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Abstract

This paper studies state quantization schemes for feedback stabilization of control systems with
limited information. The focus is on designing the least destabilizing quantizer subject to a given
information constraint. We explore several ways of measuring the destabilizing effect of a quantizer
on the closed-loop system, including (but not limited to) the worst-case quantization error. In each
case, we show how quantizer design can be naturally reduced to a version of the so-called multicenter
problem from locational optimization. Algorithms for solving such problems are discussed. In partic-
ular, an iterative solver is developed for a novel weighted multicenter problem which most accurately
represents the least destabilizing quantizer design.

1 Introduction

In this paper we study control systems whose state variables are quantized. We think of a quantizer as
a device that converts a real-valued signal into a piecewise constant one taking a finite set of values.
The recent papers [2, 7, 10] discuss various situations where this type of quantization arises and provide
references to the literature. Mathematically, a quantizer can be described by a piecewise constant
function q : D ⊂ R

n → Q, where Q is a finite subset of Rn with a fixed number of elements N . Here
n is the state dimension of a given system. We denote the elements of Q by q1, . . . , qN and refer to
them as quantization points. The sets Wi := {x ∈ D : q(x) = qi}, i ∈ {1, . . . , N} associated with fixed
values of the quantizer form a partition1 of the domain D and are called quantization regions. Quantized
values of the state represent a limited information flow from the system to a feedback controller: the
state is not completely known to the controller, but it is only known which one of a fixed number of
quantization regions contains the current state at each instant of time.

In the literature it is usually assumed that quantization regions are fixed in advance and have specific
shapes, most often rectilinear. Here we are interested in the situation where the number of values N
of the quantizer is a given information constraint in the control problem, but the control designer has
flexibility in choosing a specific configuration of quantization regions (whose shapes can in principle be

∗Email: bullo@uiuc.edu. Supported by DARPA/AFOSR Award F49620-02-1-0325.
†Email: liberzon@uiuc.edu. Supported by NSF ECS-0134115 CAR, NSF ECS-0114725, and DARPA/AFOSR MURI

F49620-02-1-0325 grants.
1A collection {W1, . . . ,WN} of subsets of D is a partition of D if the intersection between the relative interior of any

two Wi is empty and the union of all Wi equals D.
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arbitrary) and quantization points. While there has been some research on systems with quantization
regions of arbitrary shapes [14, 12] and on the relationship between the choice of quantization regions
and the behavior of the closed-loop system [7, 10], the general problem of determining the “best”
quantizer for a particular control task such as feedback stabilization remains largely open.

A feedback law which globally asymptotically stabilizes a given system in the absence of quantization
will in general fail to provide global asymptotic stability of the closed-loop system that arises in the
presence of state quantization. There are two phenomena which account for changes in the system’s
behavior caused by quantization. The first one is saturation: if the quantized signal is outside the
range of the quantizer, then the quantization error is large, and the control law designed for the ideal
case of no quantization leads to instability. The second one is deterioration of performance near the
equilibrium: as the difference between the current and the desired values of the state becomes small,
higher precision is required, and so in the presence of quantization errors asymptotic convergence is
impossible. These phenomena manifest themselves in the existence of two nested invariant regions such
that all trajectories of the quantized system starting in the bigger region approach the smaller one,
while no further convergence guarantees can be given.

In Section 2 we explain how the destabilizing effect of a given quantizer can be measured. This
destabilization measure, in conjunction with an arbitrary stabilizing feedback law and a corresponding
Lyapunov function, can be used to determine an ultimate bound on solutions. One example of such a
destabilization measure is the worst-case quantization error maxx∈D |q(x) − x|. However, it turns out
that there exist other destabilization measures which are actually more suitable in the present context.
Although the parameters of the control system are used in the stability analysis, the destabilization
measure itself is a function of the quantization regions and quantization points only. The quantizer
design problem then naturally reduces to an optimization problem which consists in minimizing such a
measure over all quantizers satisfying the information constraint.

