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NonsmoothH∞ Synthesis
Pierre Apkarian,Member, IEEE,Dominikus Noll, Member, SIAM,

Abstract— We develop nonsmooth optimization techniques to
solve H∞ synthesis problems under additional structural con-
straints on the controller. Our approach avoids the use of Lya-
punov variables and therefore leads to moderate size optimization
programs even for very large systems. The proposed framework
is versatile and can accommodate a number of challenging
design problems including static, fixed-order, fixed-structure,
decentralized control, design of PID controllers and simultaneous
design and stabilization problems.

Our algorithmic strategy uses generalized gradients and
bundling techniques suited for the H∞ norm and other nons-
mooth performance criteria. We compute descent directionsby
solving quadratic programs and generate steps via line search.
Convergence to a critical point from an arbitrary starting p oint is
proved and numerical tests are included to validate our methods.
The propose approach proves to be efficient even for systems with
several hundreds of states.

Index Terms— H∞-synthesis, static output feedback, fixed-
order synthesis, simultaneous stabilization,NP-hard problems,
nonsmooth optimization, bundle methods, Clarke subdifferential,
bilinear matrix inequality (BMI), linear matrix inequalit y (LMI).

I. I NTRODUCTION

In this paper we considerH∞ synthesis problems with
additional structural constraints on the controller. Thisincludes
static and reduced-orderH∞ output feedback control, struc-
tured, sparse or decentralized synthesis, simultaneous stabi-
lization problems, multiple performance channels, and much
else. We propose to solve these problems with a nonsmooth
optimization method exploiting the structure of theH∞ norm.

In nominal H∞ synthesis, feedback controllers are com-
puted via semidefinite programming (SDP) [1] or algebraic
Riccati equations [2]. When structural constraints on the
controller are added, theH∞ synthesis problem is no longer
convex. Some of the problems above have even been recog-
nized asNP-hard [3] or as rationally undecidable [4]. These
mathematical concepts indicate the inherent difficulty ofH∞

synthesis under constraints on the controller.
Even with structural constraints, the bounded real lemma

may still be brought into play. The difference with customary
H∞ synthesis is that it no longer produces LMIs, but bilinear
matrix inequalities, BMIs, which are genuinely non-convex.
Optimization code for BMI problems is currently developed
by several groups, see e.g. [5]–[9], but it appears that the BMI
approach runs into numerical difficulties even for problemsof
moderate size. This is mainly due to the presence of Lyapunov
variables, whose number grows quadratically with the number
of states.
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Out present approach doesnot use the bounded real lemma
and thereby avoids Lyapunov variables. This leads to moder-
ate size optimization programs even for very large systems.
In exchange, our cost functions are nonsmooth and require
special optimization techniques, which we develop here. We
evaluate theH∞ norm via the Hamiltonian bisection algorithm
[10]–[12] and exploit it further to compute subgradients, which
are then used to compute descent steps. Notice, however,
that our method is not a pure frequency domain method. In
fact, it allowsboth frequency domainand state space domain
parameterizations of the unknown controller. This makes ita
very flexible tool in a number of situations of practical interest.

Several iterative methods for reduced-order control have
been proposed over recent years, see for instance [13]–[15].
In [13], a comparison among four of these methods on a large
set of test problems is arranged, with the result that successive
linearization [14], also known as the Frank and Wolfe (FW)
algorithm [16], performed best. Whenever possible, we have
therefore compared our new nonsmooth methods and the aug-
mented Lagrangian algorithm in [17], [18] with the Frank and
Wolfe method. The results are presented in the experimental
section.

As far as comparison with existing methods is concerned,
let us mention that for specific classes of plants, it is possible
to compute reduced-order controllers without the use of op-
timization techniques. This has for instance been investigated
in [19]–[21]. These approaches usually make strong additional
assumptions like singularity, or hypotheses about unstable
invariant zeros. In such cases it may then even be possible to
assure global optimality of the computed controllers. Unfortu-
nately, in these approaches, the order of the controller is not a
priori known, and in particular, it is not possible to compute
static controllers with this type of technique. In the absence of
these additional assumptions, and in particular when structural
constraints are imposed, synthesis via nonlinear optimization
appears to be the most general approach toH∞ synthesis.

The structure of the paper is as follows. In section II we
present theH∞ synthesis problem and give several motivating
examples. Section III computes subgradients of theH∞ norm,
which are then applied to closed-loop scenarios in section IV.
In section V we start to develop our first-order descent method,
which is completed in section VI. Section VI-G discusses
practical aspects of the method, and the final section VII
presents a number of experiments to validate our approach.

NOTATION

Let Mn,m be the space ofn×m matrices, equipped with the
corresponding scalar product〈X, Y 〉 = Tr(XHY ), whereXH

is the transconjugate of the matrixX , Tr X its trace. The space
of m × m Hermitian matrices is denotedSm. For Hermitian
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or symmetric matrices,X ≻ Y means thatX − Y is positive
definite, X � Y that X − Y is positive semi-definite. For
ease of notations, we define the following sets of Hermitian
matrices:Bm := {X ∈ Sm : X � 0, Tr (X) = 1}. Consider
q-tuples of Hermitian matrices(Y1, . . . , Yq), we define the set
B

q
m := {(Y1, . . . , Yq) : Yi ∈ Sm, Yi � 0,

∑q
i=1 Tr (Yi) = 1}.

For short, we shall useB or Bq when the dimension needs not
be specified.

We use the symbolλ1 to denote the maximum eigenvalue
of a symmetric or Hermitian matrix. We shall use general
notions from nonsmooth analysis covered by [22]. Notions on
ǫ-subdifferentials andǫ-enlarged subdifferentials for spectral
functions and their relationships are discussed at length in
[23]–[25]. Unless stated otherwise, the symbolx designates
a vector gathering (controller) decision variables and must not
be confused with the plant state in Section II. In the notation
xk, the subscriptk refers to the iteration index.

II. H∞ SYNTHESIS

The general setting of theH∞ synthesis problem is as
follows. We consider a linear time-invariant plant described
in standard form by the state-space equations:

P (s) :




ẋ
z
y



 =




A B1 B2

C1 D11 D12

C2 D21 D22








x
w
u



 , (1)

where x ∈ Rn is the state vector,u ∈ Rm2 the vector of
control inputs,w ∈ Rm1 the vector of exogenous inputs,y ∈
Rp2 the vector of measurements andz ∈ Rp1 the controlled or
performance vector. Without loss of generality, it is assumed
throughout thatD22 = 0.

Let u = K(s)y be a dynamic output feedback control
law for the open-loop plant (1), and letTw→z(K) denote
the closed-loop transfer function of the performance channel
mappingw into z. Our aim is to computeK(s) such that the
following design requirements are met:

• Internal stability: For w = 0 the state vector of the
closed-loop system (1) and (2) tends to zero as time goes
to infinity.

• Performance:TheH∞ norm‖Tw→z(K)‖∞ is minimized
among all stabilizingK.

We assume that the controllerK has the following frequency
domain representation:

K(s) = CK(sI − AK)−1BK + DK , AK ∈ R
k×k, (2)

wherek is the order of the controller, and where the casek = 0
of a static controllerK(s) = DK is included. Often practical
considerations dictate additional challenging structural con-
straints. For instance it may be desired to design low-order
controllers (0 ≤ k ≪ n) or controllers with prescribed-pattern,
sparse controllers, decentralized controllers, observed-based
controllers, PID control structures, synthesis on a finite set
of transfer functions, and much else. Formally, the synthesis
problem may then be represented as

minimize ‖Tw→z(K)‖∞
subject to K stabilizes(1)

K ∈ K
(3)

where K ∈ K represents a structural constraint on the
controller (2) like one of the above.

Without the restrictionK ∈ K, and under standard stabiliz-
ability and detectability conditions, it has become customary to
synthesizeK(s) as follows. After substituting (2) into (1), the
H∞ synthesis problem is transformed into a matrix inequal-
ity condition using the bounded real lemma [26]. Then the
projection lemma from [1] is used to eliminate the unknown
controller dataAK , BK , CK , DK from the cast, leaving an
LMI problem, which may be solved by SDP. In a third step
the controller state-space representation (2) is recovered.

This scenario changes dramatically as soon as constraints
K ∈ K are added. Then the problem may no longer be
transformed into an LMI or any other convex program, and
alternative algorithmic strategies are required. The aim of this
paper is to present and analyze one such alternative.

Example 1. Pure stabilization. Often the first important step
in controller synthesis (3) is to find a stabilizing controller K.
Already at this stage theH∞ norm plays a prominent role,
because of the well-known fact that under stabilizability and
detectability, a linear-time invariant system is Lyapunovstable
if and only if its H∞ norm is finite [27]. More specifically,
under stabilizability and detectability assumptions, thestatic
control lawu = Ky stabilizes the plant

G(s) :

{
ẋ = Ax + B2u
y = C2x ,

(4)

if and only if the closed-loop transfer matrixC2(sI − (A +
B2KC2))

−1B2 has finiteH∞ norm.
In order to construct a static stabilizing controller for

an unstable open-loop system (4), the following procedure
appears fairly natural. Suppose we are given an initial guess
K0, which leaves the closed-loop system unstable. Then we
pick a0 > 0 such that thea0-shiftedH∞-norm of the closed-
loop system is finite:

‖C2(sI − (A + B2K0C2))
−1)B2‖−a0,∞ < +∞,

where the shiftedH∞ norm is given in [28]. The problem of
finding a stabilizing controllerK may now be addressed by
an optimization program

minimize
K

‖C2(sI − (A + B2KC2))
−1B2‖−a,∞, (5)

where the shifta is either kept fixed at the initiala0, or is
gradually decreased after each minimization step to accelerate
the procedure. A stabilizing controllerK is obviously obtained
when the shift reachesa ≤ 0, but very often this happens
already with the initial valuea0, so that shifting is not even
necessary as a rule. Numerical tests for this method will be
presented in section VII.

