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NonsmoothH,, Synthesis

Pierre ApkarianMember, IEEEDominikus Noll, Member, SIAM,

Abstract— We develop nonsmooth optimization techniques to ~ Out present approach doest use the bounded real lemma
solve H, synthesis problems under additional structural con- and thereby avoids Lyapunov variables. This leads to moder-
straints on the controller. Our approach avoids the use of La- 416 gize optimization programs even for very large systems.
punov variables and therefore leads to moderate size optirnation . .
programs even for very large systems. The proposed framewkr In e)fchang.e,.ou.r cost functlons arg nonsmooth and require
is versatile and can accommodate a number of challenging SPecial optimization techniques, which we develop here. We
design problems including static, fixed-order, fixed-struture, evaluate theéd,, norm via the Hamiltonian bisection algorithm
decentralized control, design of PID controllers and simuaneous  [10]-[12] and exploit it further to compute subgradientsjeh
design and stabilization problems. are then used to compute descent steps. Notice, however,

Our algorithmic strategy uses generalized gradients and . .
bundling techniques suited for the H., norm and other nons- that our method is not a pure frequency domain method. In

mooth performance criteria. We compute descent directiongpy ~ fact, it allowsboth frequency domaimnd state space domain
solving quadratic programs and generate steps via line seah. parameterizations of the unknown controller. This makes it
Convergence to a critical point from an arbitrary starting p ointis  very flexible tool in a number of situations of practical irest.
proved and numerical tests are included to validate our methds. Several iterative methods for reduced-order control have
The propose approach proves to be efficient even for systemstiv been proposed over recent years, see for instance [13]-[15]
several hundreds of states. . '

In [13], a comparison among four of these methods on a large
oy e, SR Aot b S2LOFeStproblems s rranged. Wit the resut that subres
nonsmo);th optir’nization, bundle methods, Clarke subéljiffeential,’ I|near.|zat|on [14], also known as the Frank and_ Wolfe (FW)
bilinear matrix inequality (BMI), linear matrix inequalit y (LMmI). ~ @lgorithm [16], performed best. Whenever possible, we have

therefore compared our new nonsmooth methods and the aug-

mented Lagrangian algorithm in [17], [18] with the Frank and

Wolfe method. The results are presented in the experimental

. INTRODUCTION section.
As far as comparison with existing methods is concerned,
let us mention that for specific classes of plants, it is faesi
to compute reduced-order controllers without the use of op-
timization techniques. This has for instance been invasti

In this paper we consideH,, synthesis problems with
additional structural constraints on the controller. Tihdudes
static and reduced-ordéf ., output feedback control, struc-

t_ure_d, sparse or decer_1tral|zed synthesis, simultaneaile Stin [19]-[21]. These approaches usually make strong additio
lization problems, multiple performance channels, and mu

Sssumptions like singularity, or hypotheses about unstabl
else. We propose to solve these problems with a nonsmoch%su prions fike singufartty, yp Ses ut u

optimization method exoloiting the structure of the. norm ariant zeros. In such cases it may then even be possible to
P b 9 S " assure global optimality of the computed controllers. Wnfo

In nqminal H.°° _SYthSiS’ feedpack controllers are Con]iately, in these approaches, the order of the controlleoisan
puted via semidefinite programming (SDF) [1] or algebral riori known, and in particular, it is not possible to comput
Riccati equations [2]. When structural constraints on t

atic controllers with this type of technique. In the alzseaf

controllersare ad;jer?, thggi synthgss pr:oblem IS nt? longeriyase additional assumptions, and in particular when straic
CONvex. Some o the pro ems above have even been recogaqiraints are imposed, synthesis via nonlinear optimiza
nized asNP-hard [3] or as rationally undecidable [4]. Thes

. - . -~ Ez‘appears to be the most general approack to synthesis.
mathematical concepts indicate the inherent difficultytof The structure of the paper is as follows. In section Il we
synthesis under constraints on the controller.

. . present thel ., synthesis problem and give several motivating
Even with structural constraints, the bounded real lem

X | ; X rTé@(amples. Section Il computes subgradients offifye norm,
may still be brought into play. The difference with customar, e are then applied to closed-loop scenarios in section |

Ho synthesis is that it no longer produces LMIs, but bilinegf, qoction v we start to develop our first-order descent nétho
matrix inequalities, BMIs, which are genuinely non-conveX, nich is completed in section VI. Section VI-G discusses

Optimization code for BMI problems is currently developed, ica| aspects of the method, and the final section VII

by several groups, see e.g. [5]-[9], but it appears that M€ B o canis a number of experiments to validate our approach.
approach runs into numerical difficulties even for problerhs

moderate size. This is mainly due to the presence of Lyapunov
variables, whose number grows quadratically with the numbe NOTATION

of states. Let M, ,,, be the space of x m matrices, equipped with the

. . . corresponding scalar product,Y) = Tr(X?Y'), wherexX 7
Manuscript received January 20, 2002; revised Novembe0@2. is th . fth A% T X | Th
M. Apkarian is with ONERA and Universit Paul Sabatier, Matbeept. IS the transconju_g_ate ort e ma_t : Its trace. The Space
M. Noll is with Universit Paul Sabatier, Maths. Dept of m x m Hermitian matrices is denotesl,,. For Hermitian
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or symmetric matricesX = Y means thatX — Y is positive where K € K represents a structural constraint on the
definite, X > Y that X — Y is positive semi-definite. For controller (2) like one of the above.
ease of notations, we define the following sets of Hermitian Without the restrictionk’ € X, and under standard stabiliz-
matrices:B,, := {X €S,,: X = 0, Tr (X) = 1}. Consider ability and detectability conditions, it has become cusiono
g-tuples of Hermitian matrice&, ..., Y;), we define the set synthesizei (s) as follows. After substituting (2) into (1), the
B, :={(Y1,...,Yy) : Y, €Sy, Y =0, >0, Tr(V;) =1}.  H, synthesis problem is transformed into a matrix inequal-
For short, we shall usB or B¢ when the dimension needs nofity condition using the bounded real lemma [26]. Then the
be specified. projection lemma from [1] is used to eliminate the unknown
We use the symbolk; to denote the maximum eigenvaluecontroller dataAy, Bi,Ck, Dk from the cast, leaving an
of a symmetric or Hermitian matrix. We shall use gener&MI problem, which may be solved by SDP. In a third step
notions from nonsmooth analysis covered by [22]. Notions dhe controller state-space representation (2) is recdvere
e-subdifferentials and-enlarged subdifferentials for spectral This scenario changes dramatically as soon as constraints
functions and their relationships are discussed at length KX € K are added. Then the problem may no longer be
[23]-[25]. Unless stated otherwise, the symbobesignates transformed into an LMI or any other convex program, and
a vector gathering (controller) decision variables andtmos alternative algorithmic strategies are required. The dirthis
be confused with the plant state in Section Il. In the notatiaper is to present and analyze one such alternative.

T, the subscripk refers to the iteration index. Example 1. Pure stabilizatioiOften the first important step

in controller synthesis (3) is to find a stabilizing conteolk.

Already at this stage thé/., norm plays a prominent role,
The general setting of thél,, synthesis problem is aspecause of the well-known fact that under stabilizabilibg a

follows. We consider a linear time-invariant plant desedb detectability, a linear-time invariant system is Lyapustable

Il. Hy, SYNTHESIS

in standard form by the state-space equations: if and only if its H,, norm is finite [27]. More specifically,
@ A B, By 2 under stabilizability and detectability assumptions, #tatic
P(s): 2|l =1Cc, D Dp w 1) control lawu = Ky stabilizes the plant
y Cy Doy Do U G(s) { & = Azxz+ Bou @
wherexz € R"™ is the state vectory € R™2 the vector of Ly = Caz,

control inputs,w € R™* the vector of exogenous iNpuiB.c it and only if the closed-loop transfer matrit, (sI — (A +

RP2 the vector of measurements and R the controlled or B>KC3))~' B, has finite H,, norm.

performance vector. Without loss of generality, it is assdm |y order to construct a static stabilizing controller for

throughout thatD,, = 0. _ an unstable open-loop system (4), the following procedure
Let u = K(s)y be a dynamic output feedback controhnears fairly natural. Suppose we are given an initial gues

law for the open-loop plant (1), and ek, ..(K) denote f  \which leaves the closed-loop system unstable. Then we

the closed-loop transfer function of the performance cBanmick 4, > 0 such that theu-shifted H..-norm of the closed-
mappingw into z. Our aim is to compute (s) such that the |50 system is finite:

following design requirements are met:

« Internal stability: For w = 0 the state vector of the IC2(sI — (A + B2KoC2)) ™) Bzl ~aq,00 < +00,
closed-loop system (1) and (2) tends to zero as time gQgfiere the shifted?.. norm is given in [28]. The problem of
to infinity. finding a stabilizing controlleds may now be addressed by

. PerformanceTheHoo norm|| T, . (K)| « is minimized 5, optimization program
among all stabilizingi. o .
We assume that the controlléf has the following frequency mln}(m|ze||02(sl — (A+ B2KC2))™ Bz —a,00, (5)

domain representation: where the shifta is either kept fixed at the initiakg, or is

K(s) = Cx(sI — Ax) 'Bg + Dk, A € R*** (2) gradually decreased gfte_r each minim_izatior_1 step to ax_aIeIe
the procedure. A stabilizing controlléf is obviously obtained

. is included. Oft _ IWhen the shift reaches < 0, but very often this happens
of a static controlleds(s) = Dy is included. Often practica already with the initial valueiy, so that shifting is not even

considerations dictate additional challenging strudten- necessary as a rule. Numerical tests for this method will be
straints. For instance it may be desired to design lOW'Ord&resented in section VII

controllers ( < k < n) or controllers with prescribed-pattern, While we stop the optimization (5) as soon as a stabilizing
sparse controllers, decentralized controllers, obsebased K is reached, it may happen that for a fixed shift the

controllers, PID_controI structures, synthesis on a fini_:te Smethod converges to a local minimufi of (5), which fails
of transfer functions, and much else. Formally, the syn$he§o stabilize the closed-loop system. This is explained &y th
problem may then be represented as fact that (5), just like all the other methods in this papee a
minimize ||Ty—.(K)| local optimization methods in the sense that they guarantee
subject to K stabilizes(1) (3) convergence to a local minimum (or a critical point). If an
Kek unsatisfactory local minimum is reached, the only posigjtig

wherek is the order of the controller, and where the case 0
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to do a restart with a new initial gues$), or switch to another  Example 4. System reductiofi.technique of considerable
method. Such a local convergence certificate may appear w@agortance is system reduction. It is used by practitioners
at first sight, but experience shows that local methods parfowhenever an open-loop systefi(s) of large orderN is
much better than global optimization techniques. Those méifficult to control. LetG(s) denote such a large size open-
have stronger certificates, but run into numerical problenmop plant, and suppose a decompositiofs) = Ginstab(s) +
even for small problems. And indeed, our present approaGhy.,(s) into an unstable and a stable part is available. Then
is almost always successful even without restart. A similare may consider the problem

comment applies to the pure stabilization method in [29]. INIMIZE ]| Garan (5) — Guan(5)| ®)
1 stab{S) — Gstab(S)|[,
Notice that pure stabilization is just a special case of the Gstab €K
more generald,, synthesis problem in section Il when W&, here

specialize the standard form to stab(s) ranges over a prespecified claSsof stable

system of reduced ordern, < N, and where some norm

i A By B z criterion is used to evaluate the mismatch between nominal
P(s): zl=1c, 0 0 wl . (6) and reduced systems. ||f- || represents the Hankel norm, an
y Co 0 0 u explicit expression folG,;, is available [33]. But it may be

preferable to use other criteria like tHé,, norm, a problem
Example 2. Spectral abscissin [30], [31] Burke et al. which then falls within the class of problems considered in

present an alternative approach to computing static &gl this work. Once a solutiofrsai(s) to (8) is obtained, the new

controllers K. The authors propose to solve the nonsmoofyStemG(s) = Ginstan(s) + Gstan(s), While easier to control,
optimization program may be expected to have characteristics similar to thoskeof t

original system. O
minliKmize a(A+ B KCs), (7
I1l. SUBDIFFERENTIAL OF THE H,, NORM

whereq is the spectral abscissa of a mathik € M,, ,, defined ) i o ]
as In this section, we start characterizing the subdiffesdrutf

the H,, norm, and derive expressions for the Clarke subd-
a(M) = max{Re A : A eigenvalue ofM/}. ifferential of several nonconvex composite functiofie) =
|G (x)||o, Whereg is a smooth operator defined on sof@

Unfortunately, this function is not even locally Lipschitziih values in the space of stable matrix transfer functions
which renders application of existing nonsmooth aIgorH;hnHOO.

impossible. The authors have therefore developed a priisabi  consider theH .. -norm of a nonzero transfer matrix func-
tic algorithm which allows to treat problems like (7); se&]3 tion G(s):

[32]. Since optimality tests and approximate subgradiémts 1G]lse = sup@ (G(jw)),

« are difficult to compute (see [29]), we prefer the use of (5) weR

over (7). Numenc_al tests for_ (5) are presented in sectioh VvlvhereG is stable an& (X) is the maximum singular value of
and show that this method is successful as a rule. Our o

. . . . b Supposé G|l = 7 (G(jw)) is attained at some frequency
numerical tests with program (7) are published in [29].00 w, where the case — oo is allowed. LetG(jw) = UV

The above scenario covers the case of a static stabilizipg a singular value decomposition. Piekhe first column of
controller K, but it is clear that stabilization problems includU, v the first column of//, that is,u = G(jw)v/||G||. Then
ing structural constraint& € K can be treated in exactly thethe linear functional = ¢,,, ., defined as
same way. Several examples of claskewill be presented in .
the sequel. 6(H) = Re (u"H(jw)v)

. . . = |Gl Re Trov™ G(jw)™ H(jw)
Example 3. Simultaneous stabilizatioAnother instance G Re Tr G i) H un H (i
of interest is the simultaneous stabilization problem, alhi =[Gl Re Tr G(jw) ™ wu™ H (juw)

can be cast as minimizing a finite family of closed-loops continuous on the spadd.. of stable transfer functions
transfer functions. Formally, given the open-loop plaiifs, and is a subgradient of - ||, at G [28]. More generally,
i=1,...,r, we consider the problem assume that the columns ©f, form an orthonormal basis of

_— 1 the eigenspace off(jw)G(jw)" associated with the largest
minimize izﬁll?.)iT%HCi(SI — (Ai+ BiKCi) —ail)™ Billoo eigenvalue), (G(jw()G()jw)H) = 7(G(jw))?, and that the
columns of@, form an orthonormal basis of the eigenspace
of G(jw)? G(jw) associated with the same eigenvalue. Then
for all complex Hermitian matrice¥,, Y, € B,

where~; > 0 are appropriate weights, and the are chosen
so that the initial guesd{ renders theith system stable
after shifting bya,. A lower bound fora; is therefore the

spectral abscissa (7) of théh system. As before, the shifts d(H) = ||G|l=!Re Tr QvaQfG(jw)HH(jw) 9)
are decreased after eaé¢h,, horm minimization step and a — G- Re Tr GV HO. Y. OH H (i
simultaneously stabilizinds is obtained e.g. if;; < 0 for all [Gllc Re Tr Gjw) " QuYuQu H ()

i =1,...,r. But even when some; > 0, the solution may is a subgradient df - || at G. Finally, with G(s) rational and

produce a simultaneously stabilizirg. O assuming that there exist finitely many frequencigs. . . , w,
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where the supremuniG|. = &(G(jw,)) is attained, all Now let¢ = ¢y be a subgradient df - || at7T,,—.(K) of

subgradients of - || at G are precisely of the form the form (9), specified by € B and with||T,,—.(K)| - at-
» tained at frequency. According to the chain rule, the subgra-
H) = IQI- R Tr Giw )7 Q,Y, Q" H(jw, dients®y of f at K are of the formby =T (K)*¢y €
O(H) = |Glloe Re Vz::l ()" QuY,Qy Hjwn), M, p,,» Where the adjoint’,_, ,(K)* acts ongy through
where the columns of), form an orthonormal basis of the (To— o (K)* ¢y, 0K) = (T, . (K)OK, dy)
eigenspace of7(jw,)G(jw,)" associated with the leading = || Ty—.(K)|Re Tt (T (K, ju) QY QY
eigenvalue||G||2,, and where(Y1,...,Y,) € BP. See [22, T (K)oK (jw))

Prop. 2.3.12 and Thm. 2.8.2] and [29] for this.