After casting quantizer design as an optimization problem, we proceed to explain how techniques
from (optimal) facility location yield new insights into this problem as well as efficient algorithms for
solving it. Facility location problems concern the location of a fixed number of facilities that provide
service demanded by users; the objective is to minimize the average or maximal distance from sets of
demand points to facilities. We focus here on settings continuous in the location of both the facilities
and the demand points (both facilities and demand points take values in a continuum of points, e.g., in a
polytope or ellipsoid). Facility location problems are surveyed in [5]. Computational geometric aspects
in continuous facility location are discussed in [19, 18] and indirectly in textbooks on computational
geometry [4]. Relevant background on computational geometric methods in locational optimization is
provided in Section 3.

For example, a classical problem of interest in locational optimization is the so-called multimedian

problem. It consists in choosing a collection of N points q1, q2, . . . , qN in a bounded region D ⊂ R
n

so as to minimize the quantity E(mini∈{1,...,N} |qi − x|2), where the expected value is computed with
respect to some probability density function on D and | · | denotes the Euclidean norm. A solution of
this problem is given by centroidal Voronoi tessellations; see [23, 6]. Within the context of quantization
and information theory, the multimedian problem is known as the classic fixed-rate minimum-distorsion
quantizer design [9]. One of the early references on this problem is the work by Lloyd [13], who obtains
optimality conditions and introduces a famous insightful algorithm. The multimedian problem is related
to the problem of state moment stabilization of linear systems with limited data rate [16].

Since we are working in the deterministic setting, we will find that the problem relevant for our
purposes is the multicenter problem, discussed in [23, 22]. This is a somewhat less frequently encountered
variant of the multimedian problem, which is obtained by replacing the expected value by the worst-case
value; it can also be stated as the problem of covering a given region with overlapping balls of minimal
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radius. The connection between the quantized control problem and the multicenter problem, although
very natural, apparently has not been pursued before. In Section 3 we present a general formulation
of the multicenter problem with weighting factors. We then discuss solutions of several versions of this
problem which arise in the present context, all in terms of suitable Voronoi tessellations. We show
how existing algorithms can handle some of the more apparent approaches, and then develop a novel
algorithm which gives less conservative results. We note that while weighted multimedian problems are
commonly encountered, our formulation is novel in that it introduces weighting factors in the multicenter
problem.

Simulation studies that we are currently conducting (as well as existing studies of the related multi-
median problem, such as [8]) indicate that by solving the quantized feedback stabilization problem with
the help of locational optimization techniques, one may obtain quite interesting quantization patterns.
In particular, for planar systems a typical quantization region is a hexagon. Consequently, hexagonal
quantization regions are capable of achieving better performance than more traditional rectangular ones.

2 Quantization and stability

We assume that the stabilization problem in the absence of quantization has been solved, in the sense
that a state feedback control law is known such that the origin is a globally asymptotically stable equi-
librium point of the ideal closed-loop system. In the presence of quantization, we adopt the “certainty
equivalence” control paradigm; namely, we let the same control law act on the quantized state q(x). The
problem under consideration is to characterize the destabilizing effect of a quantizer q, with the goal of
obtaining an ultimate bound on solutions of the closed-loop system starting in a given bounded region.
We first discuss this problem for general nonlinear systems and then develop more specific results for
linear systems, moving from simpler but conservative to more complicated but sharper formulations.

2.1 Nonlinear systems

We start with the general situation where the process to be controlled is modeled by the nonlinear
system

ẋ = f(x, u), x ∈ R
n, u ∈ R

m. (1)

All vector fields and control laws are understood to be sufficiently regular (e.g., C1) so that existence and
uniqueness of solutions are ensured. Suppose that some nominal static feedback law u = k(x) is given
(with minor changes, dynamic feedback laws can also be used). In the presence of state quantization,
we consider the feedback law u = k(q(x)) and the corresponding closed-loop system

ẋ = f(x, k(q(x))) = f(x, k(x+ e)) (2)

where
e := q(x)− x

represents the quantization error.

