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Béla Nagy Máté Matolcsi
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Abstract

This paper concerns a particular case of the minimality problem in positive system theory. A standard

result in linear system theory states that any nth-order rational transfer function of a discrete time-

invariant linear SISO system admits a realization of order n. In some applications, however, one is

restricted to realizations with nonnegative entries (i.e. a positive system), and it is known that this

restriction may force the order N of realizations to be strictly larger than n. A general solution to the

minimality problem (i.e. determining the smallest possible value of N) is not known. In this brief we

consider the case of transfer functions with nonnegative multiple poles, and give sufficient conditions

for the existence of positive realizations of order N = n. With the help of our results we also give an

improvement of an existing result in positive system theory.
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I. Introduction

Assume we are given the transfer function

H(z) =
p1z

n−1 + ... + pn

zn + q1zn−1 + ... + qn

; pj , qj ∈ R for all 1 ≤ j ≤ n

of a discrete time-invariant linear SISO system of McMillan degree n.

It is a standard result in linear system theory (see e.g. [10], Chapter 9) that an nth order realization

of H(z) (i.e. a triple A ∈ R
n×n, b, c ∈ R

n such that H(z) = cT (zI − A)−1b holds) can always be

constructed. In this note, however, we are interested in the positive realization problem, i.e. finding

A,b, c with nonnegative entries. The nonnegativity restriction on the entries of A,b, c reflect physical

constraints in applications. Such positive systems appear for example in modelling bio-systems, chemical

reaction systems, and socio-economic systems, as described in detail in the monograph [10]. A thorough

overview of the positive realization problem and related results has recently been given in [3].

It is well known, although maybe surprising, that the constraint of positivity may force the dimension

N of realizations to be strictly larger than n (see [2], [5], [15] for different reasons why this phenomenon

may occur). Therefore, the minimality problem (i.e. finding the lowest possible value of N) is essential,

and has been dealt with in a number of recent papers (see [6], [8], [12], [7], [16], [14], [13]). The problem is

highly non-trivial and a general algorithm of determining the lowest possible value of N is still not known.

Several particular cases are settled in the papers mentioned above. Let us mention here that, in contrast

with the minimality problem, the existence problem (i.e. determining whether a transfer function H(z)

admits a positive realization or not) has already been solved in [1] and [9] (cf. also [11]).

Recent applications of positive system theory include a MOS-based technology for discrete-time fil-

tering (the so-called charge routing networks, see [7]), and the design of fiber optic filters [4]. In fact, the

theoretical background in these applications is the following modified version of the positive realization
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problem: decompose an arbitrary transfer function H(z) as the difference H(z) = H1(z) − H2(z) of two

transfer functions with positive realizations of dimension N1, N2, respectively, and give a priori estimates

on the values of N1 and N2. This problem will be referred to as the positive decomposition problem. For a

more detailed description of how the positive realization problem and the positive decomposition problem

are related, see the paper [7], and also Section II below.

In this note we are concerned with transfer functions having nonnegative multiple poles. On the one

hand, concerning the original positive realization problem, we obtain minimal positive realizations for a

class of transfer functions. On the other hand, concerning the positive decomposition problem, we give

a generalization of a result of [7]. In fact, the case of multiple poles, in general, is not covered by the

method given in [7], and is left open (see the Concluding Remarks of that paper). We attempt to make a

step towards the solution by considering the presence of nonnegative multiple poles.

II. Transfer functions with nonnegative multiple poles

In this section we provide an algorithm to find a minimal positive realization for a class of transfer

functions with nonnegative multiple poles.

Before stating our results let us make some preliminary remarks. It is well known that a necessary

condition for the existence of positive realizations of H(z) is that one of the dominant poles (i.e. poles

with maximal modulus) must be nonnegative. The transfer function H(z) is called primitive if it has

a unique dominant pole. We will deal only with the case of primitive transfer functions with a simple

dominant pole at λ0 ≥ 0. We will exclude the trivial case λ0 = 0 and assume that λ0 > 0.

Throughout the paper we will also use the trivial fact that the impulse response sequence t1, t2, . . .

of a first-order transfer function T (z) = c
z−µ

, (c ∈ R, µ ≥ 0) is given by tj = cµj−1.

We will also need the following general result of Hadjicostis (see [12], Theorem 5):

Lemma 1: Let T (z) be a rational transfer function with nonnegative impulse response sequence

t1, t2, . . . , i.e. T (z) =
∑∞

j=1 tjz
−j. For an index m ≥ 1 let Tm(z) denote the transfer function cor-

responding to the truncated sequence tm, tm+1, . . . , i.e. Tm(z) =
∑∞

j=1 tm+j−1z
−j. Assume that Tm(z)

admits a nonnegative realization of dimension k. Then T (z) admits a nonnegative realization of dimension

k + m − 1.