— -1 - \NH H
Suppose now we have a smooth operglomappingR® 1T~ () e Re T (Tu—z (K, jw) ™ QYQ

onto the spacél., of stable transfer function§. Then the Gr2(K, jw)dK (jw)Gar (K, jw) )

composite functionf(z) = ||G(z)||« is Clarke subdifferen- = [Tz (K) |0 Re Tt (Go1 (K, jw) Tz (K, jw) ™

tiable ata with QY QY G1o(K, jw)dK (jw) ) . (11)
of (x) = G"(x)* [0 - o (G())], (10) In consequence, for a stati€, the Clarke subdifferential of

_ _ _ _ f(K) :=||Tw—-(K)|ls at K consists of all subgradients,
whered|| - || is the subdifferential of théf..-norm obtained 4f the form

above, and wheré’(z)* is the adjoint ofG’(z), mapping the
dual ofH, into R™, whereR" is identified with its dual here. _ 4 . CNH
In the sequel, we will compute this adjoifit(z)* for special ~ *¥ ~ ”Tw—’;{(K)HOO Re (Gﬁl(K’Jw)Tw—’Z(K’W)

classes of closed-loop transfer functions. Suitable chas QYQY Gua(K, jw) )"

covering this case are for instance given in [22, sectiof 2.3W (12)

hereY € B. Recall that®y is now an element of the
same matrix space & and acts on test vectodéds through
IV. CLARKE SUBDIFFERENTIALS IN CLOSEBLOOP (@y,0K) = Tr(®LIK).

Given a stabilizing controllei(s) and a plant with the This formula is easily adapted if thd., norm is attained at

usual partition a finite number of frequencies, . . . ,w,. In this more general
P situation, subgradients of at K are of the form
P(s) = 1;11((% 113128 | by = [T (K 32 Re (Car(K.js)
“ “ T (K, jw,) T QY, QT Gra(K, jw,) )",
(13)

the closed-loop transfer function is obtained as
whereY = (Y1,...,Y,) € B2

Two(K) := Py + PioK(I — PpoK) ™' Py, At this stage, it is important to stress that expression$, (11
(12) and (13) are general and can accommodate any problem
where the state-space datafyfi, P12, P>1 and P»; are given discussed in previous sections. Below we resume and expand
in (1) and the dependence eris omitted for brevity. Our aim this list by considering more examples of practical interes
is to compute the subdifferentialf (K) of f := || ||oc 0T~ Example 5. Dynamic controllersAssume now that the

at K. We first notice that the derivativé), ,_(K) of T,,—.. controller is dynamic as in (2). The subgradient set is again

at K is obtained via formula (13) by performing the substitutions:
TIZ)_,Z(K)(SK = G125KG21,
ele oo aeloal me ]G]
where K is an element of the same matrix spacefaand K HEK 0 kB 07
i niti 2 k
Wl-th the definitions Ci—[Cy 0], By — L o0l Cy — C 0 } ,
Tw—>Z(K, S) Glg(K,S) L 0
i G2 (K, s) * T D12 — [0 Dr2], Dy — Doy | -
[Py + PioK(I — PooK) ' Py; Pro(I — KPao)™t (14)
! (112, P(QQK)*QEPQE n Pl « ) = The entire Clarke subdifferential is then described by the
r set of subgradients iV, k-,
C K _ D K D 2 P2
U (o1 — () [B(K) By] 4| DS Pre
L C'2 D21 *

By = [‘I)K,AK cI’Y,BK]

0] 0]
and the closed-loop state-space data Ve b

whereY = (Yi,...,Y;) € B? and ®y is derived through
A(K) := A+ ByKCs, B(K) := By + BoK Doy, formulas (12) or (13). O

C(K) :=C1+ D12KCy, D(K) := D11 + D12K D5, . o
(K) ! 12K C2, D(K) H e Example 6. Structured controllertn practice, it is some-

Note that numerical stability requires that transfer fimtd times required that some entries in the controller gain ke pu
T.— ., G2 andGs; be computed through state-space realizée zero, while the others may be freely assigned. This is the
tions. case in decentralized control, where the controller mugtyen
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a block-diagonal structure. Consider a pattern mdtrbwith 1,...,r be minimized simultaneously. One way to address
entries;; € {0, 1}, whereW;; = 0 means that the controller multi-objective optimization of this type is to solve a pram
gain K;; = 0 must be zero, wheredd’;;, = 1 means that of the form

Ky, can be freely assigned. The Clarke subdifferential of o _ ‘

f ="l oF at K is then of the form minimize max (il T (B)loo = i =1, )

Wo oy, whereT} _ . is theith performance specification to be opti-

wheredy € 9| [|(F(K)) is as in (13) and where denotes mized. Since the maximum of a finite number of maximum
the entry-wise H;odamard or Schur product [34]. ] eigenvalue functions is itself a maximum eigenvalue fuorcti
of a block diagonal operatdf = diag(T} _..,...,T%_..),

Example 7. PID controllersPID control is one of the most the Clarke subgradients could be obtained directly from).(13
classical approaches in control system design. The cétrolyhen the usual max formula is used, the result is the same,

is generally written as i.e., subgradients are of the form
1 s
K(s)=Kp+ _Kr+1 _,_TSKDv by = > Tividv,
el (K
whereK p, K; andK p are matrix static gains to be computed, eI
andr is a small positive scalar. Using the general formula (11)here/(K) are thei = 1,...,r which are active ak’, 7; > 0,
the subgradients with respectto= [ Kp; Kr; Kp| at K(s) > icrr)Ti = 1 and oy, € (T;,_..)* 9| - [ (K) as specified
are obtained through in (13). O
Py = | Tw—a(K)|| D27, Re (Ga1(K, jw,) Before going further, it is worth mentioning that our

. T ; ;
Toroa (K, jo V2 QY QH Gyo (K, juo ) [T - T —ix I) 7 methodology carries over to a y\/l(_je_range_ of controller
(K, jwn) 7 QY.Q7 Gra K, jun)| Jwu T 14T jwy ] structures of practical interest. This is in particular ttese
where as beforé” = (Y1,...,Y,) € B. when the structural constraint is of the forid = {K :
The above approach could be generalized by makimp K = S(¢),¢ € L}, where(S, £) is a suitable differentiable
additional design parameter. Then a constraint 0 should parametrization of the clask’. This includes for instance

be added. Notice also that the above formula readily exterigserved-based controllers, feed-forward compensators,
to arbitrary basis function§Q; (s)} trollers defined through Youla parameterizations and much

I=her else.
T
K(s) =Y K;Q;(s),
=1 V. STEEPEST DESCENT METHOD
where thekK’s are the design variables. Nonsmooth techniques have been used before in algorithms

Example 8. Matrix fraction representationan alternative [OF controller synthesis. For instance, E. Polak and cokens
representation of controllers is via matrix fraction dgstions, 1@ve proposed a variety of techniques suited for eigenvaiue

For instance, the left matrix fraction representation iegias Singular-value optimization and for extensions to the semi
infinite case, covering in particular thH,,-norm (see [35],

K(s) = N(s)D(s)"" = (NJn(s)(DJIp(s) ", [36] and the citations given there). Another reference &,[2
where the authors exploit the Youla parameterization via
convex nondifferentiable analysis to derive the cuttingngel

In(s):=[IsI...s"I|T, Jp(s) = [IsI...s%I]" and ellipsoid algorithms.
Let us consider the problem of minimizing(z) =
IG(z)|l-o, Wherex regroups the controller data, referred to
N:=[Ny ... N,|,D:=[Dy ... D,] as K in the previous section, and whegemapsR™ smoothly

into a spacdl, of stable transfer functions. We writgz, s)

Now, N and D are the des!gn variablgs. As pefore, it i%rg(m,jw) when the complex argument 6{x) € H.. needs
immediate to show that partial subgradients with respect {9 peo specified.

N andD are given as

with

and

A necessary condition for optimality i8 € df(x) =

Dy = | Tz (K| 2% Re (In(jwu) G ()| - |loo (G(x)). It is therefore reasonable to consider
(D(jwu)JD(]‘Wu»ilGQl(K; jwu>Tw~>z(K7jwv>H the program
QY. Q™ Gra(K, jw,) )" i~ _9

(I)Y,D = -_HTU)—’Z'(K)H;OII Z:l Re (JD(jwV) . I B ”gH ,
(D(jwy)Ip(jwy))™ Go1 (K, jwy) T (K, jw) g = argmin{|ey|:Y = (¥1,...,Y,) €BY} (15)
QYVQHG12(K5 jwV)K(jwl/) ) )

which either shows) € df(z), or produces the directiod of

steepest descent atif 0 ¢ df(x), and where theby are as
Example 9. Multiple performance channdfsactical spec- in (13). If we vectorizey = vec(Y), ¥ = (Y3,...,Y,), then

ifications often impose that several closed-loop chanhels we may representy by a matrix vector productpy = oy,

respectively.
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with a suitable matrixp. Program (15) is then equivalent toand solve the optimization program

the following SDP:

minimize ¢
THT
. y' P
—
subject to [@y ‘I ]_0 (16)
}/ziOvZ:]—avq
eTy=1

wheree”y = 1 encodes the constraif, Tr(Y;) = 1. The
directiond of steepest descent atis then obtained ad =
—®y/|| Py, where(t, y) is solution of (16) withy # 0. This
suggests the following:

Steepest descent method for tHg,-norm

1) If 0 € Of(x) stop. Otherwise:

2) Solve (16) and compute the directioh of steepest
descent atr.