Besides stabilizing the nominal system (1), the feedback law k clearly must possess some robustness
property with respect to the measurement error e. To this end we impose the following assumption:
there exists a C1 function V : Rn → R such that for some class K∞ functions2 α1, α2, α3, ρ and for all

2Recall that a function α : [0,∞) → [0,∞) is said to be of class K if it is continuous, strictly increasing, and α(0) = 0.
If α ∈ K is unbounded, then it is said to be of class K∞. A function β : [0,∞)× [0,∞) → [0,∞) is said to be of class KL
if β(·, t) is of class K for each fixed t ≥ 0 and β(s, t) decreases to 0 as t → ∞ for each fixed s ≥ 0.
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x, e ∈ R
n we have

α1(|x|) ≤ V (x) ≤ α2(|x|)
and

|x| ≥ ρ(|e|) ⇒ ∂V

∂x
f(x, k(x+ e)) ≤ −α3(|x|).

(Here and below, | · | denotes the standard Euclidean norm.) This amounts to the property that the
control law u = k(x) input-to-state stabilizes the closed-loop system with respect to the measurement
error e [20, 21]. The above assumption is rather restrictive and can be relaxed at the expense of
obtaining weaker results (for linear systems, however, it is an automatic consequence of closed-loop
asymptotic stability for e ≡ 0). There is also considerable research on designing control laws satisfying
this assumption. These issues are discussed elsewhere [11, 12].

Pick a positive number M and consider the ball BM := {x ∈ R
n : |x| ≤ M}. Consider the worst-case

quantization error
∆ := max

x∈BM

|e| (3)

(this quantity is sometimes also referred to as the sensitivity of the quantizer). The following result is
then straightforward to prove (see [12]).

Lemma 1 Assume that

α1(M) > α2 ◦ ρ(∆). (4)

Then the sets

R1 := {x ∈ R
n : V (x) ≤ α1(M)} (5)

and

R2 := {x ∈ R
n : V (x) ≤ α2 ◦ ρ(∆)}

are invariant regions for the system (2). Moreover, all solutions of (2) that start in the set R1 enter

the smaller set R2 in finite time. An upper bound on this time is

T =
α1(M)− α2 ◦ ρ(∆)

α3 ◦ ρ(∆)
. (6)

This lemma implies, in particular, that all solutions starting in R1 at time t = t0 satisfy the ultimate
bound

|x(t)| ≤ α−1
1 ◦ α2 ◦ ρ(∆) ∀t ≥ t0 + T (7)

with T given by the formula (6). We regard the quantity ∆ defined by (3) as a destabilization measure

of the quantizer q. For given feedback law k and Lyapunov function V , an ultimate bound on solutions
can be described by a class K∞ function of this measure as shown above. It is not hard to see that
if the number N of quantization regions is sufficiently large, then ∆ can be made small enough for
the inequality (4) to hold. Minimizing ∆—and consequently the size of the attracting invariant region
R1—over all possible choices of the quantizer q corresponds to the following optimization problem:

min
Q,W

max
i∈{1,...,N}

max
x∈Wi

|qi − x| (8)

where Q = {q1, . . . , qN} is a set of quantization points and W = {W1, . . . ,WN} is a partition of BM

into quantization regions. (We could work with partitions of R1 rather than BM , but this requires the
knowledge of P and also may be less computationally feasible for non-quadratic V .) The optimization
problem (8) is known as the multicenter problem in computational geometry; we defer its detailed
discussion until Section 3.1.
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2.2 Linear systems

We now specialize to the case when the process is described by the linear system

ẋ = Ax+Bu, x ∈ R
n, u ∈ R

m. (9)

The linear system structure can be utilized to define a less conservative destabilization measure. Suppose
that the system (9) is stabilizable, so that for some matrix K the eigenvalues of A+BK have negative
real parts. Then there exists a unique positive definite symmetric matrix P such that

(A+BK)TP + P (A+BK) = −I. (10)

We let λmin(P ) and λmax(P ) denote the smallest and the largest eigenvalue of P , respectively. We
assume that B 6= 0 and K 6= 0; this is no loss of generality because the case of interest is when A is not
a stable matrix.

