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Abstract

In this paper, we derive optimal selling rules for an investor holding one (share of) stock
in a market which fluctuates among several (for example, “bull” and “bear”) states. The
mathematical model for stock fluctuations is a regime switching one: a set of the established
Black-Scholes models coupled with a finite state continuous Markov chain. The optimal stopping
rule is of a threshold type for each state, derived via the “modified smooth fit”. The proof is
via the martingale theory. Numerical examples are reported to demonstrate the dependence
of threshold levels with various parameters and to compare our result with some sub-optimal
selling rules.
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1 Introduction

Imagine an investor, who is holding one (share of) stock whose value X (t) at time t is random.
Assume (not unrealistically) that the underlying market fluctuates between a bull market and a bear
market. His goal is to decide a “best” selling time to maximize his discounted (due to inflations)
expected payoff. Assume also that he is not clairvoyant.

This is a typical optimal stopping time problem, with the stopping time 7 < ¢t measurable to
the “information” (the o-algebra generated by X (s)) available up to time t. Clearly, the choice of
an optimal stopping rule will be dictated by both the underlying model for X(+) and the payoff
function.

A special case of this problem was studied by H. McKean [4] in the 1960’s. He showed that if
(a) one assumes that the fluctuation of X (t) is driven by a geometric Brownian motion (now known
as the Black-Scholes model) such that dX (t) = uX(t)dt + o X (t)dW (t), (b) the payoff function at
time ¢ is (X () — K) (or equivalently (X () — K )*), with K understood as an obligation to pay back
when he sells the stock, and (c) there is a discounted factor r, so that one would like to maximize

Ele™"(X(r) — K)] over all possible choices of stopping times. Then if p > r, one can patiently
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“wait and see” and the return is infinite; if 4 < 7, the optimal stopping strategy is of a threshold
type. More precisely, there exists an z* which is explicitly given in terms of p,r,0, K so that the
optimal stopping time 7* = inf{t > 0, X(¢) > z*}; p = r is a degenerate case for which the value
function is z with the corresponding 7* = 00, a.s..

McKean’s approach solves the special case for the question raised by our investor, namely when
there is no state change in the market and parameters p and ¢ are constant. To answer the question
for the general case with regime changes in the market, we shall consider the following switching
diffusion process

dX(t) = X(t)“6(t)dt + X(t)ae(t)dW(t)7 X(()) =, (1>

where €(t) € {1,2,--- , S} is a finite-state continuous Markov chain, and W (¢) is a standard Wiener
process defined on a probability space (2, F, P). Here we assume that W(-) and €(-) are indepen-
dent, and p; and o; are known parameters for any given e(t) = 1.

This model is in general referred to as a regime switching model and has been studied in various
contexts; see for example, Di Masi, Kabanov and Runggaldier [3], Guo [2], and Zhang [8] among
others. Two most relevant ones are [2] and [8]. The former dealt with a perpetual lookback option
pricing and solved a related optimal stopping time problem via extending the technique of the
well-known smooth fit; while the latter used a two-point-boundary-value approach and provided
a suboptimal selling rule involving target and cut-loss levels, which is optimal in that particular
context.

In this paper, we will exploit the technique developed in [2] for the optimal stopping problem
assuming the payoff function (X(¢) — K) under the regime switching model (1). For explicitness,

A1 A1

we assume that S = 2 and the generator of €(t) is of the form N N , with A1, A2 > 0. We
2 —A2

will derive explicitly a general optimal selling rule and the corresponding value function in a closed-

form. We show that when r < By (= (1 — A1 +p2 — Az + Vipr = A1) = (p2 = A2 +4MX2)/2)
the best bet is to wait and get an infinite return; when r > B, the optimal stopping rule is of a
threshold type for each state; r = Bj is the degenerate case for which the value is z and the waiting
time is infinite. The proof of optimality is via the Dynkin’s formula and local martingales. Finally,
we illustrate numerically the dependence of our optimal threshold levels with various parameters

and the difference between our solution and that in [8].



2 Main results

Mathematically, we are to consider the following optimal stopping problem in a state space (z,€):

V¥(z) = sup Ele™"(X(r) - K) | X(0)==z,¢0) =1, 2)

0<r<0
where 7 is an F; = o{(W(s),€(s)) | s < t}-stopping time.
Intuitively, if 7 is very small so that ™ is smaller than E[X], it does not hurt to wait and the

payoff is infinite. We will see that this is indeed true from the following lemma.