3) Perform a line search and find a descent step=
x+td.

4) Replacer by z* and go back to step 1.

The drawback of this approach is that it may fail to converd
due to the nonsmoothness ¢f We believe that a descent
method should at least give the weak convergence certific%

that accumulation points of the sequence of iterates dieatri

min f(z),

f@) = 19(@)I5 = f}éﬁ/\l (F(z,jw))

Notice that for fixedw € R, z — F(z,jw) is a smooth
operator into the space of Hermitian x m matrices,S,,,
while A1 : S,, — R is the maximum eigenvalue function.
Similar techniques could be applied to broader classes with
a structure like (17). Deriving the method will require tare
steps, which we regroup into subsections. We start with the
important special casg = A\;oF, whereF mapsR™ smoothly

into S,,,.

A. Preparation

The function (17) is subject to two sources of nonsmooth-
ness. The nonsmooth character of the maximum eigenvalue
function, and the nonsmoothness introduced by the operator
sup, which in the case df- ||« is even infinite. Each individual
function f(-,w) will be analytic atz if the multiplicity of
>‘e1 (F(x,jw)) is one, but nonsmoothness needs to be taken
nto account as soon as eigenvalues coalesce.

From a practical point of view it is reasonable to make the
ﬁowing additional hypothesis.

This is not guaranteed by the above scheme. The reaséf) The maximumf(z) is always attained on a finite set

is that the steepest descent directionzatioes not depend
continuously onz. This is why modifications of the steepest

descent scheme are discussed in the next section.

Remark. Spectral abscissa versfis, norm. Notice that

the tangent program (16) is convenient because it Ieadsalpcf

relatively small size SDPs. Indeed, the matricés v =
1,...,q, are of the size of the multiplicity ok, (F(z, jw,)),

and our experiments indicate that dignin (16) rarely exceeds
30. The situation is very different for the spectral absxiss
(7). In [29] we have derived a tangent program for (7). Thiotice that fo(x)

difficulty is that Lyapunov variables re-enter the scendekd,
z* is a local minimum of the composite functieno F like
in (7) with valuea (F(z*)) = t* if and only if (z*,t*, X*)
is a local minimum of the optimization program:
minimize ¢
subjectto X »ol, X <1

F(@)'X + XF(x) —2tX <0

for some small fixed) < o < 1. An optimality test fora:o F
is therefore derived from an optimality test for progrém),

(P)

as shown in [29]. This leads to a SDP with unknown variab
of dim(z, X'), which may be prohibitively large. This is one

of frequencies. This set is denoted B)x) and may
containw = +oo.

Assumption (H) is for instance satisfied when the multipjici
of A\; is 1, asw — f(z,w) is then analytic in typical control
lications.

et us introduce some more notation. FOr ¢ R U
{—00,+o0} we definefq < f as

fa(z) = max f(z,0).

f(z) as soon as)(z) C Q. Next
recall the definition of the-subdifferential of the maximum
eigenvalue function [23]

OM(X) ={Z €Sm : Tt (ZX) > M(X) — ¢}

which is an important analytical tool in honsmooth analysis
Since 9.1 (X) is difficult to compute, we follow Cullum
et al. [23] and Oustry [25] and introduce a modification
01 (X) of 9. A1 (X), called thee-enlarged subdifferentidbr
the maximum eigenvalue function. Fer- 0 and X € §S,, let

fe €, X ) the index such that

AL>..0 2> >\7‘(E,X) > A —€e> >\7'(E,X)+1 > .. 2 A

of the reasons why our present approach privileges the use of

the H,, norm (5) over (7). O

VI. FIRST-ORDER DESCENT METHOD

The indexr(e, X) is also called the-multiplicity of A (X).
Let Q. be ar(e, X) x m-matrix whose columns form an
orthonormal basis of the invariant subspaceXfassociated

In this section we devise a first-order algorithm for comWith the firstr(e, X) eigenvalues. Then we define

posite functions of thed,, norm. Along withGg : R" —
H., we consider the symmetrized operatafyz, s)
G(z,5)G(x,s)! respectivelyF(z,s) = G(x,s)7G(x,s). We
representf(z) as

f(x) = sup f(z,w),

w€eR

f(wi) =\ (f(l‘,jw)), (17)

SeM(X) ={QYQF : Y € B, (. x)}.

By constructiomA; (X) C d A1 (X) C 9eA1(X), S0 (X)

is an enlargement afA;(X) and an inner approximation of
the e-subdifferential (see also [25]). The gap associated with
the choicer is A(e, X) = A\, x)(X) = Are, x)+1(X) > 0. If
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r is the multiplicity of A; (X), then choosing small enough Proof: Let A/ C N be an infinite sequence such that

givesr(e, X) = r. In this case we havé \,(X) = 9\ (X). xr — Z, k € N. Then by monotonicityf(zx+1) — f(Z).
The following is an important step toward the analysis ofhat means

(17). Consider a differentiable mappig : R* — S,,,. We

extendd \; (X) and the enlarged subdifferenti@l\; (X) to f@per) = flar) =0 (K EN).
the composite functiorf = A, o 7 by setting Now use axiom(ii) at the limit pointz. There exist, § > 0
) = F(2) [0 (X X — such thatf(s(x)) — f(x) < —§ < 0 for all z € B(z,¢€). Since
Ocf(2) = (@) [0 (X )] Fla), zp € B(z,¢€) for k € N large enough, and since,; =
and similarly s(zy), we should havef(zii1) — f(zr) < =6 for k € N

large enough, a contradiction. ]
def(z) = F(x)" [deM(X)], X =F(a).

HereF'(x)* is the adjoint of the linear operatdt (z). Finally, C. Eigenvalue Optimization

going one step further, th!s approach. allows us to consideryow can we define a descent step generatey with
O f(x,w) andé. f(x, w), which are applied to the variable  properties(i) and (ii) for a maximum eigenvalue function
f(z) = M (F(x))? Suppose we are at a point where
0 ¢ Jf(xz). Let the eigenvalues ok = F(z) € S,, be

) ] ] ) . _arranged into groups:
In this section we discuss a very simple mechanism which

generates descent steps in such a way that the following weak A1 = ... = Agym1 > Mgy = o0 = A1 > Mgy = ..

form of convergence can be guaranteed: every accumulatioH b — 1 and wherek h lead c
point of the sequence of iterates is a stationary point. where k, = 1 and wherek; are the group leaders. Conse-

Let f : R® — R be a locally Lipschitz function, and |etquently, eigenvalue gaps occur betwegn— 1 and k;. Let

df(z) denote its Clarke subdifferential [22]. Suppose we canh! be an orthonormal bases of the eigenspace associated

exhibit a mechanism : R* — R", thedescent step generator \t/)wth. the f|rtst_b!ock/\1 (X, ,t)\]g_l('t)rf),tr?Q ?n ?rtthonobrlmali
such that the following rules are satisfied: asis containingl), associated wi € first two blocks

‘ A (X),... A,—1(X), and so on. AtX = F(z) € S,, we
(1) Whenever) ¢ 0f(x), then f(s(x)) < f(x). compute the quantities

(14) When 0 ¢ 0Of(z), then there exists a neighborhood

B(z,€) of z and somes > 0 such thatf(s(z’)) <  Ai(X)=Aryy—1(X) = Ak, (X) >0,

f(z') — o for everyz’ € B(x,e). .

— 3 ! *M).V. . g

While (i) simply means that(z) is a descent step away from di(z) = min{[[F"(2)* Q:Y:Qi" || : Yi € Briyy -1}
z, we can interpret(ii) as some weak form of continuity and keep those = 1,...,r whered;(z) > 0. Notice that
of s(-). Indeed, when the mapping-) describing descent is di(z) = dist(0,0,,()f(z)), wheree;(z) > 0 cuts into the
continuous, therti) implies (ii) without further work. Axiom jth gap, that isA;(X) — € (z) € [Ax 1 (X)), Mg (X))
(1) is weaker than asking() to be continuous. Clearlyii) puyt differently, thee;(z)-multiplicity of A (X) is kis1 — 1.