While we stop the optimization (5) as soon as a stabilizing
K is reached, it may happen that for a fixed shifta, the
method converges to a local minimumK of (5), which fails
to stabilize the closed-loop system. This is explained by the
fact that (5), just like all the other methods in this paper, are
local optimization methods in the sense that they guarantee
convergence to a local minimum (or a critical point). If an
unsatisfactory local minimum is reached, the only possibility is
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to do a restart with a new initial guessK0, or switch to another
method. Such a local convergence certificate may appear weak
at first sight, but experience shows that local methods perform
much better than global optimization techniques. Those may
have stronger certificates, but run into numerical problems
even for small problems. And indeed, our present approach
is almost always successful even without restart. A similar
comment applies to the pure stabilization method in [29].�

Notice that pure stabilization is just a special case of the
more generalH∞ synthesis problem in section II when we
specialize the standard form to

P (s) :




ẋ
z
y


 =




A B2 B2

C2 0 0
C2 0 0







x
w
u


 . (6)

Example 2. Spectral abscissa.In [30], [31] Burke et al.
present an alternative approach to computing static stabilizing
controllersK. The authors propose to solve the nonsmooth
optimization program

minimize
K

α(A + B2KC2), (7)

whereα is the spectral abscissa of a matrixM ∈ Mn,n defined
as

α(M) = max{Re λ : λ eigenvalue ofM}.

Unfortunately, this function is not even locally Lipschitz,
which renders application of existing nonsmooth algorithms
impossible. The authors have therefore developed a probabilis-
tic algorithm which allows to treat problems like (7); see [31],
[32]. Since optimality tests and approximate subgradientsfor
α are difficult to compute (see [29]), we prefer the use of (5)
over (7). Numerical tests for (5) are presented in section VII
and show that this method is successful as a rule. Our own
numerical tests with program (7) are published in [29].�

The above scenario covers the case of a static stabilizing
controllerK, but it is clear that stabilization problems includ-
ing structural constraintsK ∈ K can be treated in exactly the
same way. Several examples of classesK will be presented in
the sequel.

Example 3. Simultaneous stabilization.Another instance
of interest is the simultaneous stabilization problem, which
can be cast as minimizing a finite family of closed-loop
transfer functions. Formally, given the open-loop plants,Gi,
i = 1, . . . , r, we consider the problem

minimize
K

max
i=1,...,r

γi‖Ci(sI − (Ai + BiKCi) − aiI)−1Bi‖∞

whereγi > 0 are appropriate weights, and theai are chosen
so that the initial guessK renders theith system stable
after shifting byai. A lower bound forai is therefore the
spectral abscissa (7) of theith system. As before, the shifts
are decreased after eachH∞ norm minimization step and a
simultaneously stabilizingK is obtained e.g. ifai ≤ 0 for all
i = 1, . . . , r. But even when someai > 0, the solution may
produce a simultaneously stabilizingK. �

Example 4. System reduction.A technique of considerable
importance is system reduction. It is used by practitioners
whenever an open-loop systemG(s) of large orderN is
difficult to control. LetG(s) denote such a large size open-
loop plant, and suppose a decompositionG(s) = Ginstab(s)+
Gstab(s) into an unstable and a stable part is available. Then
we may consider the problem

minimize
eGstab∈K

‖Gstab(s) − G̃stab(s)‖, (8)

where G̃stab(s) ranges over a prespecified classK of stable
system of reduced order,n ≪ N , and where some norm
criterion is used to evaluate the mismatch between nominal
and reduced systems. If‖ · ‖ represents the Hankel norm, an
explicit expression for̃Gstab is available [33]. But it may be
preferable to use other criteria like theH∞ norm, a problem
which then falls within the class of problems considered in
this work. Once a solutioñGstab(s) to (8) is obtained, the new
systemG̃(s) = Ginstab(s)+ G̃stab(s), while easier to control,
may be expected to have characteristics similar to those of the
original system. �

III. SUBDIFFERENTIAL OF THEH∞ NORM

In this section, we start characterizing the subdifferential of
the H∞ norm, and derive expressions for the Clarke subd-
ifferential of several nonconvex composite functionsf(x) =
‖G(x)‖∞, whereG is a smooth operator defined on someRn

with values in the space of stable matrix transfer functions
H∞.

Consider theH∞-norm of a nonzero transfer matrix func-
tion G(s):

‖G‖∞ = sup
ω∈R

σ (G(jω)) ,

whereG is stable andσ(X) is the maximum singular value of
X . Suppose‖G‖∞ = σ (G(jω)) is attained at some frequency
ω, where the caseω = ∞ is allowed. LetG(jω) = UΣV H

be a singular value decomposition. Picku the first column of
U , v the first column ofV , that is,u = G(jω)v/‖G‖∞. Then
the linear functionalφ = φu,v,ω defined as

φ(H) = Re
(
uHH(jω)v

)

= ‖G‖−1
∞ Re Tr vvHG(jω)HH(jω)

= ‖G‖−1
∞ Re TrG(jω)HuuHH(jω)

is continuous on the spaceH∞ of stable transfer functions
and is a subgradient of‖ · ‖∞ at G [28]. More generally,
assume that the columns ofQu form an orthonormal basis of
the eigenspace ofG(jω)G(jω)H associated with the largest
eigenvalueλ1

(
G(jω)G(jω)H

)
= σ(G(jω))2, and that the

columns ofQv form an orthonormal basis of the eigenspace
of G(jω)HG(jω) associated with the same eigenvalue. Then
for all complex Hermitian matricesYv, Yu ∈ B,

φ(H) = ‖G‖−1
∞ Re TrQvYvQH

v G(jω)HH(jω) (9)

= ‖G‖−1
∞ Re Tr G(jω)HQuYuQH

u H(jω)

is a subgradient of‖·‖∞ at G. Finally, with G(s) rational and
assuming that there exist finitely many frequenciesω1, . . . , ωp
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where the supremum‖G‖∞ = σ(G(jων)) is attained, all
subgradients of‖ · ‖∞ at G are precisely of the form

φ(H) = ‖G‖−1
∞ Re

p∑

ν=1

TrG(jων)HQνYνQH
ν H(jων),

where the columns ofQν form an orthonormal basis of the
eigenspace ofG(jων)G(jων)H associated with the leading
eigenvalue‖G‖2

∞, and where(Y1, . . . , Yp) ∈ Bp. See [22,
Prop. 2.3.12 and Thm. 2.8.2] and [29] for this.

Suppose now we have a smooth operatorG, mappingRn

onto the spaceH∞ of stable transfer functionsG. Then the
composite functionf(x) = ‖G(x)‖∞ is Clarke subdifferen-
tiable atx with

∂f(x) = G′(x)⋆[∂‖ · ‖∞ (G(x))], (10)

where∂‖ · ‖∞ is the subdifferential of theH∞-norm obtained
above, and whereG′(x)⋆ is the adjoint ofG′(x), mapping the
dual ofH∞ into Rn, whereRn is identified with its dual here.
In the sequel, we will compute this adjointG′(x)⋆ for special
classes of closed-loop transfer functions. Suitable chainrules
covering this case are for instance given in [22, section 2.3].

IV. CLARKE SUBDIFFERENTIALS IN CLOSED-LOOP

Given a stabilizing controllerK(s) and a plant with the
usual partition

P (s) :=

[
P11(s) P12(s)
P21(s) P22(s)

]
,

the closed-loop transfer function is obtained as

Tw→z(K) := P11 + P12K(I − P22K)−1P21 ,

where the state-space data ofP11, P12, P21 andP22 are given
in (1) and the dependence ons is omitted for brevity. Our aim
is to compute the subdifferential∂f(K) of f := ‖·‖∞◦Tw→z

at K. We first notice that the derivativeT ′
w→z(K) of Tw→z

at K is

T ′
w→z(K)δK := G12δKG21,

whereδK is an element of the same matrix space asK and
with the definitions
[

Tw→z(K, s) G12(K, s)
G21(K, s) ⋆

]
:=

[
P11 + P12K(I − P22K)−1P21 P12(I − KP22)

−1

(I − P22K)−1P21 ⋆

]
=

[
C(K)
C2

]
(sI −A(K))−1 [B(K) B2 ] +

[
D(K) D12

D21 ⋆

]

and the closed-loop state-space data

A(K) := A + B2KC2, B(K) := B1 + B2KD21,
C(K) := C1 + D12KC2, D(K) := D11 + D12KD21 .

Note that numerical stability requires that transfer functions
Tw→z, G12 andG21 be computed through state-space realiza-
tions.