The quantized state feedback control law

u = Kq(x)

yields the closed-loop system

ẋ = Ax+BKq(x) = (A+BK)x+BKe (11)

where e := q(x)− x is the quantization error as before. The derivative of the function

V (x) := xTPx

along solutions of the system (11) satisfies

V̇ = −xTx+ 2xTPBKe ≤ −|x|2 + 2|x||PBKe|. (12)

For an arbitrary small ε > 0, we can rewrite this as

V̇ = − ε

1 + ε
|x|2 − 1

2(1 + ε)
|x|2 + 2(1 + ε)|PBKe|2 −

(

1
√

2(1 + ε)
|x| −

√

2(1 + ε)|PBKe|
)2

≤ − ε

1 + ε
|x|2 − 1

2(1 + ε)

(

|x|2 −
(

2(1 + ε)|PBKe|
)2
)

Therefore, we have

|x| ≥ 2(1 + ε)|PBKe| ⇒ V̇ ≤ − ε

1 + ε
|x|2. (13)

Take a positive number M . There are two ways to proceed from here. One is to use the inequalities (13)
and |PBKe| ≤ ‖PBK‖|e|, where ‖ · ‖ stands for the induced matrix norm, to obtain

|x| ≥ 2(1 + ε)‖PBK‖|e| ⇒ V̇ ≤ − ε

1 + ε
|x|2. (14)

Consider the ellipsoids
R1 := {x ∈ R

n : xTPx ≤ λmin(P )M2} (15)

and
R2 := {x ∈ R

n : xTPx ≤ λmax(P )4(1 + ε)2‖PBK‖2∆2} (16)

where ∆ is the worst-case quantization error defined by (3). Then we have the following linear coun-
terpart of Lemma 1.
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Lemma 2 Assume that

λmin(P )M2 > λmax(P )4(1 + ε)2‖PBK‖2∆2. (17)

Then the ellipsoids R1 and R2 are invariant regions for the system (11). Moreover, all solutions of (11)
that start in the ellipsoid R1 enter the smaller ellipsoid R2 in finite time. An upper bound on this time

is

T =
λmin(P )M2 − λmax(P )4(1 + ε)2‖PBK‖2∆2

4‖PBK‖2∆2(1 + ε)ε
. (18)

Consequently, an ultimate bound on solutions starting in R1 at time t = t0 is

|x(t)| ≤
√

λmax(P )

λmin(P )
2(1 + ε)‖PBK‖∆ ∀t ≥ t0 + T

with T given by the formula (18). Decreasing ε to 0, we see that solutions (asymptotically) approach
the ellipsoid

{x ∈ R
n : xTPx ≤ λmax(P )4‖PBK‖2∆2}.

Thus we still consider ∆ as a destabilization measure. As in the nonlinear setting, this leads to the opti-
mization problem (8). If N is large enough, then ∆ can be made small enough so that the inequality (17)
holds (for a given feedback gain K).

Another approach is to work with (13) directly, avoiding the use of the induced norm ‖PBK‖.
Define

∆PBK := max
x∈R1

|PBKe|.

The result of Lemma 2 still holds if ‖PBK‖2∆2 is replaced by ∆2
PBK

everywhere in the statement of
that lemma. This yields a less conservative ultimate bound and motivates the following optimization
problem:

min
Q,W

max
i∈{1,...,N}

max
x∈Wi

|PBK(qi − x)| (19)

whereQ is a set of quantization points as before andW is a partition of R1 into N regions. This problem
is in general lower-dimensional compared to (8) because the subspace ker(PBK) can be ignored. (Note
that PBK is a singular matrix whenever m < n.) Therefore, for the same N the optimal value for this
problem will be significantly lower that for (8). However, ∆PBK is not really a destabilization measure
in the sense used in this paper, because it depends on the feedback gain matrix K. While it gives better
results for a fixed feedback law, quantizer design based on this destabilization measure needs to be
redone if the feedback law is changed, and is not suitable for switching between several feedback laws.
For these reasons we prefer to work with destabilization measures that are independent of a particular
feedback law used.

Remark 1 It is clear that in Lemma 2, the system’s behavior is important only for x ∈ R1 \ R2. We
can thus work with partitions of R1 \ R2—or of a spherical annulus containing this set—rather than
with partitions of R1. This preserves or decreases the ultimate bound on solutions.