Lemma 1 When A1, A2 >0,

t
_ . m—Bs gy Bi—m pyu
My (t) = Elexp /0 pels)dse(0) = 1] = L= ket 4 LB P, 3)
t
— o= 2B pe Bim 2 g 4
My(t) = Elexp /0 pls)dsle(0) = 2 = 2= Fet 4 FLoRR P (@)

If \1 = 0, then My(t) = exp(uit), and

U1 — B2 A2
Ms(t) = ———————ex - A )t) + — X t).
2(t) it p((2 — A2)t) P p(pat)

If Ay = 0, then Ma(t) = exp(uat), and
po — p1 A1
Mi(t) = ————ex — M)+ ——————ex t).
1) = 2B exp((n = A0 + o exp(iat)
Here By > 0 > By are the roots of the quadratic equation

2% — (1 — AL+ p2 — A2)z + (p1 — M) (p2 — A2) = AAe =0

such that

1 — AL+ p2 — Ao £/ Tur — A1) — (u2 = M) + 4
5 )

Big =

Proof. Starting from time 0 and state 1, between time 0 and At, there is either at least one jump
from state 1 to 2, with probability 1 — e~MAt: or no jump and € remains in state 1 with probability

e~ A% and all the process starts afresh again. Since fg dt = OA Ydt+ [ gt dt,, it is clear that
t
M(t) = E[GXP/O NE(S)dS{l(jumps) + Lo jumps) 1
= P{no jump}exp(u1At)M;(t — At)
+P{jumps}Ms(t + At x 1) + O((At)?)
= exp(—A1At) exp(p1 At) M (t — At)

+(1 = e MAY My (8 + At x 1) + O((At)?),



with |n| < 1. Similarly,
My(t) = exp(—A2At) exp(uoAt)Ma(t — At)
(1 — e 2B M, (t+ At 1) + O((At)),

with || < 1.
By a Taylor’s series expansion and some algebra, we get the corresponding ODEs system with

initial conditions for Mj(t), Ma(t) such that

MMa(t) = —(m —M)Mi(t) + Mi(), Mi(0) =1, M;(0) = pa,

MoMi(t) = —(u2— da)Ma(t) + My(t), M2(0) =1, M5(0) = pe.
After simple calculations we see
M) — (1 — M+ p2 — M) M () + (1 = A1) (p2 — A2) — MA2) M1 =0,

with the initial conditions M7(0) = 1, M1(0) = p1.
Solving this second order ODE with the form of M;(t) = exp(Bt) gives us

My (t) = Ay exp(Blt) + Ao eXp(Bgt).

Here Als are uniquely determined by the boundary conditions such that A; = (u1 — B2)/(B1 — B2)
and Ag = (Bl - pbl)/(Bl - Bg).
M>(t) and the degenerate cases when A\; A2 = 0 can be solved in a similar fashion.

0

2.1 Casel: r< B

From the above lemma, together with the fact that exp( fot 0edBs — % fg o2ds) is a martingale, it is

immediate that {e"X;}¢>o is submartingale if B, > r, and supermartingale if By < r. Moreover,

we see
00 (By>r)
Jim Ble7X]) = Jim P Xy = 00 (Br=1) )
0 (Bl < ’I’),

and for T' < oo and any stopping time 7

E [G"T(T/\T)XTAT] —e " DK = Ele7™ T (Xopr — K)] < E [e_T(TAT) XT’\T] (6)



Therefore, it is clear that if By > 7, 7* = co and the value function is infinite. When B; = r,

* = 0o and the value function is z. This is easy from the optional sampling theorem.

Theorem 1 For A\; > 0,y >0, V*(x,1)) < oo if and only if r > By. In particular, when r = By,
V¥z,i)=1x

Remark 1 Note that the sufficient and necessary conditions for Theorem 1 only hold under the as-
sumption Mg # 0. When Mg = 0, it is possible that min(Vi(z), Va(z)) < oo and max(V1(z), Va(z)) =

o0, and vice versa. One can easily check one such ezample with \y =0, and r € (p1, p2 — A2).
22 Case2:r>h8B

In this case, the value function is finite. Therefore it is crucial to find the optimal stopping time 7.
If we focus our attention on the threshold type (the optimality of which is to be verified) because
(X(t),€) is jointly Markovian, then since e changes from one state to another, it is reasonable to
anticipate that the thresholds should be different according to the state of e.