B. Descent Step Generator

always implies(i). Moreover,d;(z) > do(z) > ... > d.(z) and dy(z) =

Exampleln order to understand the idea behind axigim, ~9r+2(¢) = ... = 0 eventually. We compute the quantity
consider aC!-function f and let s(x) denote the steepest M(z) = max Ay(X)di(x)? (18)
descent step at, obtained by an Armijo line search. If we =l ’

define formally s(z) = z — #(z)f'(z), wheret(z) is the Now we use the following

smallest step satisfying an Armijo rule, thefir) turns out | emma 1: Let 0 ¢ 0f(x) and R > 0. Let k; be the leader
continuous, but it is clear that in practice we would ac@&Bt of a group of eigenvalues ok = F(z) € Sp such that
stept(x) satisfying the Armijo condition, without insisting on d;(x) = dist(0, 0, (o) f(z)) > 0. Let h;(x) be the direction of

a continuous dependence ifr) on . In that cases(x) Will - steepest; (z) enlarged descent, that I§(z) = — &y with
not be continuous, but property:) will still hold true. O i
Clearly the situation we have in mind is whehis nons-  g; = argmin{||g|| : g = F'(2)*Q:Y QF,Y € By,,, 1},

mooth, so that a steepest descent step in tandem with Armijo ]
search would typically fail even whet{z) was continuous. Where the columns of); are an orthonormal basis of the
This is explained by the fact that under nonsmoothneddvariant subspace ok associated with the eigenvalues up
defining s(-) along the lines above would miss axiofti), t© ki+1—1. Then there exists a descent stefir) away from
because the steepest descent directigii(z) behaves very i direction h;(x), which decreases the value ¢fby at
discontinuously. Indeed, examples where this happens ast
easily produced. i _ _ , N2

Proposition 1. Suppose the descent step generafor for fsi(@)) = (@) < —r@) A X)di(2)” < 0.
f satisfies axiomsg:) and(i7). Letz, be a sequence of iteratesHere x(x) > 0 depends orsup{||F'(z)| : ||z — 2’| < R}
defined ascx+1 = s(xy). Then every accumulation poimtof and in particular continuously on. The line search required
xy IS a critical point, that is, satisfigse 0f(z). to compute this step is finite.
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Proof: In the case of an affine operatof : R® — theoretical convergence properties of the method are weake
Sy, Oustry [25, Theorem 5] shows thgt= \; o A may be even though convergence may still be guaranteed e.g. when
decreased by the quantity f is convex (see [37]). Notice however that even for lange
1 the quantityM (x) in (18) may be computed fairly reliably by
flx+t(x)hi(x)) — f(z) < —MAQ(z)(X)di(m)Q consideringA., ,)(X)d;(xz)* for some of the first only. As
* di(z) — 0 rather quickly, the highef\, ., (X)d;(z)* as arule
where A, is the linear part ofA. Herex = 1/4[|A.|| is even do not contribute to the computation df (z). Also notice that
independent ofc. Moreover,t(z) > 0 is computed by a line since the sequenag(z) is monotone, computing;(z) may
search which terminates after a finite number of steps, $ge [8ften be avoided, for instance when, | (,)(X) > A, ) (X)
sect. 3.2]. or A, )(X) < A, ()(X) when the current best value is
In [37], [38], this result is generalized to nonconvex maxilocated at index — v.
mum eigenvalue functiong = A\, o F, with a constant(z)
now depending on the Lipschitz constant/®fon a bounded
region aroundr, like for instanceB(z, R) with some fixed
R > 0. In the nonconvex case, the line search procedureln this section we present an alternative way to obtain
locating ¢(z) is more complicated than fof = A; o A, but @ descent step generatsf-) for the maximum eigenvalue
finite termination is still guaranteed (cf. [37, sect. 3.7[pe function f(z) = i (F(z)). We start by constructing an
constants(z) may be computed via the formulae (15), (19)termediate functiol(z), which serves as an optimality test,
and (20) of that reference. m and secondly, will allow us to quantify decrease. In thidisec
Following the lead of [37], it is now clear how to obtain ouPUr method follows the line of [36, Thm. 2.1.6].
steps(x). Choosei so that the maximum (18) is attained and Let X = F(z) € Sp. Let pg (X) > p2(X) > ... > pr(X)
takes(z) = s;(z). Then by Lemma 1s(z) gives a guaranteed Pe the eigenvalues of without repetitions. That means =
decrease of Ak; in our old terminology, where we agree that there are

) r < m distinct eigenvalues. For some fixed> 0 we define
f(s(@)) = f(z) < —K(2)A(2)(X)di(2)” = —k(x)M (),  the criticality measure

D. Descent by a local model

where the constant(z) > 0 depends continuously on as O(z) = inf sup sup {—f(z)+ pi(X)
argued above. What remains to be checked is heR™ =1 . r Y,EB

Lemma 2: This choice ofs(z) and M (z) guarantees prop- +Tr (Y;QF [F (2)h]Q;) + 1a||h||?} (19)
erty (it).

Here @; hask;+1 — 1 columns which form an orthonormal

Proof: Consider a sequence, — z. We need to : ! . . 4 )
basis of the invariant subspace &f associated with the first

compare M (xzj) to M(z). Now observe that due to the - >Pd 4
continuity of the eigenvalue functions (X ), every eigenvalue ki+1 — 1 eigenvalues. It is immediately clear thétx) <
gap atX is also an eigenvalue gap af, as soon asY, is 0> Pecause puttings = 0 gives the upper bound(z) <
sufficiently close toX. On the other handy may (and will) SWPi=1,...,r =/ (&) + pi(X) = = f(z) + 1 (X) = 0.
have many more gaps that. But notice that the maximum Lemma 3: We haved(z) = 0 if and only if 0 € 9f(x).
(18) is over all eigenvalue gaps. So each gapMitz) will . _Proof: Th_e eaS|_est way to see this is to swap max and
occur in the computation oM (z;,). More precisely, it will Minin (29). ThIS requires that we first replace the inner deub
be approximated by some of the gaps considered/if;,). supremum in (19) by a doubl-e supremum over the convex
Put differently, for theith eigenvalue gap off we have Null of ¥i = 0, Tr(Y;) = 1,4 = 1,...,r, a manoeuvre
A (Xi)ds, (21)? — Ai(X)ds(2)?, whereiy, is the index of WhIC.h doe; not change the_ valdér). Then we use Fenchel
the eigenvalue gap k), corresponding to théth gap of X. duallty tp mterchqnge the inner (dpuble) supremum and the
Here A, (X3,) — Ay(X) andd;, (zx) — di(z) rely on the outer |nf|mum,_wh|ch goes again W_lthout changing the value.
fact that gaps ak’, remain gaps ak . Sinced;, (x) calls for The_npw mner_mflmum is unconstrameq gnd may be cc_)mputed
all the Q1, Qa, ... up to theiyth gap atX;, and since these explicitly. For f|xedY£ and convex coefficients it is a}ttame_d
converge to the corresponding baglsregrouping the gap, &t 2(z) = —0 Y Ti}—/(x)*Qme- Substituting this
the result follows. back into (19) leaves the dual expression

That meandim sup M (xzy) > M(x), SO we can assume

M (zy) > 1M(z) from some index: on. This in turn implies ~ f(z) =  sup  sup {f(:c) + ) Tipi(X)
720,50, Ti=1Y;EB =1

Flson)) — Flan) < —r(o)M () < —3s@)M (@) :

Z . F (2)*Q,Y:QF (20)
i=1

1
as soon as:(xy) is close enough te:(x), proving property 20
().

The method outlined in this section gives a convergen
certificate becausall eigenvalue gaps are included in the com¥ -
putation of (18). This may seem inconvenient for very Iarg\el enn =.
size matricesF(x). If we decide to truncate and consider only 1 1o H|?