The proof of this lemma is a direct construction (see [12] for the details, and Example 1 below for an

application).

We can now state our first result concerning transfer functions with nonnegative multiple poles.

Theorem 1: Consider the transfer function

H(z) :=
c0

z − λ0
+

c1

(z − λ1)l
,

where l ≥ 1 is an integer exponent, 0 ≤ λ1 < λ0, c0 > 0 and c1 ≥ −c0(λ0 − λ1)
l−1. Then H(z) has a

minimal positive realization of dimension l + 1.

Proof. Introduce the new variable y = z−λ1, and let G(y) := H(z). The function G has poles shifted

to the left by λ1. In particular, 0 is a pole of G(y). In fact, H(z) = G(y) = c0

y−(λ0−λ1)
+ c1

yl .
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The idea now is to ’delete’ the pole at 0 in the following way. The impulse response sequence g1, g2, . . .

of G(y) (with respect to y, of course) is nonnegative (this is a direct consequence of the assumption

c1 ≥ −c0(λ0−λ1)
l−1; namely, for j 6= l we have gj = c0(λ0−λ1)

j−1 > 0, and gl = c0(λ0−λ1)
l−1+c1 ≥ 0).

Now simply disregard the terms g1, . . . gl, thus obtaining the sequence gl+1, gl+2, . . . . This impulse

response corresponds to the first-order transfer function Gl+1(y) := (λ0−λ1)l

y−(λ0−λ1)
. The function Gl+1(y) has

a trivial positive realization in 1 dimension, namely A1 = λ0 − λ1, b1 = 1, c1 = (λ0 − λ1)
l. We can then

apply Lemma 1 to construct a positive realization (A2,b2, c2) of G(y) in l + 1 dimension. After this we

can define A := A2 + λ1I, b = b2, c = c2 and we obtain a positive realization (A,b, c) of H(z), also in

l + 1 dimension. To verify this we can simply write

cT (zI− A)−1b = c2
T ((z − λ1)I − A2)−1b2 = c2

T (yI − A2)−1b2 = G(y) = H(z).

Remark 1. It is clear that this realization is minimal, because the dimension equals the McMillan

degree.

Remark 2. It would be very interesting to see whether the sufficient condition on c0, c1 above is also

necessary or not. It is certainly so in the trivial case l = 1, but even the simplest non-trivial case l = 2

seems to be open.

One advantage of the construction of Theorem 1 is that it can also be directly applied in the case

when different exponents of the same pole are present.

Corollary 1: Let

H(z) =
c0

z − λ0
+

l
∑

j=1

cj

(z − λ1)j
,

where 0 ≤ λ1 < λ0, c0 > 0 and cj ≥ −c0(λ0 − λ1)
j−1 for all 1 ≤ j ≤ l. Then H(z) has a positive

realization of dimension l + 1.

Proof. The method of the proof of Theorem 1 applies directly, as descried in Example 1 below.

Before giving a numerical example, we remark that in positive system theory it is customary to

assume (without loss of generality) that the dominant pole λ0 = 1, and its residue c0 = 1. What makes

this normalization possible is that for any positive constants a1, a2 a transfer function H(z) has a positive

realization of some dimension N if and only if the function a1H(a2z) has a positive realization of the same

dimension N (see e.g.[1] for the easy proof). We will also use this standard normalization in Example 1

below.

Example 1. Let H(z) = 1
z−1 −

0.2
(z−0.4)3 −

0.3
z−0.4 . Introducing y = z−0.4 we get G(y) = 1

y−0.6 −
0.2
y3 − 0.3

y
.

Then G(y) has impulse response sequence 0.7, 0.6, 0.16, 27
125 , . . . , 3k−1

5k−1 . . . . Now we disregard the first three

elements of this sequence, and observe that the rest 27
125 , . . . , 3k−1

5k−1 . . . is the impulse response of the

first-order transfer function G4(y) = 0.216
y−0.6 , which has a 1-dimensional positive realization c1 = 0.216,

A1 = 0.6 and b1 = 1. We now apply the general method of [12] in order to obtain a positive realization

of G(y). Namely, we define (in the notation below we indicated the general construction of [12], although

the ’vectors’ b1, c1 and the ’matrix’ A1 are in fact scalars in our case): c2
T = (g3, g2, g1, c1

T ) =
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(0.16, 0.6, 0.7, 0.216) and b2 = (0, 0, 1,0T )T = (0, 0, 1, 0)T , and

A2 =















0 1 0 0T

0 0 1 0T

0 0 0 0T

b1 0 0 A1















=















0 1 0 0

0 0 1 0

0 0 0 0

1 0 0 0.6















Finally, the required positive realization (A,b, c) of H(z) is achieved by c = c2, b = b2, and

A = A2 + 0.4I =















0.4 1 0 0

0 0.4 1 0

0 0 0.4 0

1 0 0 1















.