Remark 2 Lemma 2 suggests that among stabilizing state feedback gains K, the ones that provide
smaller ultimate bounds for the solutions of the quantized system are those with smaller values of the
induced matrix norm ‖PBK‖, where P is given by (10). In this regard, it might be interesting to
observe the following: if the open-loop system ẋ = Ax is not asymptotically stable, then for every
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stabilizing feedback gain K and the corresponding positive definite symmetric matrix P satisfying (10)
we have

‖PBK‖ ≥ 1/2 (20)

and the inequality is strict if ẋ = Ax is unstable. To see this, use (12) and the definition of e to write

V̇ ≤ −|x|2
(

1− 2‖PBK‖|q(x)− x|
|x|

)

. (21)

This formula will be used again several times in the sequel. Now, note that if q is chosen to take the
value 0 in a neighborhood of the origin, then the right-hand side of (21) equals −|x|2(1 − 2‖PBK‖)
there, and so 1−2‖PBK‖ cannot be positive since A is not stable. It is also straightforward to show (20)
directly: just multiply (10) on the left by vT and on the right by v, where v is a normalized eigenvector
of ATP + PA with a nonnegative eigenvalue.

2.3 Radial and spherical quantization

In the above developments, the required bounds on the quantization error do not depend on the size
of the state. This leads to uniform quantization, in the sense that quantization points are distributed
uniformly over the region of interest. However, it is well known that more efficient quantization schemes
are those which provide lower precision far away from the origin and higher precision close to the origin.
Quantizers with a logarithmic scale are particularly useful; see [7]. Loosely speaking, with logarithmic
quantization one has the same number of quantization points in the vicinity of every sphere centered
at the origin in the state space, whereas with uniform quantization this number grows with the radius.
This observation suggests introducing a “direct product” of one quantizer on a unit sphere and another
along the radial direction, which is what we do next.

Let us write
x = |x|vers(x)

where
vers(x) :=

x

|x| .

We represent the quantizer accordingly as

q(x) = qr(|x|)qs(vers(x))

where qr takes N1 positive real values, qs takes N2 values on or inside the unit sphere, and N1 and N2

are some positive integers such that N1N2 ≤ N . This means that we introduce two separate quantizers,
one for |x| and the other for vers(x). Quantization points for the latter are allowed to be inside the unit
sphere because, as will become clear later, requiring them to lie on the sphere would be too restrictive.
(For example, for the case N2 = 1 it is easy to see that one quantization point at the origin achieves
a smaller worst-case quantization error over the sphere than any point on the sphere.) The lattice of
quantization points for the resulting overall quantizer q is formed by the N pairwise products of values
of qr and qs.

From the triangle inequality and the fact that |qs(vers(x))| ≤ 1 for all x by construction, we obtain

|q(x)− x| ≤
∣

∣qr(|x|)qs(vers(x))− |x|qs(vers(x))
∣

∣+
∣

∣|x|qs(vers(x))− |x|vers(x)
∣

∣

≤
∣

∣qr(|x|) − |x|
∣

∣+ |x|
∣

∣qs(vers(x))− vers(x)
∣

∣

= |x|
(
∣

∣

∣

∣

qr(|x|)
|x| − 1

∣

∣

∣

∣

+
∣

∣qs(vers(x))− vers(x)
∣

∣

)
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Using (21), we conclude that the derivative of V along solutions of the closed-loop system satisfies

V̇ ≤ −|x|2
[

1− 2‖PBK‖
(∣

∣

∣

∣

qr(|x|)
|x| − 1

∣

∣

∣

∣

+
∣

∣qs(vers(x))− vers(x)
∣

∣

)]

. (22)

Take two numbers λ and ε in the interval (0, 1). Then we have V̇ ≤ −ε|x|2 whenever the inequalities
∣

∣

∣

∣

qr(|x|)
|x| − 1

∣

∣

∣

∣

≤ λ

2‖PBK‖ (23)

and

|qs(vers(x))− vers(x)| ≤ 1− λ− ε

2‖PBK‖ (24)

are satisfied.