Now let φ = φY be a subgradient of‖ · ‖∞ at Tw→z(K) of
the form (9), specified byY ∈ B and with‖Tw→z(K)‖∞ at-
tained at frequencyω. According to the chain rule, the subgra-
dientsΦY of f at K are of the formΦY := T ′

w→z(K)⋆φY ∈
Mm2,p2

, where the adjointT ′
w→z(K)⋆ acts onφY through

〈T ′
w→z(K)⋆φY , δK〉 = 〈T ′

w→z(K)δK, φY 〉

= ‖Tw→z(K)‖−1
∞ Re Tr

(
Tw→z(K, jω)H QY QH

T ′
w→z(K)δK(jω) )

= ‖Tw→z(K)‖−1
∞ Re Tr

(
Tw→z(K, jω)H QY QH

G12(K, jω)δK(jω)G21(K, jω) )

= ‖Tw→z(K)‖−1
∞ Re Tr

(
G21(K, jω)Tw→z(K, jω)H

QY QH G12(K, jω)δK(jω) ) . (11)

In consequence, for a staticK, the Clarke subdifferential of
f(K) := ‖Tw→z(K)‖∞ at K consists of all subgradientsΦY

of the form

ΦY = ‖Tw→z(K)‖−1
∞ Re

(
G21(K, jω)Tw→z(K, jω)H

QY QH G12(K, jω) )
T

,
(12)

where Y ∈ B. Recall thatΦY is now an element of the
same matrix space asK and acts on test vectorsδK through
〈ΦY , δK〉 = Tr(ΦT

Y δK).
This formula is easily adapted if theH∞ norm is attained at

a finite number of frequenciesω1, . . . , ωq. In this more general
situation, subgradients off at K are of the form

ΦY = ‖Tw→z(K)‖−1
∞

∑q
ν=1 Re (G21(K, jων)

Tw→z(K, jων)H QYνQH G12(K, jων) )
T

,
(13)

whereY = (Y1, . . . , Yq) ∈ Bq.
At this stage, it is important to stress that expressions (11),

(12) and (13) are general and can accommodate any problem
discussed in previous sections. Below we resume and expand
this list by considering more examples of practical interest.

Example 5. Dynamic controllers.Assume now that the
controller is dynamic as in (2). The subgradient set is again
obtained via formula (13) by performing the substitutions:

K →

[
AK BK

CK DK

]
, A →

[
A 0
0 0k

]
, B1 →

[
B1

0

]
,

C1 → [ C1 0 ] , B2 →

[
0 B2

Ik 0

]
, C2 →

[
0 Ik

C2 0

]
,

D12 → [ 0 D12 ] , D21 →

[
0

D21

]
.

(14)
The entire Clarke subdifferential is then described by the

set of subgradients inMk+m2,k+p2

ΦY :=

[
ΦY,AK

ΦY,BK

ΦY,CK
ΦY,DK

]
,

where Y = (Y1, . . . , Yq) ∈ Bq and ΦY is derived through
formulas (12) or (13). �

Example 6. Structured controllers.In practice, it is some-
times required that some entries in the controller gain be put
to zero, while the others may be freely assigned. This is the
case in decentralized control, where the controller must enjoy



JOURNAL OF CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 5

a block-diagonal structure. Consider a pattern matrixW with
entriesWij ∈ {0, 1}, whereWij = 0 means that the controller
gain Kij = 0 must be zero, whereasWℓk = 1 means that
Kℓk can be freely assigned. The Clarke subdifferential of
f = ‖ · ‖∞ ◦ F at K is then of the form

W ⊙ ΦY ,

whereΦY ∈ ∂‖·‖∞(F(K)) is as in (13) and where⊙ denotes
the entry-wise Hadamard or Schur product [34]. �

Example 7. PID controllers.PID control is one of the most
classical approaches in control system design. The controller
is generally written as

K(s) = KP +
1

s
KI +

s

1 + τs
KD ,

whereKP , KI andKD are matrix static gains to be computed,
andτ is a small positive scalar. Using the general formula (11),
the subgradients with respect toκ := [ KP ; KI ; KD ] at K(s)
are obtained through

ΦY,κ = ‖Tw→z(K)‖−1
∞

∑q
ν=1 Re (G21(K, jων)

Tw→z(K, jων)H QYνQH G12(K, jων)[I 1
jων

I jων

1+τjων

I]
)T

,

where as beforeY = (Y1, . . . , Yq) ∈ Bq.
The above approach could be generalized by makingτ an

additional design parameter. Then a constraintτ ≥ 0 should
be added. Notice also that the above formula readily extends
to arbitrary basis functions{Qj(s)}j=1,...,r

K(s) :=
r∑

j=1

KjQj(s) ,

where theKj ’s are the design variables.

Example 8. Matrix fraction representations.An alternative
representation of controllers is via matrix fraction descriptions.
For instance, the left matrix fraction representation is given as

K(s) = N(s)D(s)−1 = (NJN (s))(DJD(s))−1 ,

with

JN (s) := [I sI . . . snI]T , JD(s) := [I sI . . . sdI]T

and

N := [ N0 . . . Nn ] ,D := [D0 . . . Dn ]

Now, N and D are the design variables. As before, it is
immediate to show that partial subgradients with respect to
N andD are given as

ΦY,N = ‖Tw→z(K)‖−1
∞

∑q

ν=1 Re (JN (jων)
(D(jων)JD(jων))−1G21(K, jων)Tw→z(K, jων)H

QYνQH G12(K, jων) )
T

ΦY,D = −‖Tw→z(K)‖−1
∞

∑q
ν=1 Re (JD(jων)

(D(jων)JD(jων))−1G21(K, jων)Tw→z(K, jων)H

QYνQHG12(K, jων)K(jων) )
T

,

respectively. �

Example 9. Multiple performance channels.Practical spec-
ifications often impose that several closed-loop channelsi =

1, . . . , r be minimized simultaneously. One way to address
multi-objective optimization of this type is to solve a program
of the form

minimize
K

max
{
γi‖T

i
w→z(K)‖∞ : i = 1, . . . , r

}
,

whereT i
w→z is the ith performance specification to be opti-

mized. Since the maximum of a finite number of maximum
eigenvalue functions is itself a maximum eigenvalue function
of a block diagonal operatorT = diag(T 1

w→z, . . . , T
r
w→z),

the Clarke subgradients could be obtained directly from (13).
When the usual max formula is used, the result is the same,
i.e., subgradients are of the form

φ(Y,τ) =
∑

i∈I(K)

τiγiφYi
,

whereI(K) are thei = 1, . . . , r which are active atK, τi ≥ 0,∑
i∈I(K) τi = 1 and φYi

∈ (T i
w→z)

⋆∂‖ · ‖∞(K) as specified
in (13). �

Before going further, it is worth mentioning that our
methodology carries over to a wide range of controller
structures of practical interest. This is in particular thecase
when the structural constraint is of the formK = {K :
K = S(ℓ), ℓ ∈ L}, where(S,L) is a suitable differentiable
parametrization of the classK. This includes for instance
observed-based controllers, feed-forward compensators,con-
trollers defined through Youla parameterizations and much
else.

V. STEEPEST DESCENT METHOD

Nonsmooth techniques have been used before in algorithms
for controller synthesis. For instance, E. Polak and co-workers
have proposed a variety of techniques suited for eigenvalueor
singular-value optimization and for extensions to the semi-
infinite case, covering in particular theH∞-norm (see [35],
[36] and the citations given there). Another reference is [28],
where the authors exploit the Youla parameterization via
convex nondifferentiable analysis to derive the cutting plane
and ellipsoid algorithms.

Let us consider the problem of minimizingf(x) =
‖G(x)‖∞, wherex regroups the controller data, referred to
asK in the previous section, and whereG mapsRn smoothly
into a spaceH∞ of stable transfer functions. We writeG(x, s)
or G(x, jω) when the complex argument ofG(x) ∈ H∞ needs
to be specified.

A necessary condition for optimality is0 ∈ ∂f(x) =
G′(x)⋆∂‖ · ‖∞ (G(x)). It is therefore reasonable to consider
the program

d = −
g

‖g‖
,

g = argmin{‖φY ‖ : Y = (Y1, . . . , Yq) ∈ B
q} (15)

which either shows0 ∈ ∂f(x), or produces the directiond of
steepest descent atx if 0 6∈ ∂f(x), and where theφY are as
in (13). If we vectorizey = vec(Y ), Y = (Y1, . . . , Yq), then
we may representφY by a matrix vector product,φY = Φy,
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with a suitable matrixΦ. Program (15) is then equivalent to
the following SDP:

minimize t

subject to

[
t yT ΦT

Φy tI

]
� 0

Yi � 0, i = 1, . . . , q
eT y = 1

(16)

whereeT y = 1 encodes the constraint
∑

i Tr(Yi) = 1. The
direction d of steepest descent atx is then obtained asd =
−Φ y/‖Φ y‖, where(t, y) is solution of (16) withy 6= 0. This
suggests the following:

Steepest descent method for theH∞-norm

1) If 0 ∈ ∂f(x) stop. Otherwise:
2) Solve (16) and compute the directiond of steepest

descent atx.
3) Perform a line search and find a descent stepx+ =

x + t d.
4) Replacex by x+ and go back to step 1.
The drawback of this approach is that it may fail to converge

due to the nonsmoothness off . We believe that a descent
method should at least give the weak convergence certificate
that accumulation points of the sequence of iterates are critical.
This is not guaranteed by the above scheme. The reason
is that the steepest descent direction atx does not depend
continuously onx. This is why modifications of the steepest
descent scheme are discussed in the next section.