One can have the impression that Theorem 1 and Corollary 1 can only be directly applied to a relatively

small class of transfer functions because the conditions are rather restrictive. However, the iteration of the

construction above leads us to a more general case. Namely, we can obtain a minimal positive realization

of transfer functions with several distinct nonnegative multiple poles. The statement of this result is given

in the spirit of [7], keeping in mind subsequent applications to the positive decomposition problem (see

Corollary 2 below).

Theorem 2: Let

H(z) =
R

z − λ0
+

r
∑

j=1

lj
∑

k=1

cj,k

(z − λj)k
,

where R > 0, 0 ≤ λj < λ0 for all 1 ≤ j ≤ r (the poles λj are assumed to be pairwise distinct), and

cj,k ∈ R. If R is sufficiently large, then there exists a minimal positive realization of H(z) of dimension

equalling the McMillan degree n = 1 +
∑r

j=1 lj .

Proof. The idea of the construction in this general case is the iteration of the method described in

Theorem 1. This is illustrated by Example 2 below.

The formal proof proceeds by induction with respect to r.

For r = 1 the statement is contained in Corollary 1.

Assume r > 1, and that the inductive assumption is fulfilled for r − 1.

We will need the following general observation: if a transfer function T (z) has impulse response

sequence t1, t2, . . . (i.e. T (z) =
∑∞

j=1 tjz
−j), then the truncated sequence t2, t3, . . . is the impulse response

of the transfer function T2(z) :=
∑∞

j=1 tj+1z
−j = zT (z)− t1. Notice that the non-zero poles of T2(z) (and

their orders) are the same as those of T (z). On the other hand, if 0 is a pole of T (z) of order k ≥ 1 then

the order of the pole 0 for T2(z) is k − 1.

We can assume without loss of generality that λ1 < λ2 < · · · < λr . Introduce the new variable

y = z − λ1, and let G(y) = H(z). Assume now that the impulse response sequence g1, g2, . . . of G(y)

(with repect to y, of course) is nonnegative. It is clear that this nonnegativity condition will be satisfied

if R > 0 is chosen sufficiently large. We will need the nonnegativity of the sequence g1, g2, . . . when
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applying Lemma 1 later. Note also that the function G(y) has poles of order 1, lr, lr−1, . . . , l2, l1 at

locations λ0 − λ1, λr − λ1, λr−1 − λ1, . . . , λ2 − λ1, 0, respectively. We can now proceed by deleting the

first l1 terms of the impulse response sequence of G(y). By the general observation above we conclude

that the truncated sequence gl1+1, gl1+2, . . . corresponds to some transfer function Gl1+1(y) with poles of

order 1, lr, . . . , l2 at locations λ0 − λ1, λr − λ1, . . . λ2 − λ1, respectively. In particular, the pole at 0 has

’disappeared’. In fact, the function Gl1+1(y) is of the form

Gl1+1(y) =
R′

y − (λ0 − λ1)
+

r
∑

j=2

lj
∑

k=1

dj,k

(y − (λj − λ1))k
,

for some R′ > 0 and dj,k ∈ R. Therefore, the inductive hypothesis applies, and a positive realization

A1,b1, c1 of Gl1+1(y) of dimension 1 +
∑r

j=2 lj exists. Then, an application of Lemma 1 provides a

positive realization AG,bG, cG of G(y) of dimension 1 +
∑r

j=1 lj . Finally, it is clear that any positive

realization AG,bG, cG of G(y) leads to a positive realization AH := AG + λ1I, bH := bG, cH := cG of

H(z) of the same dimension.

It is also clear that this construction supplies a minimal positive realization of H(z), because the

dimension equals the McMillan degree.

We illustrate the construction described above by the following

Example 2. Let

H(z) =
10

z − 1
−

1

(z − 0.8)2
+

2

z − 0.7
−

0.5

(z − 0.7)3
.

Introducing the new variable y = z − 0.7 we get G(y) := H(z) = 10
y−0.3 − 1

(y−0.1)2 + 2
y
− 0.5

y3 . Then,

disregarding the first 3 terms g1 = 12, g2 = 2, g3 = 0.2 of the impulse response of G(y) we obtain

G4(y) = 0.27
y−0.3 + 0.002−0.03y

(y−0.1)2 .

Introducing the new variable v = y − 0.1 we get F (v) := G4(y) = 0.27
v−0.2 − 0.03

v
− 0.001

v2 . Disregarding

the first 2 terms f1 = 0.24, f2 = 0.053 of the impulse response of F (v) we obtain F3(v) = 0.0108
v−0.2 .