Pick a positive number M . To handle (23), we take qr to be a logarithmic quantizer. Define

a := 1− λ

2‖PBK‖
and

b := 1 +
λ

2‖PBK‖
noting from (20) that a > 0. Let

qr(s) := (ai/bi−1)M for s ∈
(

(a/b)iM, (a/b)i−1M
)

, i ∈ {1, . . . , N1} (25)

and use arbitrary tie-breaking to define qr at the endpoints of the above intervals. Then it is easy to
check that (23) holds for all x such that

(a/b)N1M ≤ |x| ≤ M.

In view of the condition (24), we introduce the worst-case quantization error on the unit sphere
corresponding to qs:

∆s := max
|x|=1

|qs(x)− x|. (26)

Performing a Lyapunov analysis similar to the one in the previous subsection, we obtain the following
result.

Lemma 3 Assume that the inequalities

λmin(P )M2 > λmax(P )(a/b)N1M2

and

∆s ≤
1− λ− ε

2‖PBK‖ (27)

are satisfied. Then the ellipsoids

R1 := {x ∈ R
n : xTPx ≤ λmin(P )M2}

and

R2 := {x ∈ R
n : xTPx ≤ λmax(P )(a/b)N1M2}

are invariant regions for the system (11). Moreover, all solutions of (11) that start in the ellipsoid R1

enter the smaller ellipsoid R2 in finite time. An upper bound on this time is

T =
λmin(P )M2 − λmax(P )(a/b)N1M2

(a/b)2N1M2ε
.
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For fixed N1 and N2, the quantity ∆s defined by (26) provides a destabilization measure (for qs).
When K is given and ∆s satisfies the inequality (27) for some λ, ε ∈ (0, 1), we can construct qr via (25)
and compute an ultimate bound on solutions using Lemma 3. Minimizing ∆s corresponds to the
following optimization problem:

min
Qs,Ws

max
i∈{1,...,N2}

max
x∈W s

i

|qsi − x| (28)

where Qs = {qs1, . . . , qsN2
} is a set of points on or inside the unit sphere and Ws = {W s

1 , . . . ,W
s
N2

} is
a partition of the unit sphere. An algorithm for solving this problem will be described in Section 3.1.
The quantity (28) will not exceed the right-hand side of (27) if N2 is sufficiently large. The values of
N1 and N2 which yield the smallest ultimate bound seem to be difficult to compute analytically and in
general depend on the stabilizing feedback gain K; however, for a given K we only have a finite number
of choices for these integers and so can find optimal values by trying all of them. We remark that in the
context of the multimedian problem, the idea of spherical coordinates quantization has been exploited
before, and in particular the trade-off between the numbers of values for the radial and the spherical
directions has been studied; see [24] and the references therein.

It is straightforward to derive similar results using the norm defined by the Lyapunov function,
i.e., ‖x‖ :=

√
xTPx, instead of the Euclidean norm. This gives rise to an optimization problem on an

ellipsoid rather than on a sphere.

2.4 Radially weighted quantization

The need for logarithmic quantization patterns is evidenced by the fact that it is the ratio |e|/|x|, and
not the absolute value of the quantization error |e| itself, that needs to be small. This is clear from
the formulas (14) and (21). The approach of Section 2.3 leads to an “aligned” logarithmic quantization
pattern, in the sense that quantization points on spheres of different radii are aligned along the same
radial directions. This is a consequence of the fact that we treated radial and spherical quantization
separately, having passed from the formula (21) via the triangle inequality to the formula (22) and
then to the two independent inequalities (23) and (24). However, it is not hard to see that non-aligned
quantization patterns can achieve better coverage. This suggests proceeding from (21) in a more direct
fashion.

To this end, pick two numbers M > m > 0 and consider the ellipsoids

R1 := {x ∈ R
n : xTPx ≤ λmin(P )M2}

and
R2 := {x ∈ R

n : xTPx ≤ λmax(P )m2}.
Define

∆rw := max
x∈R1\R2

|q(x)− x|
|x| . (29)

The following result then easily follows by virtue of (21).