Remark. Spectral abscissa versusH∞ norm. Notice that
the tangent program (16) is convenient because it leads to
relatively small size SDPs. Indeed, the matricesYν , ν =
1, . . . , q, are of the size of the multiplicity ofλ1 (F(x, jων)),
and our experiments indicate that dim(y) in (16) rarely exceeds
30. The situation is very different for the spectral abscissa
(7). In [29] we have derived a tangent program for (7). The
difficulty is that Lyapunov variables re-enter the scene. Indeed,
x∗ is a local minimum of the composite functionα ◦ F like
in (7) with valueα (F(x∗)) = t∗ if and only if (x∗, t∗, X∗)
is a local minimum of the optimization program:

(P )
minimize t
subject to X � σI, X � I

F(x)T X + XF(x) − 2tX � 0

for some small fixed0 < σ ≪ 1. An optimality test forα ◦F
is therefore derived from an optimality test for program(P ),
as shown in [29]. This leads to a SDP with unknown variable
of dim(x, X), which may be prohibitively large. This is one
of the reasons why our present approach privileges the use of
the H∞ norm (5) over (7). �

VI. F IRST-ORDER DESCENT METHOD

In this section we devise a first-order algorithm for com-
posite functions of theH∞ norm. Along with G : R

n →
H∞ we consider the symmetrized operatorsF(x, s) =
G(x, s)G(x, s)H respectivelyF(x, s) = G(x, s)HG(x, s). We
representf(x) as

f(x) = sup
ω∈R

f(x, ω), f(x, ω) = λ1 (F(x, jω)) , (17)

and solve the optimization program

min
x∈Rn

f(x), f(x) = ‖G(x)‖2
∞ = sup

ω∈R

λ1 (F(x, jω))

Notice that for fixedω ∈ R, x 7→ F(x, jω) is a smooth
operator into the space of Hermitianm × m matrices,Sm,
while λ1 : Sm → R is the maximum eigenvalue function.
Similar techniques could be applied to broader classes with
a structure like (17). Deriving the method will require three
steps, which we regroup into subsections. We start with the
important special casef = λ1◦F , whereF mapsRn smoothly
into Sm.

A. Preparation

The function (17) is subject to two sources of nonsmooth-
ness. The nonsmooth character of the maximum eigenvalue
function, and the nonsmoothness introduced by the operator
sup, which in the case of‖·‖∞ is even infinite. Each individual
function f(·, ω) will be analytic atx if the multiplicity of
λ1 (F(x, jω)) is one, but nonsmoothness needs to be taken
into account as soon as eigenvalues coalesce.

From a practical point of view it is reasonable to make the
following additional hypothesis.

(H) The maximumf(x) is always attained on a finite set
of frequencies. This set is denoted byΩ(x) and may
containω = ±∞.

Assumption (H) is for instance satisfied when the multiplicity
of λ1 is 1, asω 7→ f(x, ω) is then analytic in typical control
applications.

Let us introduce some more notation. ForΩ ⊂ R ∪
{−∞, +∞} we definefΩ ≤ f as

fΩ(x) = max
ω∈Ω

f(x, ω).

Notice that fΩ(x) = f(x) as soon asΩ(x) ⊂ Ω. Next
recall the definition of theǫ-subdifferential of the maximum
eigenvalue function [23]

∂ǫλ1(X) = {Z ∈ Sm : Tr (Z X) ≥ λ1(X) − ǫ}

which is an important analytical tool in nonsmooth analysis.
Since ∂ǫλ1(X) is difficult to compute, we follow Cullum
et al. [23] and Oustry [25] and introduce a modification
δǫλ1(X) of ∂ǫλ1(X), called theǫ-enlarged subdifferentialfor
the maximum eigenvalue function. Forǫ > 0 andX ∈ Sm let
r(ǫ, X) the index such that

λ1 ≥ . . . ≥ λr(ǫ,X) ≥ λ1 − ǫ > λr(ǫ,X)+1 ≥ . . . ≥ λm.

The indexr(ǫ, X) is also called theǫ-multiplicity of λ1(X).
Let Qǫ be a r(ǫ, X) × m-matrix whose columns form an
orthonormal basis of the invariant subspace ofX associated
with the firstr(ǫ, X) eigenvalues. Then we define

δǫλ1(X) = {QǫY QH
ǫ : Y ∈ Br(ǫ,X)}.

By construction∂λ1(X) ⊂ δǫλ1(X) ⊂ ∂ǫλ1(X), soδǫλ1(X)
is an enlargement of∂λ1(X) and an inner approximation of
the ǫ-subdifferential (see also [25]). The gap associated with
the choiceǫ is ∆(ǫ, X) = λr(ǫ,X)(X)−λr(ǫ,X)+1(X) > 0. If
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r is the multiplicity of λ1(X), then choosingǫ small enough
givesr(ǫ, X) = r. In this case we haveδǫλ1(X) = ∂λ1(X).

The following is an important step toward the analysis of
(17). Consider a differentiable mappingF : Rn → Sm. We
extend∂ǫλ1(X) and the enlarged subdifferentialδǫλ1(X) to
the composite functionf = λ1 ◦ F by setting

∂ǫf(x) = F ′(x)⋆ [∂ǫλ1(X)] , X = F(x),

and similarly

δǫf(x) = F ′(x)⋆ [δǫλ1(X)] , X = F(x).

HereF ′(x)⋆ is the adjoint of the linear operatorF ′(x). Finally,
going one step further, this approach allows us to consider
∂ǫf(x, ω) andδǫf(x, ω), which are applied to the variablex.

B. Descent Step Generator

In this section we discuss a very simple mechanism which
generates descent steps in such a way that the following weak
form of convergence can be guaranteed: every accumulation
point of the sequence of iterates is a stationary point.

Let f : Rn → R be a locally Lipschitz function, and let
∂f(x) denote its Clarke subdifferential [22]. Suppose we can
exhibit a mechanisms : Rn → Rn, thedescent step generator,
such that the following rules are satisfied:

(i) Whenever0 6∈ ∂f(x), thenf(s(x)) < f(x).
(ii) When 0 6∈ ∂f(x), then there exists a neighborhood

B(x, ǫ) of x and someδ > 0 such thatf(s(x′)) ≤
f(x′) − δ for everyx′ ∈ B(x, ǫ).

While (i) simply means thats(x) is a descent step away from
x, we can interpret(ii) as some weak form of continuity
of s(·). Indeed, when the mappings(·) describing descent is
continuous, then(i) implies (ii) without further work. Axiom
(ii) is weaker than askings(·) to be continuous. Clearly,(ii)
always implies(i).

Example.In order to understand the idea behind axiom(ii),
consider aC1-function f and let s(x) denote the steepest
descent step atx, obtained by an Armijo line search. If we
define formally s(x) = x − t(x)f ′(x), where t(x) is the
smallest step satisfying an Armijo rule, thens(x) turns out
continuous, but it is clear that in practice we would acceptany
stept(x) satisfying the Armijo condition, without insisting on
a continuous dependence oft(x) on x. In that cases(x) will
not be continuous, but property(ii) will still hold true. �

Clearly the situation we have in mind is whenf is nons-
mooth, so that a steepest descent step in tandem with Armijo
search would typically fail even whent(x) was continuous.
This is explained by the fact that under nonsmoothness,
defining s(·) along the lines above would miss axiom(ii),
because the steepest descent direction−f ′(x) behaves very
discontinuously. Indeed, examples where this happens are
easily produced.

Proposition 1:. Suppose the descent step generators(·) for
f satisfies axioms(i) and(ii). Let xk be a sequence of iterates
defined asxk+1 = s(xk). Then every accumulation pointx̄ of
xk is a critical point, that is, satisfies0 ∈ ∂f(x̄).

Proof: Let N ⊂ N be an infinite sequence such that
xk → x̄, k ∈ N . Then by monotonicity,f(xk+1) → f(x̄).
That means

f(xk+1) − f(xk) → 0 (k ∈ N ).

Now use axiom(ii) at the limit pointx̄. There existǫ, δ > 0
such thatf(s(x))−f(x) ≤ −δ < 0 for all x ∈ B(x̄, ǫ). Since
xk ∈ B(x̄, ǫ) for k ∈ N large enough, and sincexk+1 =
s(xk), we should havef(xk+1) − f(xk) ≤ −δ for k ∈ N
large enough, a contradiction.