The first order transfer function F3(v) has a trivial positive realization, namely A1 = 0.2, b1 = 1,

c1 = 0.0108. Applying Lemma 1 we get a positive realization of F (v), namely

A2 :=









0 1 0

0 0 0

1 0 0.2









,

and b2 = (0, 1, 0)T , c2
T = (0.053, 0.24, 0.0108). Then, a positive realization of G4(y) is given by

A3 = A2 + 0.1I =









0.1 1 0

0 0.1 0

1 0 0.3









,

and b3 = b2, c3 = c2.
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Next we apply Lemma 1 again to obtain a positive realization of G(y), namely

A4 :=



























0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0.1 1 0

1 0 0 0 0.1 0

0 0 0 1 0 0.3



























,

and b4 = (0, 0, 1, 0, 0, 0)T , c4
T = (0.2, 2, 12, 0.053, 0.24, 0.0108).

Finally, we arrive at a minimal positive realization of H(z), namely

A5 = A4 + 0.7I :=



























0.7 1 0 0 0 0

0 0.7 1 0 0 0

0 0 0.7 0 0 0

0 0 0 0.8 1 0

1 0 0 0 0.8 0

0 0 0 1 0 1



























,

and b5 = b4, c5 = c4.

Although the result of Theorem 2 is rather vague with respect to the original minimality problem of

positive realizations (i.e. it does not provide an explicit estimate on how large the value of R must be

compared to the coefficients cj,k), it can be appreciated better in connection with the positive decompo-

sition problem (which, in turn, may even be more important in applications, as described in [7] and [4]).

Namely, the case of transfer functions with multiple poles was left as an open problem in the Concluding

Remarks of [7], and we can now make a small step towards the solution. The combination of the result of

Theorem 8 in [7] and our Theorem 2 above gives the following

Corollary 2: Let H(z) be a strictly proper asymptotically stable rational transfer function (i.e. its

poles lie in the interior of the unit disk), with arbitrary simple (possibly complex) poles, and nonnegative

poles of possibly higher order. Let N1 denote the sum of the orders of the nonnegative poles, and N2 the

number of negative real poles. Let Pj (j ≥ 3) denote the set of points in the complex plane that lie in the

interior of the regular polygon with j edges having one vertex in point 1 and center at 0. Pj can formally

be defined in polar coordinates as in [7]:

Pj := {(ρ, θ) : ρcos[
(2k + 1)π

j
− θ] < cos

π

j
for all k = 0, 1, . . . , j − 1}.

Let N3 denote the number of pairs of complex conjugate poles of H(z) belonging to the region P3. Further,

let Nj (j ≥ 4) denote the number of pairs of complex conjugate poles of H(z) belonging to the region

Pj \ ∪
j−1
m=3Pm.
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Then H(z) can be realized as the difference H(z) = H1(z) − H2(z) of an N dimensional positive

system H1 and a 1-dimensional positive system H2 with

N = 1 + N1 +
∑

j≥2

jNj

Proof. This result is a direct consequence of Theorem 8 in [7] and our Theorem 2 above. For

convenience we repeat the major points of the argument.

Write H(z) in the form H(z) = H1(z)−H2(z), where H2(z) := R
z−1 with R > 0 sufficiently large, and

H1(z) = R
z−1 +H(z). Then H2(z) is a one-dimensional positive system, therefore it is enough to construct

a positive realization of H1(z) of the prescribed dimension N .

Consider the partial fraction decomposition of H(z). Let H+(z) denote the sum of partial fractions

corresponding to nonnegative (possibly multiple) poles. In view of Theorem 2 above, we can find a

sufficiently large positive number R1 such that the function R1

z−1 + H+(z) has a positive realization of

dimension 1 + N1. The sum of the remaining partial fractions H−(z) contains simple poles only (in

fact, only negative real poles and pairs of complex conjugate poles remain). Therefore, the result of

[7], Theorem 8 can directly be applied. Namely, for a sufficiently large positive number R2 the function

R2

z−1 +H−(z) has a positive realization of dimension
∑

j≥2 jNj . We can now choose R = R1 +R2 and the

parallel connection of the positive realization of R1

z−1 + H+(z) and R2

z−1 + H−(z) gives the desired result.

Note that in Corollary 2 we cannot claim minimality of the obtained realization (cf. [7]). However, the

main point, as explained in more detail in [7], is that we have a reasonably good a priori upper estimate

on the dimension of the realization.

It is also clear that the case of negative real or pairs of complex conjugate multiple poles falls outside

the scope of our considerations and remains open.

III. Conclusion

In this brief we provided a construction to obtain a minimal and positive realization for a class of

transfer functions with nonnegative multiple poles. The results also enabled us to generalize an existing

result in positive system theory concerning the positive decomposition problem.
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