Lemma 4 Assume that

λmin(P )M2 > λmax(P )m2 (30)

and

∆rw ≤ 1− ε

2‖PBK‖ (31)
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for some ε > 0. Then the ellipsoids R1 and R2 are invariant regions for the system (11). Moreover, all

solutions of (11) that start in the ellipsoid R1 enter the smaller ellipsoid R2 in finite time. An upper

bound on this time is

T =
λmin(P )M2 − λmax(P )m2

m2ε
.

The quantity ∆rw defined by (29) provides another destabilization measure for q, in relation to a
pair of numbers M > m > 0. Given a stabilizing feedback gain K, we can check the inequalities (30)
and (31) and, if they are satisfied, obtain an ultimate bound on solutions from Lemma 4. This leads us
to the following optimization problem:

min
Q,W

max
i∈{1,...,N}

max
x∈Wi

|qi − x|
|x| (32)

where Q = {q1, . . . , qN} is a set of quantization points and W = {W1, . . . ,WN} is a partition of the
annulus {x ∈ R

n : m < |x| < M} into quantization regions. The optimization problem (32) is different
in structure from the ones we encountered earlier, and apparently has not been studied in the locational
optimization literature. We henceforth call it the radially weighted multicenter problem. It turns out
that while this problem is more challenging than the others, it is still computationally tractable. We
will develop an algorithm for solving it in Section 3.2. In particular, the inequality (31) will hold for a
given K if N is sufficiently large.

2.5 Dynamic quantization

So far we have been discussing quantizer design with the understanding that it can only be done once
and cannot be changed on-line. The results obtained with this static quantization approach assert the
existence of two nested invariant regions such that all trajectories of the quantized system starting in
the bigger region approach the smaller one. Let us now suppose that we can recompute the locations
of quantization regions and quantization points on-line. Then it is actually possible to achieve global
asymptotic stability of the quantized closed-loop system. In this section we briefly explain how this
can be done. The discussion closely parallels that of [2, 12], and we refer the reader to these papers for
details. In fact, the quantization schemes considered here all fit into the general framework developed
in [12].

A control strategy which incorporates dynamic quantization consists of two stages. The objective
of the first, “zooming-out” stage is to find a number M such that x(t0) belongs to the set R1 defined
by (15) for linear systems or (5) for nonlinear systems. This is easy to accomplish, for example, by using
a binary quantizer which takes one value inside the ball of a variable radius µ centered at the origin
and another value outside this ball. If we set the control to zero and increase µ fast enough to dominate
the expansiveness of the open-loop system, then at some time t0 we will know that the state lies inside
the ball of radius µ(t0), at which point we can set M :=

√

λmax(P )/λmin(P )µ(t0) in the linear case or
M := α−1

1 ◦ α2(µ(t0)) in the nonlinear case.

During the second, “zooming-in” stage, we achieve asymptotic convergence to the origin by applying
one of the results expressed by Lemmas 1, 2, 3, and 4, depending on which situation is being considered.
We know that if an appropriate inequality involving the size of the quantization error is satisfied, then
x(t0 + T ) ∈ R2. At time t0 + T , we redefine M so that R2 coincides with R1 for the new value of
M . Recomputing the quantizer for this smaller region and repeating the procedure, we have x(t) → 0
as t → ∞ (for linear systems, the convergence is exponential); one can also show that the origin is
Lyapunov stable. This technique effectively mimics a logarithmic quantizer with a countable set of
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values, of the kind considered in [7]. It is important to recognize that since R2 is an invariant region
for the closed-loop system, it is acceptable to use a conservative upper bound on T .

When the quantization is static, our goal is to make the attracting invariant region R2 as small
as possible. With dynamic quantization, we only need to ensure that R2 is a strict subset of R1.
(In fact, since convergence may become slower closer to the boundary of R2, we might want to make
the annulus R1 \ R2 as small as possible, so that we can achieve better coverage on it with a given
number of quantization points and obtain faster convergence.) The optimization problems formulated
above remain relevant, except that by passing from static to dynamic quantization we basically pass
from optimal to suboptimal quantizer design. In the context of Section 2.2, this corresponds to simply
making sure that ∆ is small enough so that the inequality (17) is satisfied. In Section 2.3 we just need to
enforce the inequality (27) and can choose a small value for N1; for example, we can let N1 = 1, thereby
eliminating radial quantization altogether. In Section 2.4 we do not need m to be small compared to
M .