C. Eigenvalue Optimization

How can we define a descent step generators(·) with
properties(i) and (ii) for a maximum eigenvalue function
f(x) = λ1 (F(x))? Suppose we are at a pointx where
0 6∈ ∂f(x). Let the eigenvalues ofX = F(x) ∈ Sm be
arranged into groups:

λ1 = . . . = λk2−1 > λk2
= . . . = λk3−1 > λk3

= . . .

where k1 = 1 and whereki are the group leaders. Conse-
quently, eigenvalue gaps occur betweenki − 1 and ki. Let
Q1 be an orthonormal bases of the eigenspace associated
with the first blockλ1(X), . . . , λk2−1(X), Q2 an orthonormal
basis containingQ1 associated with the first two blocks
λ1(X), . . . λk3−1(X), and so on. AtX = F(x) ∈ Sm we
compute the quantities

∆i(X) = λki+1−1(X) − λki+1
(X) > 0,

di(x) = min{‖F ′(x)⋆QiYiQ
H
i ‖ : Yi ∈ Bki+1−1}

and keep thosei = 1, . . . , r where di(x) > 0. Notice that
di(x) = dist(0, δǫi(x)f(x)), where ǫi(x) > 0 cuts into the
ith gap, that isλ1(X) − ǫi(x) ∈ [λki+1−1(X), λki+1

(X)).
Put differently, theǫi(x)-multiplicity of λ1(X) is ki+1 − 1.
Moreover,d1(x) ≥ d2(x) ≥ . . . ≥ dr(x) and dr+1(x) =
dr+2(x) = . . . = 0 eventually. We compute the quantity

M(x) = max
i=1...r

∆i(X)di(x)2 (18)

Now we use the following
Lemma 1:. Let 0 6∈ ∂f(x) andR > 0. Let ki be the leader

of a group of eigenvalues ofX = F(x) ∈ Sm such that
di(x) = dist(0, δǫi(x)f(x)) > 0. Let hi(x) be the direction of
steepestǫi(x) enlarged descent, that ishi(x) = − gi

‖gi‖
with

gi = argmin{‖g‖ : g = F ′(x)⋆QiY QH
i , Y ∈ Bki+1−1},

where the columns ofQi are an orthonormal basis of the
invariant subspace ofX associated with the eigenvalues up
to ki+1 − 1. Then there exists a descent stepsi(x) away from
x in direction hi(x), which decreases the value off by at
least

f(si(x)) − f(x) ≤ −κ(x)∆i(X)di(x)2 < 0.

Here κ(x) > 0 depends onsup{‖F ′(x′)‖ : ‖x − x′‖ ≤ R}
and in particular continuously onx. The line search required
to compute this step is finite.
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Proof: In the case of an affine operatorA : Rn →
Sm, Oustry [25, Theorem 5] shows thatf = λ1 ◦ A may be
decreased by the quantity

f(x + t(x)hi(x)) − f(x) ≤ −
1

4‖A∗‖
∆ǫi(x)(X)di(x)2

whereA∗ is the linear part ofA. Hereκ = 1/4‖A∗‖ is even
independent ofx. Moreover,t(x) > 0 is computed by a line
search which terminates after a finite number of steps, see [25,
sect. 3.2].

In [37], [38], this result is generalized to nonconvex maxi-
mum eigenvalue functionsf = λ1 ◦ F , with a constantκ(x)
now depending on the Lipschitz constant ofF on a bounded
region aroundx, like for instanceB(x, R) with some fixed
R > 0. In the nonconvex case, the line search procedure
locating t(x) is more complicated than forf = λ1 ◦ A, but
finite termination is still guaranteed (cf. [37, sect. 3.7]). The
constantκ(x) may be computed via the formulae (15), (19)
and (20) of that reference.

Following the lead of [37], it is now clear how to obtain our
steps(x). Choosei so that the maximum (18) is attained and
takes(x) = si(x). Then by Lemma 1,s(x) gives a guaranteed
decrease of

f(s(x)) − f(x) ≤ −κ(x)∆ǫi(x)(X)di(x)2 = −κ(x)M(x),

where the constantκ(x) > 0 depends continuously onx as
argued above. What remains to be checked is

Lemma 2:. This choice ofs(x) andM(x) guarantees prop-
erty (ii).

Proof: Consider a sequencexk → x. We need to
compareM(xk) to M(x). Now observe that due to the
continuity of the eigenvalue functionsλj(X), every eigenvalue
gap atX is also an eigenvalue gap atXk as soon asXk is
sufficiently close toX . On the other hand,Xk may (and will)
have many more gaps thanX . But notice that the maximum
(18) is over all eigenvalue gaps. So each gap inM(x) will
occur in the computation ofM(xk). More precisely, it will
be approximated by some of the gaps considered inM(xk).
Put differently, for theith eigenvalue gap ofX we have
∆ik

(Xk)dik
(xk)2 → ∆i(X)di(x)2, whereik is the index of

the eigenvalue gap ofXk corresponding to theith gap ofX .
Here ∆ik

(Xk) → ∆i(X) and dik
(xk) → di(x) rely on the

fact that gaps atXk remain gaps atX . Sincedik
(xk) calls for

all the Q1, Q2, . . . up to theikth gap atXk, and since these
converge to the corresponding basisQ regrouping the gapi,
the result follows.

That meanslim sup M(xk) ≥ M(x), so we can assume
M(xk) ≥ 1

2M(x) from some indexk on. This in turn implies

f(s(xk)) − f(xk) ≤ −κ(xk)M(xk) ≤ −
1

4
κ(x)M(x)

as soon asκ(xk) is close enough toκ(x), proving property
(ii).

The method outlined in this section gives a convergence
certificate becauseall eigenvalue gaps are included in the com-
putation of (18). This may seem inconvenient for very large
size matricesF(x). If we decide to truncate and consider only
some of the eigenvalue gaps among the largest eigenvalues, the

theoretical convergence properties of the method are weaker,
even though convergence may still be guaranteed e.g. when
f is convex (see [37]). Notice however that even for largem
the quantityM(x) in (18) may be computed fairly reliably by
considering∆ǫi(x)(X)di(x)2 for some of the firsti only. As
di(x) → 0 rather quickly, the higher∆ǫi(x)(X)di(x)2 as a rule
do not contribute to the computation ofM(x). Also notice that
since the sequencedi(x) is monotone, computingdi(x) may
often be avoided, for instance when∆ǫi−1(x)(X) ≥ ∆ǫi(x)(X)
or ∆ǫi(x)(X) ≤ ∆ǫi−ν(x)(X) when the current best value is
located at indexi − ν.

D. Descent by a local model

In this section we present an alternative way to obtain
a descent step generators(·) for the maximum eigenvalue
function f(x) = λ1 (F(x)). We start by constructing an
intermediate functionθ(x), which serves as an optimality test,
and secondly, will allow us to quantify decrease. In this section
our method follows the line of [36, Thm. 2.1.6].

Let X = F(x) ∈ Sm. Let µ1(X) > µ2(X) > . . . > µr(X)
be the eigenvalues ofX without repetitions. That meansµi =
λki

in our old terminology, where we agree that there are
r ≤ m distinct eigenvalues. For some fixedσ > 0 we define
the criticality measure

θ(x) = inf
h∈Rn

sup
i=1,...,r

sup
Yi∈B

{−f(x) + µi(X)

+Tr (YiQ
H
i [F ′(x)h]Qi) + 1

2σ‖h‖2
}

(19)

Here Qi haski+1 − 1 columns which form an orthonormal
basis of the invariant subspace ofX associated with the first
ki+1 − 1 eigenvalues. It is immediately clear thatθ(x) ≤
0, because puttingh = 0 gives the upper boundθ(x) ≤
supi=1,...,r −f(x) + µi(X) = −f(x) + µ1(X) = 0.

Lemma 3:. We haveθ(x) = 0 if and only if 0 ∈ ∂f(x).
Proof: The easiest way to see this is to swap max and

min in (19). This requires that we first replace the inner double
supremum in (19) by a double supremum over the convex
hull of Yi � 0, Tr(Yi) = 1, i = 1, . . . , r, a manoeuvre
which does not change the valueθ(x). Then we use Fenchel
duality to interchange the inner (double) supremum and the
outer infimum, which goes again without changing the value.
The now inner infimum is unconstrained and may be computed
explicitly. For fixedYi and convex coefficientsτ it is attained
at h(x) = −σ−1

∑r

i=1 τiF
′(x)⋆QiYiQ

H
i . Substituting this

back into (19) leaves the dual expression

θ(x) = sup
τi≥0,

P
i
τi=1

sup
Yi∈B

{
−f(x) +

r∑

i=1

τiµi(X)

−
1

2σ

∥∥∥∥∥

r∑

i=1

τiF
′(x)⋆QiYiQ

H
i

∥∥∥∥∥

2


 (20)

which the reader recognizes as a semidefinite program. Since
µi(X) < f(x) for i ≥ 2, equalityθ(x) = 0 is only possible
whenτ2 = . . . = τr = 0 and hence

0 = θ(x) = sup
Y1∈B

−
1

2σ

∥∥F ′(x)⋆Q1Y1Q
H
1

∥∥2
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But the quantity on the right hand side is only zero when
F ′(x)⋆Q1Y1Q

H
1 = 0, i.e., when0 ∈ ∂f(x). The latter follows

readily from the representation

∂f(x) = {F ′(x)⋆Q1Y1Q
H
1 : Y1 ∈ B}

of the subdifferential∂f(x).
As a byproduct of the proof via duality we have the

following
Corollary 1: The infimum in (19) is attained at

h(x) = −
1

σ

r∑

i=1

τiF
′(x)⋆QiYiQ

H
i , (21)

where(τ, Y ) is the solution of the dual program (20). As soon
asθ(x) < 0, h(x) is a direction of descent off at x.

In order to construct our descent step generator, we need
to establish two additional properties ofθ. Firstly, we need to
show that decrease atx may be quantified with the help ofθ.
Secondly, we have to establish continuity ofθ.

Lemma 4:. The functionθ is continuous.
Proof: Notice that by the dual formula (20),θ(x) is

the supremum of an infinite family of functions of the form
−f(x) +

∑r

i=1 τiµi(X)+ c(x) = −f(x) +
∑m

j=1 σjλj(X) +
c(x) for σj = τi/(ki+1 − ki), where ki ≤ j < ki+1,
and where c(x) = −1/2σ‖

∑
i τiF ′(x)⋆QiYiQ

H
i ‖2 de-

pends continuously onx. Notice that µi(X) = (ki+1 −
ki)

−1
∑ki+1−1

j=ki
λj(X). This shows thatθ(x) is the supremum

of a family of continuous functions, indexed by(τ, Y ). θ is
therefore lower semi-continuous. It remains to prove thatθ is
also upper semi-continuous.