. ’ = = - Y;
some of the eigenvalue gaps among the largest eigenvahees, t 0=06(x) iue% 20 H]: () QM1 H

@@ich the reader recognizes as a semidefinite program. Since
(X) < f(z) for i > 2, equalityd(z) = 0 is only possible
..=1,. =0 and hence
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But the quantity on the right hand side is only zero whethen

F(x)* Q1@ =0, i.e., whend € df(x). The latter follows &~ al
readily from the representation jhjfjo Z;Ti pi(X;) = 2_:1 b (X)),
_ i * H .
0f(z) ={F(2)"Q"1Qy : Y1 € B} where>"" | 5, = 1. This represents the limiting linear term

of the subdifferentiab f (). m in (20) in a new form suited for the dual representation of

As a byproduct of the proof via duality we have thé (). S _
following We next have to treat the norm square term arising in (20) in

Corollary 1: The infimum in (19) is attained at much the same way. Notice first that thg, i = 1,...,r to-

gether form a nested sequence of basis vectors adding up to an
orthonormal basis of eigenvectors &f;. Passing to the limit
j — oo gives an orthonormal basis of eigenvectorsXof We
regroup it according to the eigenvalue gaps¥fand rename
where(r,Y’) is the solution of the dual program (20). As s00fhe corresponding part8, C P, C ... Py. All that remains
asf(z) <0, h(z) is a direction of descent of atz. to do is to re-write the limitlim; .., 327, 77 QJY/ Q" in
In order to construct our descent step generator, we ndB8 fO_rmZiV=1 o, P, Z, P} for certainZ, € B. This is done
to establish two additional properties @fFirstly, we need to Py writing
show that decrease atmay be quantified with the help &f , g
Secondly, we have to establish continuity6of QYiQ = Q; [ }g 8 } Q' =P, [ lg 8 } P
Lemma 4: The functioné is continuous. ) . .
Proof: Notice that by the dual formula (20y(z) is Wheneveri < j have to be regrouped in the sanfig, and

the supremum of an infinite family of functions of the formherej is the last among the old indices subsumed into the
—f(@) + S0 e (X) + e(@) = — f(@) + X7 00 (X) + new indexv, so that@; = P,. Then

M) = == S mF @ Qviel, 1)
i=1

c(x) for og; = Ti/(ki+1 — k?l), where k, < j < kJH_l, i+t - Y. 0

and wherec(z) = —1/20||3, nF (2)*Q:;Y;QF||* de- ZV:Z—"[ Ol 0}

pends continuously orx. Notice thatu;(X) = (kiy1 — =i 7

N—1 kig1—1 y . . )

ki)~ > 50, Aj(X). This shows thatl(x) is the supremum is as required, becausgitirs — o,, henceTr(Z,) — 1,

2

. 1
0(x;) < —f(a;)+ > 7 pa(X;) — % + €5,
=1

of a family of contin_uous_functions, inde_xed Ky,Y). 6 ?s while Z, > 0 is clear.
therefore lower semi-continuous. It remains to prove thi The argument shows that— — f(z) + ZN=1 ot (X) —
also upper semi-continuous. N 2 Ve _

Let z; — x such thatf(z;) — 6. We have to show < 35 }Lzy_l qu'(x)*Pl,Zfo{H , which is to say that is now
6(z). We use the representation (20). let> 0, ¢; — 0 and of the form required to be admitted to the supremum (20)
chooser] andY; such that definingé(x). In other wordsf < 6(x), and this is what we

had to prove. [ ]

- i Notice that [36, Thm. 2.1.6 (e)] is obtained as a special

ZTi 9i case of Lemma 4 if the operatdF(z) is specialized to a

=t diagonal matrix. The extension to multiple eigenvalues is
where g/ = F'(x;)*QJY/Q". Passing to a subsequenc@ossible becausell the eigenvalues are taken into account
if necessary, we may assume that eakh has exactlyr ~simultaneously. For large matrices, this may again seem in-
eigenvalue gaps, which remain in the same placgsi = convenient since it will lead to large SDPs in (20).
1,...,r. That is y;(X;) = A, (X;). Passing to yet another Lemma 5: The mappingi(z) defined by (21) is continu-
subsequence, we may assumie— 7, Y/ — Y; and@Q! — OuUS.
Q;, where the limiting elements are all of the same types andThe proof follows along the lines of the previous Lemma
dimensions as the elements at stage and is therefore omitted.

However, \;, (X) are no longer the distinct eigenvalues of Let us now see how(x) may be used to quantify descent
X, because some of the distingt(X;) = A, (X;) may Of f =X oF atz. Assume0 ¢ 9f(x), so thatf(x) < 0.
coalesce in the limiti — oo. Suppose for instance thatUsing the directional derivative of atx in direction h(z),

limj oo i (X;) = ... = limj_oo uire(X;), SO that the we obtain
blocksi,i+1,...,7 +t coalesce in the limit, forming a new roo _ T (% H
larger eigenvalue block ok : flah(z) = fflé% M) (]: (@) QY Qs )
_ H /
M 1(X) > M (X) = o= Ay -1 (X) > Mgy, (X)), = supTr (Y Q' [F'(2)h(x)]Q1)
which is represented by a certgin (X). Suppose there are < f(x) — %Hh(ﬂf)HQ <f(x) <0

N block leaders afX. For each of thesg, (X) we define

which follows readily from the primal formula (19) fat if

o, = lim ZTj, we use the fact_ that f(z) + p1(X) = 0. In consequence we
j—ro0 i~ 5 have the following

i+t
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Lemma 6: Let0 < 7 < 1 be fixed. There exists > 0 such Semi-infinite descent step generator
that f(z' + th(z')) — f(z') < t76(x’) for everyz’ € B(x,¢)
and allt > 0 sufficiently small.

Proof: By the definition of the directional derivative and
the fact thatd < 7 < 1 we have

1) If 0 € Of(x) thens(x) = = and return. Otherwise put
counterk = 1 and continue.
2) At counterk, if 0 € 0fq,(z), then increase: until

flx+th(x)) — f(z) < trf'(z; h(zx)) 3) At counterk with 0 ¢ Jfq, (x), compute the descent
1 ) stepsq, (¢) for fq, atz. Let e, 6 > 0 be such that
< T (9<fc) = 5o Ir@)] ) (22) Fau (sk(2)) = fo (&) < =0 < 0
for everyz’ € B(x, ¢ ), as guaranteed by axiofi) for
< trf(x) <
Q-
for somet, > 0 and all0 < t < to. Sinceh(-) andf(-)  4) Computen, := inf{|f(z',w) — f(z',)| : & €
are continuous, we can find a neighborhd®(@:, ¢) of z such Qp, 2" € B(w,ex) Us (B, ex))} _
that f(z' +th(z')) — f(2') < tr0(a’) for all 2’ € B(zw,e) and  5) If 3mx < dx, thenlets(z) = sq, (x) and stop. Otherwise
every0 < t < to. This proves the claim. [ | increasek by one and go back to step 3.
In order to construcs(-), we follow [36, 3c, p. 223] and We have to make sure that this scheme is well-defined
defines(z) = x + t(x)h(x), where and introduces a step generator) for the infinite maximum
function f.

Hx) = sup{27" s k € N, f(a+2""h(w))—f(2) < 27 r()}. Lemma 7: The descent step generatef) for f(x) =

The supremum is over a nonempty set because of (22)p.cr f(z,w) is well-defined and satisfies axionts) and
hence0 < t(z) < +oo. Let k(z) be the integer where (ii). Moreover, each of the above loops ends after a finite
the supremumnt(z) is attained. Let us check propertyi) number of iterations.
with ¢ > 0 as in Lemma 6 and = —2 %@ ~1r9(z) > Proof: Notice first that if0 ¢ 0 f(z), then descent around
0. Let #’ € B(xz,¢). Since t(z) satisfies (22), we have z is possible. Sincefo, (z) — f(z) ask — oo, we can
f(z' + t(x)h(z')) — f(2') < t(x)r0(z') by Lemma 6. also decreasgy, aroundz for k sufficiently large. So step 2
Thereforet(z) = 2-#*) is admitted for the supremunfz’), ends with a descent step ¢, at = after a finite number of
which impliest(z’) > t(x). Thereforef (s(z')) — f(z') = trials. Moreover, this remains so for the following couster
f (@ +t@)h(z)) — f(a') < t(x")rh(z") < t(z)r0(2’) < becaused, C Qp1.
t(x)r6(z)/2 = =27 5@ ~170(z) = —§, when we assume that Next observe thaty, — 0 by axiom (iv), while
e is chosen sufficiently small to assué¢z’) < 6(x)/2 for limsup —dx < 0 by axiom (iii). That means3n, < d; for
everyz’ € B(x,€). This proves(ii) for the above choice of % sufficiently large, i.e., the procedure ends in step 4 after a
t(x). Other choices of(z) like for instance [39] are possible. finite number of updates — k + 1. It remains to check that
s is as required.

Supposefq, (s, (z')) — fa,(z') < —d for everya’ €
| o Bz, ci,). Then| f(sa, (+') — fa (sa, (#)] < m. 1F()) -

Ogr last step is now to address the sem|—|nf|n|te case. Wg (/)| < mi, hencef(sq, (z')) — f(z') < =0k + 2mp <
are in the situation (17). Suppose that for finfleC R U —15,. This proves axioni). -
{—o0, +oo} we already dispose of a descent step generatorThe procedure is sufficiently flexible to accommodate a
sq for fo, satisfying axioms(i) and (ii). This is naturally problem oriented step generation. We may adapt the choice

the case when thé(z, w) are maximum eigenvalue functionsof ), to the structure off, and what is more important, to
because a finite maximum of maximum eigenvalue functiolge |ocal behavior off around the current.

is itself a maximum eigenvalue function. So here we obtain
sq as in sections VI-C or VI-D. Suppose now that we can _
specify a sequence of finite séts  Q, C ... such that the F. First-order algorithm for theH ., norm

following conditions are satisfied: We are now ready to present our algorithm, which follows
(15i) If 0 &€ Of(x), thenlimsup f(sq, () — f(z) < 0. the lines of the previous sections. We start with a versicaetda
K on sections VI-C and VI-E.