Denoting each threshold z; for the state i, we will first provide our intuitive derivation of such
z;, and then to prove via the martingale theory the optimality of these x;.

First, consider the case when x; # T2, and without loss of generality assume z; < z2. By the
very definition of z;, we know if z > z1, one should stop if it is in state 1, therefore V2(z) = z — K;
however, if it is in state 2 and T < z2, we will hold the stock and watch the process X (t) to continue.
Note that over the next time interval ¢, with probability A;6t, the state may change to state 2 for
which the value function will become Vz(x + 6z), and with probability 1 — A1t the state may stay
state 1 for which the value function will become Vi (x + éz). If our strategy is “optimal”, it is not

hard to convince ourselves that we should have for small dt,
Vi(z) = e \dtVa(z + 6z) + (1 — Mdt)Vi(z + 6x)}-
Now assuming the value functions are smooth enough, then the Ito’s calculus yields, for z € [z1, x2),

1
(r+X)Va(z) = zpeVa(z) + '2;3320%‘/2”(58) + Ao(z — K),

(7
Vi(z) = z- K.
Similarly, for z € [0,z1),
1
(r+M)Vi(z) = zmVi(z) + 52%01V{' (2) + MVa(@), -
8

(r+X)Va(z) = zmV3(@) + 52°03V3 (2) + XVa(@).



Finally, for z € [z2, 0], we have

Vi(z) = Vo(z) =z — K. (9)

Now assuming that V; # Vs, clearly the characteristic equation associated with Eq. (8) is

g1(8)g2(B) = M1Az,

where g;(8) = A + 71 — (ui - %O’,?) B8 — %0’%[32, (i = 1,2). This characteristics equation has four
distinct roots 81 < B2 < 0 < B3 < 4.
Therefore, the general form of the solution to Eq. (8) is given by

Viz) = i Aiz?,

10
VQ(ZE) = Z?zlliAil‘ﬁi, ( )

with I; = I(B:) = 9_1)%;’1'2 = 55%7, for i = 1,2,3,4. Note that when z — 0, Vi(z) (i = 1,2) are

bounded. (More precisely, V4(0) = V2(0) = 0.) Thus, the negative power of ¢ should be eliminated

so that
Vi(z) = Ayzf + Agz™, a1
Va(z) = L AyzP + lpApz™.
Next, we turn our attention to Eq. (7). We denote #(x) as a special solution to
1
(r + M)V (z) = zpV'(z) + imzagV"(x) + Aoz — K).
In particular, if r + Ao — p2 # 0, one could take
)\gK AQZE
= — . 12
o) =~ T T e — (12)
(In the case of 1 > z2, we use 5(3:) as a special solution to
1
(r+M)V(z) =z V'(z) + —iwza{fV”(:c) + Mz — K). (13)
and choose when r + A1 — g1 # 0, ¢(z) = —-:‘j_fl + T+ii“jm )
Therefore, one can express, via ¢(z) and v;, the general solution to Eq. (7) in the form of
Va(z) = C1z" + Coz™ + ¢(2). (14)

with 4; (i = 1,2) being the real roots of

1
pay + 5037(7 —1) =r+ X



(For the case when z; > x2, we denote % (i = 1,2) as the corresponding real roots of p1vy +
1oy - =7+ M)

In order to uniquely determine V;(z) and V3(z), we must solve for Ay, Ay, C1, Co, 21, and 2.
To this end, we need appropriate boundary conditions.

Applying the smooth fit along the boundaries (i.e., at z = z1 and z = z3) with Vy(z+) = Vi(z—)
and V{(z+) = V{(z—) yields

All‘ll + Az.’l]?z = Ty — K, (15)
Bzl + BoAsal” = w1,
and the smoothness of Va(z) at z; and z2 (the “modified smooth fit” [2]) suggests
llAlx[fl -+ ZQAQfo = lel"lyl + 021',{2 + ¢(x1) (16)
LB A + b Aps? = mCia]* + 10l + 21¢/ (1),
and
C1z3 + Coz® + ¢(x2) = zp2— K (17)
NnCizg + 72023 — T2 (x2) = 2.
Combining the above three equations together with some algebraic manipulation, we obtain
=1 —71
x 0 [ =z 0
( 0 2™ >F1($1,¢(331)) = ( 0 ap )Fz(szafb(ﬁcz))a (18)
where
—-1f —
1 1 ll lg 1 1 z— K q\r
File,g(@) = NN IO
Mmoo LB 1282 B B z zg ()

and

(6 &N ]
Lo B B B z zg' ()

