no prior reason to expect that the optimal control law for such
systems will have the convenient additive or multiplicative form. Even
if in the unlikely scenario that we are lucky enough to have such a
simple functional form for the control law of the systems under study,
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1 Also known as decision rule, IF-THEN table, fuzzy logic, learning and adap-
tation algorithm, strategies, and a host of other names. However, nothing can be
more general than the definition of a function that maps all available informa-
tion into decision or action.
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