E. The semi-infinite case

(iv) For everyxz € R™ ande > 0,
lim  max  inf |f(2,w) — f(a,w) = 0. First-order algorithm for théd., norm: variant |
k—o0 z’€B(z,e) w €Q 0)

Fix 0 < 7 < 1 and choose initial point.

Notice that both axioms guarantee that the approximdtipn 1) Givenzx; choose a finite se®; containingQ(xy).

improves with growingk. Axiom (iii) tells that as soon as 2) ComputeM (xy) for fq, according to (18). IfM (x)) =

0 ¢ 0f(x), descent steps may be eventually generated by 0 then stop, becausee 9f(z). Otherwise

using approximationgq, of f. Axiom (iv) is simply saying 3) Use aline search to find a stgpsuch that the predicted

that approximations get better @sincreases, and that this decrease satisfies;, = fq,(zr + trhe) — f(zr) <

happens uniformly on small neighborhoods of each —k(zk)M(z) < 0. Compare with the actual decrease
Using these axioms, let us construct a descent step generato  «y = f(x + tihi) — f(zg). If o < 77, acceptty,

s(+) for f. We proceed as follows: put xx11 = xx + tihy and goto step 5.
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4) If ay > 7w then reject;, and add nodes 19, to obtain Let us now specify in which way we select the frequency set
the finer mesh;,1. Increase countet by one and go 2, at each step. The finite set of frequendi¥s;;,) where the
back to step 2. H., norm is attained is computed via the Hamiltonian tech-

5) Increase countét by one and go back to step 1. nigue [10]. We then form an enriched et of frequencies by

In steps 3 and 4 of the algorithm we recognize the mechdding to the peak frequencies a collection of logarithitica

anism of the previous section, which obtains a descent sggaced frequencies, such that

?e_nerator for the semi-infinite function by using those @& th 1 Tooms () loo — T(Tooss (K, §00)) < €0 [ Toomn (Koo 5

inite models fo,. We accept the step fof if it exceeds a

small fraction of the descent predicted by the finite mod#lheree,, is a user-specified tolerance. We usually limit the
fa,.- This is essentially the same procedure as in VI-E. set to the first50 frequencies with largest singular values, as

Next comes the version based on section VI-D in tandeiftis appears to work well on a broad range of numerical tests.

with section VI-E. The semi-infinite case is handled in elyact Typical values fore,, range from0.05 to 0.5. The algorithm
the same fashion, but the descent step generatgrsare requires that this set be iteratively refined when descepisst
different. cannot be computed, but in practice our choice is usually
satisfactory, and numerical problems due to exceedingly fin

First-order algorithm for thef., norm: variant Il Q,, can be avoided.

0) Fix0 < 7,72 < 1andé > 0 and choose initial point
0. VIl. NUMERICAL EXPERIMENTS
1) Givenzy choose a finite s, containingQ(zy). In this section we test our nonsmooth algorithms on a
2) Compute the valué, and the solution(7*, Y'*) of the variety of synthesis problems from th@OM Pl.ib collec-
SDP (19). If6; = 0, then stop becauseé € df(xx). tion by F. Leibfritz [40]. Computations were performed on
Otherwise compute the descent directionfor f, at a (low-level) SUN-Blade Sparc wit56 RAM and a 650
xp, according to (21). MHz sparcv9 processor. LMI-related computations for dearc
3) Using a line search, find a stepsuch that the predicted directions used the LMI Control Toolbox [41] or our home
decrease satisfies;, = fq, (zr + trhi) — f(zx) < made SDP code [6] while QP computations are based on

Titfr < 0. Compare with the actual decreasg = Schittkowski's code [42].
fzk + tphe) — f(zk). If ap < 7o, acceptty, put Our algorithm is a first-order method. Not surprisingly, it
ZTr4+1 = T + trph, and goto step 5. may be slow in the neighborhood of a local solution. We

4) If ag, > 7w, then rejectt;, and add nodes t6); to have implemented various stopping criteria to ensure that a
obtain the finer meskl;,. Increase countet by one adequate approximation of a solution has been found and to

and go back to step 2. avoid unwarranted computational efforts as is often the cas
5) Increase countét by one and go back to step 1. with a first-order algorithm. The first of these termination
criteria is an absolute stopping test, which provides acatity
G. Practical aspects assessment
In this section we comment on the salient features of the inf{[|g]| : g € Of(x)} < e, (23)
nonsmooth first-order descent algorithm and address somerffs is reasonable, as< 9 f(z) indicates a critical point. It
the practical aspects. is also mandatory to use relative stopping criteria to reduc

values); (F(xx, jw,)) have multiplicity 1 at all frequencies

w, € Q(z1,). In this situation step 2 of the descent algorithml Zw—=(F)lloc = [Tuw—z(K™)lloo < e2(1 + [|Tuw—z(K) ),

variant Il could be simplified. Suppose at the current ieugt _ . (24)
we have selected a finite set of frequendlgs= {wy,...,w,} Ccompares the progress achieved relatively to the curtept
containingQ(z,). Suppose all\; (F(zx, jw,)) have multi- Performance, while

plicity 1. Letg, = F'(xy, jw,)*esel = f'(x1;w, ), wheree, IK+ — K| < es(1+ | K|) (25)

is the normalized eigenvector associated Wit F (z, jw,)). )
Then the semidefinite program (16) respectively (20) sifigsli COmpares the step-length to the controller gains. Theantes

to a convex quadratic prografifz;) = €1 =1le-5, eo =1le-3, e3 = 1le-3
2

! 1 || < have been used in our numerical testing. For stopping we
o —falow) + Y1 f(ar,w) - % > g required that either the first two tests or the third one are
Tu_07zy =1 v=1 v=1 . g . .
_ - _ satisfied. For the enriched set, the number of frequencies
and the associated direction of descept= h(zy) is has been limited t&0. They are selected according to our
1 discussion in section VI-G. It is sometimes possible to @ypl
h(zi) = - Zﬂlgm fewer frequencies, but generally better steps are perfdrme
v=1 when richer sets are used. Our choice appears reasonable

where 7 is the optimal solution of the quadratic programand has been validated on numerous experiments. It does not
Observe that for2, = Q(xy), h(zx) coincides with the restrict efficiency since QP codes are very efficient upto
steepest descent direction for a finite max function. variables.
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A. Stabilization with our analysis in section VI, this encouraged us to use

Pure stabilization may be regarded Hs, synthesis under algorithmic variant Il in the syntheses problems below.
the special form (6). The optimization program is (5), but
we stop the algorithm as soon as a stabilizing controller B Hoc synthesis problems
obtained. Iterating until a local optimum of (5) is reached This section is devoted tdi,, synthesis problems. The
does not seem to improve any of the usual performanegnthesis procedure is based on the scheme (3) and must be
specifications of the stabilizing feedback controller. Budnitialized with a stabilizing controller. This initial @se | is
questions have to be addressed in a second procedure, wiegtribed in the previous section, but alternative teakesq
the stabilizing controller will serve as a starting poinheT to find an initial stabilizing controllets may prove useful
spectral abscissa (7) is used to check stabilityjofut is not  [29]. All examples are extracted from ti@OM Pl.ib collec-
used as a cost function. Previous experiments where (7) wias [40]. Column ‘problem’ now indicates th€ OM Pl.ib
used to find stabilizing controllers are reported in [29]. acronym attached to each example.