ﬂ@am=(;,;)

where l; = 1/I; by symmetry. (Again, the corresponding notation when z1 > x9 is given by

-1
5@4@»=(1 1) (x”Kj“@), (21)
Y72 r —zg'(z)

-1
Emgunz(f 3) (w‘K7“@>. (22)
M e z —zg'(x)

For the case 71 = Ty = ¥, it is not difficult to show that the value function reduces to the

and

McKean’s problem. Indeed, in this case,

Vi(z) = AzPr + AgzP2,
‘/2(37) = l1A1$ﬁ1 + legCEﬂz,



for z € [0,2*] and Vi(z) = Va(z) = ¢ — K for z > z*. The smooth fit scheme leads to

{ Ag(z*)Pr 4+ Ag(z*)Pe = z*-K, (23)
BrAL(z*)P + BrAs(z*)? = z¥,
and
{ 1L A1 ()P + 1g Ao ()P = z* - K, (24)
LB1A; (&%) + lafaAs(z*)? = a.

Necessarily, we have A; = [1A; and Ay = Iy As. Which means Vi = V,. This implies p1 = p2,01 =
o from equation (8). And the value function can be easily rederived via the smooth fit, which is
exactly the solution by McKean’s approach.

In conclusion, if we use Y7, Y> to denote column vectors and define

z; 0 z, b0
H(z1,20,Y1,Y2) = | vi—| 7?2 Yo, 25
(z1,%2,Y1,Y2) ( 0z ) 1 ( 0 a7 ) 2 (25)
and - p
~ z; "+ 0 zo, 0
H(zy,20,Y1,Y2)=| U I R - | Y. 26
(21,22, Y1, Y2) ( 0 z? ) 1 ( 0 z;? \) 2 (26)

Then we have

Theorem 2 Assuming V;*(z) € C'(0,00), and r > Bi, then the optimal value functions V;*(z) =
Vi(z) where Vi(z) > = — K is determined by three cases:
Case 1: If there exists an 1 < Tz such that H(ml,mg,Fl(:nl,¢(m1)),F2(x2,¢(m2))) =0, then

A1zPr + Agr®  if z <z,

Viz) = z—K if © > 1,

1L A1z + Iy Agz? if r < z1, (27)
Va(z) = Ciz" + Cox™ + ¢(x) if z2 >z 221,

x—K if £ > x2.

with

A\ :1:‘131 w?z - 1 — K
Ao Bzt Boxy? z1 ’
01 . :L'gl :ng - o — K — ¢(w2)
Csy nzy Yozy zo — za¢(z2) |

Case 2: If there exists an x1 > x2 such that ﬁ(wl,mg,ﬁz(wl,g(ml)),ﬁl (332,5(:62))) = 0, then

Aleﬂl -+ sz'@z if £ < x9,
Vl(iL‘) = Cl.’lﬁl + 52152 -+ QE(JL’) if x1 >z > Ta,
z— K if ¢ > x1, (28)

Va(z) = llﬁlwﬁl + lzggxﬁz if ¢ < x2,
? z— K if £ > x2,



with N .
A1 . 11.7321 lgwgz o — K
A |\ LB 1Bead? T2 ’
~ -1 ~
Ci\ _ ;” ,{2 z1 — K — ¢(z1)
Ca Fre]t Farl? R ACI

Case 3, 71 = xo = z* if and only if py = p2, 01 = 02, for which

and

(m*)l—ﬁ B . *
Vi(z) = Va(z) = ——-————ﬁ z ifr<z
z— K if ¢ > z¥,

where ¢ = BK/(B —1)); and B > 0 satisfies v — (p1 — 3038 — 30262 = 0 (or equivalently

T — (M2 — 202)5 - 502/32 =0).
Theorem 3 When r > By, the optimal stopping rule is dictated by
=inf{t >0 | (X(t),€e@)) = (zi, D)}

such that
Vi (z) = Vilz) = Ble™™ (X(r*) — K) | X(0) =z,€(0) = i]. (29)

2.3 Proof of Theorems 2 and 3
It is easy to see that V;(co) =0, i = 1,2, and
D= {:cl | z€(z1,00 } {(332 ]a:e(:ng,oo)}

For any v(z,i) € C?, define

Ov(z, 1) L1 1 2 28 v(z, 1)

5 580 g + Xi(v(z, 3—1) — v(z, %)) — rv(z, ).