Let xj → x such thatθ(xj) → θ. We have to showθ ≤
θ(x). We use the representation (20). Letǫj > 0, ǫj → 0 and
chooseτ j

i andY j
i such that

θ(xj) ≤ −f(xj) +
r∑

i=1

τ j
i µi(Xj) −

1

2σ

∥∥∥∥∥

r∑

i=1

τ j
i gj

i

∥∥∥∥∥

2

+ ǫj ,

where gj
i = F ′(xj)

⋆Qj
iY

j
i QjH

i . Passing to a subsequence
if necessary, we may assume that eachXj has exactlyr
eigenvalue gaps, which remain in the same placeski, i =
1, . . . , r. That is µi(Xj) = λki

(Xj). Passing to yet another
subsequence, we may assumeτ j → τ , Y j

i → Yi and Qj
i →

Qi, where the limiting elements are all of the same types and
dimensions as the elements at stagej.

However,λki
(X) are no longer the distinct eigenvalues of

X , because some of the distinctµi(Xj) = λki
(Xj) may

coalesce in the limitj → ∞. Suppose for instance that
limj→∞ µi(Xj) = . . . = limj→∞ µi+t(Xj), so that the
blocks i, i + 1, . . . , i + t coalesce in the limit, forming a new
larger eigenvalue block ofX :

λki−1(X) > λki
(X) = . . . = λki+t+1−1(X) > λki+t

(X),

which is represented by a certainµν(X). Suppose there are
N block leaders atX . For each of theseµν(X) we define

σν = lim
j→∞

i+t∑

s=i

τ j
s ,

then

lim
j→∞

r∑

i=1

τ j
i µi(Xj) =

N∑

ν=1

σνµν(X),

where
∑N

ν=1 σν = 1. This represents the limiting linear term
in (20) in a new form suited for the dual representation of
θ(x).

We next have to treat the norm square term arising in (20) in
much the same way. Notice first that theQj

i , i = 1, . . . , r to-
gether form a nested sequence of basis vectors adding up to an
orthonormal basis of eigenvectors ofXj . Passing to the limit
j → ∞ gives an orthonormal basis of eigenvectors ofX . We
regroup it according to the eigenvalue gaps ofX and rename
the corresponding partsP1 ⊂ P2 ⊂ . . . PN . All that remains
to do is to re-write the limitlimj→∞

∑r
i=1 τ j

i Qj
iY

j
i QjH

i in
the form

∑N

ν=1 σνPνZνPH
ν for certainZν ∈ B. This is done

by writing

QiYiQ
H
i = Qj

[
Yi 0
0 0

]
QH

j = Pν

[
Yi 0
0 0

]
PH

ν

wheneveri < j have to be regrouped in the samePν , and
wherej is the last among the old indices subsumed into the
new indexν, so thatQj = Pν . Then

Zν =

i+t∑

s=i

τi

σν

[
Yi 0
0 0

]

is as required, because
∑i+t

s=i τs = σν , henceTr(Zν) = 1,
while Zν � 0 is clear.

The argument shows thatθ = −f(x) +
∑N

ν=1 σνµν(X) −
1
2σ

∥∥∥
∑N

ν=1 σνF ′(x)⋆PνZνPH
ν

∥∥∥
2

, which is to say thatθ is now
of the form required to be admitted to the supremum (20)
definingθ(x). In other words,θ ≤ θ(x), and this is what we
had to prove.

Notice that [36, Thm. 2.1.6 (e)] is obtained as a special
case of Lemma 4 if the operatorF(x) is specialized to a
diagonal matrix. The extension to multiple eigenvalues is
possible becauseall the eigenvalues are taken into account
simultaneously. For large matrices, this may again seem in-
convenient since it will lead to large SDPs in (20).

Lemma 5:. The mappingh(x) defined by (21) is continu-
ous.

The proof follows along the lines of the previous Lemma
and is therefore omitted.

Let us now see howθ(x) may be used to quantify descent
of f = λ1 ◦ F at x. Assume0 6∈ ∂f(x), so thatθ(x) < 0.
Using the directional derivative off at x in direction h(x),
we obtain

f ′ (x; h(x)) = sup
Y ∈B

h(x)T
(
F ′(x)⋆Q1Y QH

1

)

= sup
Y ∈B

Tr (Y QH
1 [F ′(x)h(x)]Q1)

≤ θ(x) −
1

2σ
‖h(x)‖2 < θ(x) < 0

which follows readily from the primal formula (19) forθ if
we use the fact that−f(x) + µ1(X) = 0. In consequence we
have the following
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Lemma 6:. Let 0 < τ < 1 be fixed. There existsǫ > 0 such
that f(x′ + th(x′)) − f(x′) < tτθ(x′) for everyx′ ∈ B(x, ǫ)
and all t > 0 sufficiently small.

Proof: By the definition of the directional derivative and
the fact that0 < τ < 1 we have

f(x + th(x)) − f(x) ≤ tτf ′(x; h(x))

≤ tτ

(
θ(x) −

1

2σ
‖h(x)‖2

)
(22)

< tτθ(x)

for some t0 > 0 and all 0 < t < t0. Sinceh(·) and θ(·)
are continuous, we can find a neighborhoodB(x, ǫ) of x such
thatf(x′ + th(x′))−f(x′) < tτθ(x′) for all x′ ∈ B(x, ǫ) and
every0 < t < t0. This proves the claim.

In order to constructs(·), we follow [36, 3c, p. 223] and
defines(x) = x + t(x)h(x), where

t(x) := sup{2−k : k ∈ N, f(x+2−kh(x))−f(x) < 2−kτθ(x)}.

The supremum is over a nonempty set because of (22),
hence0 < t(x) < +∞. Let k(x) be the integer where
the supremumt(x) is attained. Let us check property(ii)
with ǫ > 0 as in Lemma 6 andδ = −2−k(x)−1τθ(x) >
0. Let x′ ∈ B(x, ǫ). Since t(x) satisfies (22), we have
f(x′ + t(x)h(x′)) − f(x′) < t(x)τθ(x′) by Lemma 6.
Thereforet(x) = 2−k(x) is admitted for the supremumt(x′),
which implies t(x′) ≥ t(x). Thereforef (s(x′)) − f(x′) =
f (x′ + t(x′)h(x′)) − f(x′) < t(x′)τθ(x′) ≤ t(x)τθ(x′) ≤
t(x)τθ(x)/2 = −2−k(x)−1τθ(x) = −δ, when we assume that
ǫ is chosen sufficiently small to assureθ(x′) ≤ θ(x)/2 for
everyx′ ∈ B(x, ǫ). This proves(ii) for the above choice of
t(x). Other choices oft(x) like for instance [39] are possible.

E. The semi-infinite case

Our last step is now to address the semi-infinite case. We
are in the situation (17). Suppose that for finiteΩ ⊂ R ∪
{−∞, +∞} we already dispose of a descent step generator
sΩ for fΩ, satisfying axioms(i) and (ii). This is naturally
the case when thef(x, ω) are maximum eigenvalue functions,
because a finite maximum of maximum eigenvalue functions
is itself a maximum eigenvalue function. So here we obtain
sΩ as in sections VI-C or VI-D. Suppose now that we can
specify a sequence of finite setsΩ1 ⊂ Ω2 ⊂ . . . such that the
following conditions are satisfied:

(iii) If 0 6∈ ∂f(x), then lim sup
k→∞

f(sΩk
(x)) − f(x) < 0.

(iv) For everyx ∈ Rn andǫ > 0,

lim
k→∞

max
x′∈B(x,ǫ)

inf
ω′∈Ωk

|f(x′, ω) − f(x′, ω′)| = 0 .

Notice that both axioms guarantee that the approximationΩk

improves with growingk. Axiom (iii) tells that as soon as
0 6∈ ∂f(x), descent steps may be eventually generated by
using approximationsfΩk

of f . Axiom (iv) is simply saying
that approximations get better ask increases, and that this
happens uniformly on small neighborhoods of eachx.

Using these axioms, let us construct a descent step generator
s(·) for f . We proceed as follows:

Semi-infinite descent step generator

1) If 0 ∈ ∂f(x) then s(x) = x and return. Otherwise put
counterk = 1 and continue.

2) At counterk, if 0 ∈ ∂fΩk
(x), then increasek until

0 6∈ ∂fΩk
(x).

3) At counterk with 0 6∈ ∂fΩk
(x), compute the descent

stepsΩk
(x) for fΩk

at x. Let ǫk, δk > 0 be such that
fΩk

(sk(x′)) − fΩk
(x′) ≤ −δk < 0

for everyx′ ∈ B(x, ǫk), as guaranteed by axiom(ii) for
sΩk

.
4) Computeηk := inf{|f(x′, ω) − f(x′, ω′)| : ω′ ∈

Ωk, x′ ∈ B(x, ǫk) ∪ s (B(x, ǫk))}
5) If 3ηk < δk, then lets(x) = sΩk

(x) and stop. Otherwise
increasek by one and go back to step 3.

We have to make sure that this scheme is well-defined
and introduces a step generators(·) for the infinite maximum
function f .