Table | displays results obtained for static stabilization Notice that for a statid<, our program could formally be
problems borrowed from the literature. The triple, m,p) solved as
gives the number of states, inputs and outputs. Columri ‘iter  inimize Tz (K )| s0s K € Mgyt
correspon.ds to the .number of |terat|on§ required tq meet subject to ||Cs (sI—A(K))_lBgHOO <M
the combined stopping tests. Columan displays the final
closed-loop spectral abscissa (7). Negative< 0 indicates whereM > 0 is a constant e.g. such that the initial stabilizing
a stable closed-loop system. Column 'cpu’ gives the cputing@ntroller Ko satisfies
in seconds. Note that the repprted cputimes are only indecat 1Cs (sI — A(Ko))_l Bslleo < M < +00
as thea-version of our code includes a number of extra tests
and even graphics that have been exploited for fine tuning@1d whered(K) refers to the closed-loop system matrix. Note

(27)

the various algorithm parameters. that the extra constraint in (27) maintains asymptoticiktab
The initial shift for theH., norm minimization was chosen Of the closed-loop system during the optimization/of
according to the following rule It often happens that stability of the performance channel
T,—.(K) alone already implies stability of the closed-loop
ao := max (a(A) * (1 +10%), le-2) , (26) system, so that the (internal) stability constraint in (&7)e-

dundant. This observation is significant, because thistcaing

with & zero initial static controlleX’, = 0. an be dropped, and the problem becomes unconstrained. In
From the table, we observe that in all cases but one, tfié pped, P ’

original choiceaq of the shift was successful. As indicated 0Se cases v_vhere this d(_)es_ not hoI_d true, we may if we \_Nant
. . . tR avoid the biga/ constraint in (27), introduce the composite
there is no need to run the algorithm until convergence.

stabilizing solution is therefore obtained very early. Agle problem
SDP or convex QP with line search suffices in most cases. ..o | | Tw—2(K) 0 )
In the second example, we had to reduce the shift three & 0 €sC2 (s — A(K)) " Bz |||

times before stability was reached. This was done accordiffiere the lower-right term enforces internal stabilitythwi

to rule (26), applied to the closed-loop dynamics. In this - 3 small enough parameter. The new problem can now
example theHo, criterion is flat about a (global) optimum, e hangled by the techniques discussed so far without change

WhiCh aI_Iows I_onger steps anq renders the step_—leng_thaﬁmilar modifications apply to design problem with additbn
termination criterion more stringent. Note that in this €asy,ctural constraints on the controller.

the solution is globally optimal because a z€iQ, NOrM IS \e compare the results of our nonsmooth algorithm variant

reached. Il in columns ’nonsmoothH,,’ to older results obtained
TABLE | with the specialized augmented Lagrangian (AL) algorithm
STATIC OUTPUT-FEEDBACK STABILIZATION described in_ [17], (_ji5p|ayed in columngi AL, and to
Sroblom [omp) [ e | = o (oo result_s obt_alned with the Frank & Wolfe (FW) algorithm
Transport airplane [43] | (9,1,5) T 5233 596 dfascnbed in [14], cqlumn _’FW’. In columnH, full', we
Horisberger's example [44] (9, 1, 4) 1 ~0.01 12.0 display the gain obtained with a full-order feedback colterp
VTOL helicopter [45] (4,2,1) T | —6.00e—2 1.90 synthesized via the usual Riccati-based DGKF technique [2]
Chemical reactor [46] | (4,2,2) [ 1 —1.73 226 Note that it gives the best achievabtt,, performance and
Piezoelectric actuator [47] (5,1, 3) 1 —9.95e—1 2.88 . .
Boeing 767 [48] 55.2,2) | 1 | —2.33¢-2 617 thus provides a lower bound for other techniques.

The results which we obtain with our nonsmooth tech-
nigue are usually close to those previously obtained with
the augmented Lagrangian method [17], except for problems

For test reasons, the pure stabilization problems have beeth large state dimension as 'AC13q states), ‘BDT2’ §2
solved with the steepest descent method in section V. Amtes), 'HF1' {30 states) and 'CM4’' Z40 states), where
expected, this technique is less stable than algorithmian® the augmented Lagrangian method fails, while the present
| and II. Specifically, the choice of, is rather critical and nonsmooth method is still functional. For these large syste
finding a general selection rule appears difficult. Togeth&C10’, 'BDT2’, '"HF1’ and 'CM4’, we have observed that

steepest descent method,; = 0.05
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TABLE Il
Hoo SYNTHESIS WITH NONSMOOTH ALGORITHMIC VARIANTII

problem [ (n,m,p) [ order | iter | cpu (sec.)[ nonsmoothHo, | Hoo AL | FW | Ho full
AC8 (9,1,5) 0 20 45 2.005 2.02 2.612 1.62
HE1 (4,2,1) 0 4 7 0.154 0.157 0.215 0.073
REA2 (4,2,2) 0 31 51 1.192 1.155 1.263 1.141
ACI0 | (55,2,2) 0 15 294 13.11 * * 3.23
AC10 (55,2,2) 1 46 408 10.21 * * 3.23
BDT2 (82,4,4) 0 44 1501 0.8364 * * 0.2340
HF1 (130,1,2) 0 11 1112 0.447 * * 0.447
CM4 | (240,1,2) 0 2 3052 0.816 * * *
€, = 0.05, "x’: problem is Intractable
TABLE Il
Hs, CONTROLLERS FOR LARGE PROBLEMS WITH ALGORITHMI
problem [ order | K(s)
~ [—9.0747e—1 2.1249¢—5
AC10 | 0 K=1 "13042  2.2467¢-5
—6.110e—-2 1 2.698e—-1 1.389¢-5
AC10 1 936162 (s42.633)"1 [—6.4T6e-2 1.245e-2] + _3985¢-01 5.2266_5
[—1.0402 1.2997 1.4684  3.05557
—3.7306 —3.5572 —1.9894 2.2705
BDT2 0 —2.8162 2.1944 1.8146  9.6202
| —9.8493 —5.5376 —2.4885 5.1699 |
HF1 0 —0.1907 —1.3093
CM4 0 —4.5684 —0.6667

even Riccati or LMI solvers encounter serious difficulties 0 As an illustration of the nonsmooth technique, Fig. 1 shows
even break down. the evolution of the maximum singular value 8%, .(K)

Notice that our present nonsmooth technique (NS) and ff§ €xample 'AC8’ during the first5 iterations. The stars
AL method are rigorous in the sense that they converge td lod3dicate the frequencies; that were regrouped in the set
minima (critical points). It is therefore not surprisingatiNs  $2 to construct a bundle of Clarke subgradients at itergte
and AL often achieve the sanié.. performance at the sameA|§9' E|g. 2 depicts the evplutlon qf the absolute value &f th
K, for which optimality was established in [18]. criticality measure of algorithm variant 1l (19) and (20yses

hat in i iinal f h h | iterations. As theoretically expectefiz;) gradually tends to
Note that in its original form, the FW method cannot solvG,q il a local minimum is reached. Finally, controlléss

problems where performance is optimized underconstremtsIarge problems 'AC10’, 'BDT2", 'HF1' and 'CM4" are given
the order of the controller. We have therefore encapsul¥®d ;. 1o || ’ ’

into a dichotomy search in order to assure the best possible
performance. According to our numerical experiments, AL
and FW, which solve SDPs at every iteration, are no longer
functional even for medium size systems such as the BoeingMe have proposed several new algorithms to minimize the
problem 'AC10’. Higher-order problems like 'BDT2’, 'HF1', H,, norm subject to structural constraints on the controller
and 'CM4’ are completely intractable with these techniquedynamics. The proposed method uses nonsmooth techniques
while the nonsmooth method continues to produce valid solsuited for H,, synthesis and for semi-infinite eigenvalue or
tions. We observed that FW, when functional, is outperfarmeingular value optimization programs. Variant | and vatrikin
both by AL and NS. We attribute this to the fact that, asf our algorithm are supported by global convergence theory
opposed to AL and NS, FW is not supported by a souraucial parameter for the reliability of an algorithm in ptiae.
convergence theory, and therefore often stops at iterAtesVariant 1l has been shown to perform satisfactorily on a
which are not even locally optimal. Examples &f where number of difficult examples. In particular, four examplagw
this is the case are easily identified. It suffices to start AL d¢arge state dimensiom(= 55 n = 82, n = 130 andn = 240)

NS at iterated< where FW stops which almost always leads thave been solved.

further improvement. As an example, when we initialized NS Note that the proposed tools and techniques easily extend
with the FW solution in example 'AC8’, thél, performance to multidisk problems and synthesis problems on prescribed
was improved from2.612 to 2.005. A phenomenon that we frequency intervals [49]. More importantly, they pave thayw
have also observed in examples '"HE1' and 'REA2’. This ifor investigating an even larger scope of synthesis problem
a strong argument in favor of those optimization techniquesharacterized through frequency domain inequalities ef th
which generate steps based on local convergence theoryfotm A\ (H(z,w)) < 0, w > 0, where H(x,w) is Hermitian-
means that NS and AL can be used to certify criticality ofalued andx stands for controller parameters and possibly
controllers obtained with alternative methods. multiplier variables, as is the case when IQC formulatiores a

VIII. CONCLUSION
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