Lou(z,i) = Ty

Let v(z,i) = Vi(z). Then Lv < 0 except at (z,%) = (z;,4). From the uniform integrability of
e~V (X (t),€(t)) (directly from the proof of Proposition 3.2 in [2]) and the Dynkin’s formula, we

have

Eld(e™ " v(X (), €(t))] = Ele" Lo(X (2), €(t))dt]

For any stopping time 7, it follows,

v(z,i) > Ele” (X (1),¢(1))] 2 Ele” (X (7) — K)]. (30)



To show the optimality of 7*, note that if 7* < oo, then v(X(7*),e(r*)) = K — X (7*). In this
case, the Dynkin’s formula yields v(z,1) = Ele™™ (K — X(*))]. Otherwise, let

Dy=Dn{z <k}, fork=12,....

Let 7, = inf{t >0 | (X(t),€(t)) € Di}. Then it is easy to see 74 — 7* a.s. Moreover, as in Zhang
[8, Theorems 4.5 and 4.6], we see that, for each k, 7, < oo a.s. Using the definition of 7%, we have,

for k > K,

o(X (1), €(m)) = V(X (1), €))L x (m)=k} T V(X (Tie)s €(TE) L () <k

Note that
V(X (1), €T x () <k} = (K — X (1)) I x(r) <y < B — X (k).

Moreover, note that 0 < v(z,i) < K and €™ ™ I{x(z,)=k} — 0, 8s k — oo, a.s. It follows that
Ele™ ™ u(X (1k), €(mk)) I x ()=k}] — O
Therefore, we have
v(z,i) < Ble "™ o(X (1), e(mx))] = Ele™ (K — X ()],
as k — oco. Combining with (30), we have
v(z,i) = Ele™™ (K — X(1%))]-
This completes the proof.

3 Numerical simulation

As was mentioned earlier, in Zhang [8] a two-point boundary value differential equation (TPBVDE)
approach was used to derive an “optimal” selling rule for the threshold type stopping rules. This is
however sub-optimal for our problem, because the feasible solution was chosen from a constrained
and smaller set of stopping rules. In this section we report numerical experiments for comparing
our analytical solutions with the TPBVDE solutions.

First, wetake r =3, p1 =2, po=1, K =1, Ay =X =5, 01 = 4, o9 = 2, and examine our

closed-form solution and those by the TPBVDE method. In this case, the threshold levels are given
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Figure 1: Value functions and comparisons

by (z1,z2) = (9.97,3.88). In Figure 1, we use Ve(z,i) and V?P?d(z, i) to denote value functions
for our optimal stopping and the two-point boundary value problems, respectively. The differences
Ve(z,i) and (z — K) in Figure 1 validate the basic structure of the optimal stopping in terms of

threshold levels (z1,z2).

Next, we examine the monotonicity of these threshold levels with respect to o1, A1, and K.
First, we vary o1 and keep all other parameters fixed. The resulting (z1,z2) are listed in Table
1. Both threshold levels z1, zo increase with the increase in o1. This shows that a larger o; leads

to a higher expected reward, and therefore a higher threshold levels.

o1 2 3 4 5 6
(@1,22) | (502,3.31) | (7.10,3.60) | (9.97,3.88) | (13.74,4.15) | (18.42,4.38)

Table 1. Dependency on o3

We then vary A;. The result in Table 2 implies that both z; and zg increase if A1 increases:
this is because a larger )\; implies a shorter period for e(t) staying at €(t) = 1 and a smaller weight

on o1 = 4 (> 09 = 2), which leads to smaller average volatility.



A 3 4 5 6 7
(z1,72) | (10.56,3.98) | (10.25,3.92) | (9.97,3.88) | (9.72,3.83) | (9.50,3.8 1)

Table 2. Dependency on Ax

Finally we vary K. It suggests in Table 3 that both z; and 2 increase in K due to the fact that
larger K implies higher transaction cost and that needs to be compensated by higher samplewise

return level.

K 1 2 3 4 5
(z1,22) | (9.98,3.88) | (19.95,7.76) | (20.97,11.62) | (39.95,15.50) | (49.94 ,19.37)

Table 3. Dependency on K
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