Lemma 7:. The descent step generators(·) for f(x) =
supω∈R

f(x, ω) is well-defined and satisfies axioms(i) and
(ii). Moreover, each of the above loops ends after a finite
number of iterations.

Proof: Notice first that if0 6∈ ∂f(x), then descent around
x is possible. SincefΩk

(x) → f(x) as k → ∞, we can
also decreasefΩk

aroundx for k sufficiently large. So step 2
ends with a descent step offΩk

at x after a finite number of
trials. Moreover, this remains so for the following counters k,
becauseΩk ⊂ Ωk+1.

Next observe thatηk → 0 by axiom (iv), while
lim sup−δk < 0 by axiom (iii). That means3ηk < δk for
k sufficiently large, i.e., the procedure ends in step 4 after a
finite number of updatesk → k + 1. It remains to check that
s is as required.

SupposefΩk
(sΩk

(x′)) − fΩk
(x′) ≤ −δk for every x′ ∈

B(x, ǫk). Then |f(sΩk
(x′)) − fΩk

(sΩk
(x′))| ≤ ηk, |f(x′) −

fΩk
(x′)| ≤ ηk, hencef(sΩk

(x′)) − f(x′) ≤ −δk + 2ηk ≤
− 1

3δk. This proves axiom(ii).
The procedure is sufficiently flexible to accommodate a

problem oriented step generation. We may adapt the choice
of Ωk to the structure off , and what is more important, to
the local behavior off around the currentx.

F. First-order algorithm for theH∞ norm

We are now ready to present our algorithm, which follows
the lines of the previous sections. We start with a version based
on sections VI-C and VI-E.

First-order algorithm for theH∞ norm: variant I

0) Fix 0 < τ < 1 and choose initial pointx0.
1) Givenxk choose a finite setΩk containingΩ(xk).
2) ComputeM(xk) for fΩk

according to (18). IfM(xk) =
0 then stop, because0 ∈ ∂f(x). Otherwise

3) Use a line search to find a steptk such that the predicted
decrease satisfiesπk = fΩk

(xk + tkhk) − f(xk) ≤
−κ(xk)M(xk) < 0. Compare with the actual decrease
αk = f(xk + tkhk) − f(xk). If αk ≤ τπk, accepttk,
put xk+1 = xk + tkhk and goto step 5.
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4) If αk > τπk then rejecttk and add nodes toΩk to obtain
the finer meshΩk+1. Increase counterk by one and go
back to step 2.

5) Increase counterk by one and go back to step 1.
In steps 3 and 4 of the algorithm we recognize the mech-

anism of the previous section, which obtains a descent step
generator for the semi-infinite function by using those of the
finite modelsfΩk

. We accept the step forf if it exceeds a
small fraction of the descent predicted by the finite model
fΩk

. This is essentially the same procedure as in VI-E.
Next comes the version based on section VI-D in tandem

with section VI-E. The semi-infinite case is handled in exactly
the same fashion, but the descent step generatorssΩk

are
different.

First-order algorithm for theH∞ norm: variant II

0) Fix 0 < τ1, τ2 < 1 and δ > 0 and choose initial point
x0.

1) Givenxk choose a finite setΩk containingΩ(xk).
2) Compute the valueθk and the solution(τk, Y k) of the

SDP (19). If θk = 0, then stop because0 ∈ ∂f(xk).
Otherwise compute the descent directionhk for fΩk

at
xk according to (21).

3) Using a line search, find a steptk such that the predicted
decrease satisfiesπk = fΩk

(xk + tkhk) − f(xk) <
τ1tkθk < 0. Compare with the actual decreaseαk =
f(xk + tkhk) − f(xk). If αk ≤ τ2πk, accepttk, put
xk+1 = xk + tkhk and goto step 5.

4) If αk > τ2πk then rejecttk and add nodes toΩk to
obtain the finer meshΩk+1. Increase counterk by one
and go back to step 2.

5) Increase counterk by one and go back to step 1.

G. Practical aspects

In this section we comment on the salient features of the
nonsmooth first-order descent algorithm and address some of
the practical aspects.

In our testing we have observed that often the leading eigen-
valuesλ1 (F(xk, jων)) have multiplicity 1 at all frequencies
ων ∈ Ω(xk). In this situation step 2 of the descent algorithm
variant II could be simplified. Suppose at the current iterate xk

we have selected a finite set of frequenciesΩk = {ω1, . . . , ωq}
containingΩ(xk). Suppose allλ1 (F(xk, jων)) have multi-
plicity 1. Let gν = F ′(xk, jων)⋆eνeT

ν = f ′(xk; ων), whereeν

is the normalized eigenvector associated withλ1 (F(xk, jων)).
Then the semidefinite program (16) respectively (20) simplifies
to a convex quadratic programθ(xk) =

sup
τν≥0,

P
ν

τν=1

−fΩ(xk) +

q∑

ν=1

τνf(xk, ων) −
1

2σ

∥∥∥∥∥

q∑

ν=1

τνgν

∥∥∥∥∥

2

and the associated direction of descenthk = h(xk) is

h(xk) = −
1

σ

q∑

ν=1

τνgν ,

where τ is the optimal solution of the quadratic program.
Observe that forΩk = Ω(xk), h(xk) coincides with the
steepest descent direction for a finite max function.

Let us now specify in which way we select the frequency set
Ωk at each step. The finite set of frequenciesΩ(xk) where the
H∞ norm is attained is computed via the Hamiltonian tech-
nique [10]. We then form an enriched setΩk of frequencies by
adding to the peak frequencies a collection of logarithmically
spaced frequenciesων such that

‖Tw→z(K)‖∞ − σ(Tw→z(K, jων)) ≤ ǫω ‖Tw→z(K)‖∞ ,

where ǫω is a user-specified tolerance. We usually limit the
set to the first50 frequencies with largest singular values, as
this appears to work well on a broad range of numerical tests.
Typical values forǫω range from0.05 to 0.5. The algorithm
requires that this set be iteratively refined when descent steps
cannot be computed, but in practice our choice is usually
satisfactory, and numerical problems due to exceedingly fine
Ωk can be avoided.

VII. N UMERICAL EXPERIMENTS

In this section we test our nonsmooth algorithms on a
variety of synthesis problems from theCOMPleib collec-
tion by F. Leibfritz [40]. Computations were performed on
a (low-level) SUN-Blade Sparc with256 RAM and a 650
MHz sparcv9 processor. LMI-related computations for search
directions used the LMI Control Toolbox [41] or our home
made SDP code [6] while QP computations are based on
Schittkowski’s code [42].

Our algorithm is a first-order method. Not surprisingly, it
may be slow in the neighborhood of a local solution. We
have implemented various stopping criteria to ensure that an
adequate approximation of a solution has been found and to
avoid unwarranted computational efforts as is often the case
with a first-order algorithm. The first of these termination
criteria is an absolute stopping test, which provides a criticality
assessment

inf{‖g‖ : g ∈ ∂f(x)} < ǫ1, (23)

This is reasonable, as0 ∈ ∂f(x) indicates a critical point. It
is also mandatory to use relative stopping criteria to reduce
the dependence on the problem scaling. The test

‖Tw→z(K)‖∞ − ‖Tw→z(K
+)‖∞ < ǫ2(1 + ‖Tw→z(K)‖∞) ,

(24)
compares the progress achieved relatively to the currentH∞

performance, while

‖K+ − K‖ < ǫ3(1 + ‖K‖) (25)

compares the step-length to the controller gains. The tolerances

ǫ1 = 1e−5, ǫ2 = 1e−3, ǫ3 = 1e−3

have been used in our numerical testing. For stopping we
required that either the first two tests or the third one are
satisfied. For the enriched set, the number of frequencies
has been limited to50. They are selected according to our
discussion in section VI-G. It is sometimes possible to employ
fewer frequencies, but generally better steps are performed
when richer sets are used. Our choice appears reasonable
and has been validated on numerous experiments. It does not
restrict efficiency since QP codes are very efficient up to500
variables.
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A. Stabilization

Pure stabilization may be regarded asH∞ synthesis under
the special form (6). The optimization program is (5), but
we stop the algorithm as soon as a stabilizing controller is
obtained. Iterating until a local optimum of (5) is reached
does not seem to improve any of the usual performance
specifications of the stabilizing feedback controller. Such
questions have to be addressed in a second procedure, where
the stabilizing controller will serve as a starting point. The
spectral abscissa (7) is used to check stability ofK, but is not
used as a cost function. Previous experiments where (7) was
used to find stabilizing controllers are reported in [29].

Table I displays results obtained for static stabilization
problems borrowed from the literature. The triple(n, m, p)
gives the number of states, inputs and outputs. Column ‘iter’
corresponds to the number of iterations required to meet
the combined stopping tests. Columnα displays the final
closed-loop spectral abscissa (7). Negativeα < 0 indicates
a stable closed-loop system. Column ’cpu’ gives the cputime
in seconds. Note that the reported cputimes are only indicative
as theα-version of our code includes a number of extra tests
and even graphics that have been exploited for fine tuning of
the various algorithm parameters.

The initial shift for theH∞ norm minimization was chosen
according to the following rule

a0 := max (α(A) ∗ (1 + 10%), 1e−2) , (26)

with a zero initial static controllerK0 = 0.
From the table, we observe that in all cases but one, the

original choicea0 of the shift was successful. As indicated,
there is no need to run the algorithm until convergence. A
stabilizing solution is therefore obtained very early. A single
SDP or convex QP with line search suffices in most cases.

In the second example, we had to reduce the shift three
times before stability was reached. This was done according
to rule (26), applied to the closed-loop dynamics. In this
example theH∞ criterion is flat about a (global) optimum,
which allows longer steps and renders the step-length-based
termination criterion more stringent. Note that in this case
the solution is globally optimal because a zeroH∞ norm is
reached.

TABLE I

STATIC OUTPUT-FEEDBACK STABILIZATION

problem (n, m, p) iter α cpu (sec.)

Transport airplane [43] (9, 1, 5) 1 −2.22e−2 2.26
Horisberger’s example [44] (9, 1, 4) 4 −0.01 12.0

VTOL helicopter [45] (4, 2, 1) 1 −6.00e−2 1.90
Chemical reactor [46] (4, 2, 2) 1 −1.73 2.26

Piezoelectric actuator [47] (5, 1, 3) 1 −9.95e−1 2.88
Boeing 767 [48] (55, 2, 2) 1 −2.33e−2 6.47

steepest descent method -ǫω = 0.05

For test reasons, the pure stabilization problems have been
solved with the steepest descent method in section V. As
expected, this technique is less stable than algorithmic variants
I and II. Specifically, the choice ofǫω is rather critical and
finding a general selection rule appears difficult. Together

with our analysis in section VI, this encouraged us to use
algorithmic variant II in the syntheses problems below.

B. H∞ synthesis problems

This section is devoted toH∞ synthesis problems. The
synthesis procedure is based on the scheme (3) and must be
initialized with a stabilizing controller. This initial phase I is
described in the previous section, but alternative techniques
to find an initial stabilizing controllerK may prove useful
[29]. All examples are extracted from theCOMPleib collec-
tion [40]. Column ‘problem’ now indicates theCOMPleib
acronym attached to each example.

Notice that for a staticK, our program could formally be
solved as

minimize ‖Tw→z(K)‖∞, K ∈ Mk+m2,k+p2

subject to ‖C2 (sI −A(K))−1 B2‖∞ ≤ M
(27)

whereM > 0 is a constant e.g. such that the initial stabilizing
controllerK0 satisfies

‖C2 (sI −A(K0))
−1

B2‖∞ ≪ M < +∞

and whereA(K) refers to the closed-loop system matrix. Note
that the extra constraint in (27) maintains asymptotic stability
of the closed-loop system during the optimization ofK.

It often happens that stability of the performance channel
Tw→z(K) alone already implies stability of the closed-loop
system, so that the (internal) stability constraint in (27)is re-
dundant. This observation is significant, because this constraint
can be dropped, and the problem becomes unconstrained. In
those cases where this does not hold true, we may if we want
to avoid the big-M constraint in (27), introduce the composite
problem

minimize
K

∥∥∥∥
[

Tw→z(K) 0
0 ǫs C2 (sI −A(K))−1 B2

]∥∥∥∥
∞

where the lower-right term enforces internal stability, with
ǫs > 0 a small enough parameter. The new problem can now
be handled by the techniques discussed so far without change.
Similar modifications apply to design problem with additional
structural constraints on the controller.

We compare the results of our nonsmooth algorithm variant
II in columns ’nonsmoothH∞’ to older results obtained
with the specialized augmented Lagrangian (AL) algorithm
described in [17], displayed in columns ’H∞ AL’, and to
results obtained with the Frank & Wolfe (FW) algorithm
described in [14], column ’FW’. In column ’H∞ full’, we
display the gain obtained with a full-order feedback controller,
synthesized via the usual Riccati-based DGKF technique [2].
Note that it gives the best achievableH∞ performance and
thus provides a lower bound for other techniques.

The results which we obtain with our nonsmooth tech-
nique are usually close to those previously obtained with
the augmented Lagrangian method [17], except for problems
with large state dimension as ’AC10’ (55 states), ‘BDT2’ (82
states), ’HF1’ (130 states) and ’CM4’ (240 states), where
the augmented Lagrangian method fails, while the present
nonsmooth method is still functional. For these large systems,
’AC10’, ’BDT2’, ’HF1’ and ’CM4’, we have observed that
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TABLE II

H∞ SYNTHESIS WITH NONSMOOTH ALGORITHMIC VARIANTII

problem (n, m, p) order iter cpu (sec.) nonsmoothH∞ H∞ AL FW H∞ full

AC8 (9, 1, 5) 0 20 45 2.005 2.02 2.612 1.62
HE1 (4, 2, 1) 0 4 7 0.154 0.157 0.215 0.073

REA2 (4, 2, 2) 0 31 51 1.192 1.155 1.263 1.141
AC10 (55, 2, 2) 0 15 294 13.11 ∗ ∗ 3.23
AC10 (55, 2, 2) 1 46 408 10.21 ∗ ∗ 3.23
BDT2 (82, 4, 4) 0 44 1501 0.8364 ∗ ∗ 0.2340
HF1 (130, 1, 2) 0 11 1112 0.447 ∗ ∗ 0.447
CM4 (240, 1, 2) 0 2 3052 0.816 ∗ ∗ ∗

ǫω = 0.05, ‘∗’: problem is intractable

TABLE III

H∞ CONTROLLERS FOR LARGE PROBLEMS WITH ALGORITHMII

problem order K(s)

AC10 0 K =

»

−9.0747e−1 2.1249e−5
4.3042 2.2467e−5

–

AC10 1

»

−6.110e−2
−2.361e−2

–

(s + 2.633)−1 [−6.476e−2 1.245e−2 ] +

»

2.698e−1 1.389e−5
−3.285e−01 5.226e−5

–

BDT2 0

2

6

4

−1.0402 1.2997 1.4684 3.0555
−3.7306 −3.5572 −1.9894 2.2705
−2.8162 2.1944 1.8146 9.6202
−9.8493 −5.5376 −2.4885 5.1699

3

7

5

HF1 0 [−0.1907 −1.3093 ]
CM4 0 [−4.5684 −0.6667 ]

even Riccati or LMI solvers encounter serious difficulties or
even break down.

Notice that our present nonsmooth technique (NS) and the
AL method are rigorous in the sense that they converge to local
minima (critical points). It is therefore not surprising that NS
and AL often achieve the sameH∞ performance at the same
K, for which optimality was established in [18].

Note that in its original form, the FW method cannot solve
problems where performance is optimized under constraintson
the order of the controller. We have therefore encapsulatedFW
into a dichotomy search in order to assure the best possible
performance. According to our numerical experiments, AL
and FW, which solve SDPs at every iteration, are no longer
functional even for medium size systems such as the Boeing
problem ’AC10’. Higher-order problems like ’BDT2’, ’HF1’,
and ’CM4’ are completely intractable with these techniques,
while the nonsmooth method continues to produce valid solu-
tions. We observed that FW, when functional, is outperformed
both by AL and NS. We attribute this to the fact that, as
opposed to AL and NS, FW is not supported by a sound
convergence theory, and therefore often stops at iteratesK
which are not even locally optimal. Examples ofK where
this is the case are easily identified. It suffices to start AL or
NS at iteratesK where FW stops which almost always leads to
further improvement. As an example, when we initialized NS
with the FW solution in example ’AC8’, theH∞ performance
was improved from2.612 to 2.005. A phenomenon that we
have also observed in examples ’HE1’ and ’REA2’. This is
a strong argument in favor of those optimization techniques,
which generate steps based on local convergence theory. It
means that NS and AL can be used to certify criticality of
controllers obtained with alternative methods.

As an illustration of the nonsmooth technique, Fig. 1 shows
the evolution of the maximum singular value ofTw→z(K)
for example ’AC8’ during the first5 iterations. The stars
indicate the frequenciesωi that were regrouped in the set
Ωk to construct a bundle of Clarke subgradients at iteratexk.
Also, Fig. 2 depicts the evolution of the absolute value of the
criticality measure of algorithm variant II (19) and (20) versus
iterations. As theoretically expected,θ(xk) gradually tends to
zero until a local minimum is reached. Finally, controllersfor
large problems ’AC10’, ’BDT2’, ’HF1’ and ’CM4’ are given
in Table III.

VIII. C ONCLUSION

We have proposed several new algorithms to minimize the
H∞ norm subject to structural constraints on the controller
dynamics. The proposed method uses nonsmooth techniques
suited forH∞ synthesis and for semi-infinite eigenvalue or
singular value optimization programs. Variant I and variant II
of our algorithm are supported by global convergence theory, a
crucial parameter for the reliability of an algorithm in practice.
Variant II has been shown to perform satisfactorily on a
number of difficult examples. In particular, four examples with
large state dimension (n = 55 n = 82, n = 130 andn = 240)
have been solved.

Note that the proposed tools and techniques easily extend
to multidisk problems and synthesis problems on prescribed
frequency intervals [49]. More importantly, they pave the way
for investigating an even larger scope of synthesis problems,
characterized through frequency domain inequalities of the
form λ1(H(x, ω)) ≤ 0, ω ≥ 0, whereH(x, ω) is Hermitian-
valued andx stands for controller parameters and possibly
multiplier variables, as is the case when IQC formulations are
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Fig. 1. Max singular values (transport airplane ‘AC8’) versus frequency -
first 5 iterations - ‘*’ selected frequencies
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Fig. 2. Criticality measureθ(x) versus iterations for ‘BDT2’

used [50]. This is a strong incentive for further development
and research. Also, a second-order version of our technique
with enhanced asymptotic convergence is currently under
investigation [51].
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