Remark 3 In the above discussion we assumed that quantization regions and quantization points can
be recomputed infinitely many times and as often as needed. Of course, having to recompute the
quantization parameters too frequently may be undesirable. An interesting direction for future research
is to incorporate a cost on the number and frequency of these “switching events” into the quantizer
design problem.

3 Continuous multicenter problems in facility location

In this section we present a class of optimization problems related to the field of facility location; see
the discussion in Section 1 and the survey [5]. The facility location problem we consider will have as
special cases the optimization problems studied in Section 2, and in particular the problems (8) from
Section 2.1, (28) from Section 2.3, and (32) from Section 2.4.

Let us review some preliminary concepts. Given a compact connected region D ⊂ R
n and a set of N

points Q = {q1, . . . , qN} in R
n, the Voronoi partition V = {V1, . . . , VN} of D generated by Q is defined

according to
Vi := {x ∈ D : |x− qi| ≤ |x− qj| ∀j 6= i}. (33)

When it is useful to emphasize the dependency on Q, we shall write V(Q) or Vi(Q). When D is a
polytope in R

n, each Vi is a polytope, otherwise Vi is the intersection between a polytope and D. The
faces of the polytope which defines Vi are given by hyperplanes of points in R

n that are equidistant
from qi and qj , j 6= i; among the latter, only “neighboring” points play a role. Note that this (standard)
construction remains valid when D is a lower-dimensional subset of Rn, such as a sphere. We refer
to [4, 18] for comprehensive treatments of Voronoi partitions.

Let Q = {q1, . . . , qN} be a collection of points in R
n and let W = {W1, . . . ,WN} be a partition of

D. In what follows, we shall concern ourselves with the function

H(Q,W) := max
i∈{1,...,N}

max
x∈Wi

φ(x)f(|x− qi|) (34)

where φ : D → [0,∞) is continuous non-negative and f : [0,∞) → [0,∞) is continuous, non-decreasing
and unbounded. We also assume φ does not identically vanish on D. We investigate the optimization
problem

min
Q,W

H(Q,W) (35)
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and refer to it as the weighted multicenter problem. In general, H is a nonlinear non-convex function of
the locations Q and of the partition W. Accordingly, its global minima can be obtained only numerically
via nonlinear programming algorithms. However, this and related facility location problems [23, 22, 6]
have some peculiar structure that helps us characterize optimal solutions and design useful iterative
algorithms. Let us start by considering the weighted 1-center problem over D, i.e., assume N = 1.

Lemma 5 The function H1 : R
n → [0,∞) defined by

H1(q) := H({q}, {D}) = max
x∈D

φ(x)f(|x− q|)

is continuous, radially unbounded, and quasiconvex.3 If f is convex and φ is constant, then H1 is convex.

Proof. The function H1 is continuous because it is the maximum of a compact family of continuous
functions. Further, H1 is radially unbounded because for every x∗ ∈ D such that φ(x∗) > 0 we
have H1(q) ≥ φ(x∗)f(|x∗ − q|) and f is unbounded. To show the other statements, we invoke certain
properties of convex and quasiconvex functions; see Sections 2.2 and 2.4 in [1]. At fixed x, the function
q 7→ f(|x− q|) is quasiconvex because it is the composition of a convex function with a non-decreasing
function. Furthermore, if f is non-decreasing and convex, then q 7→ f(|x−q|) is convex because, at fixed
x, it is the composition of a convex function with a convex non-decreasing function. If f is convex, then
q 7→ maxx∈D f(|x − q|) is convex because it is the pointwise supremum over a set of convex functions.
For general φ and f , the function H1 is quasiconvex because it is the weighted pointwise supremum of
quasiconvex functions.

Next, we let co(D) denote the convex hull of D and study global minima of H1 as follows.

Lemma 6 The set of global minimum points for H1 is compact, convex and has a non-empty intersec-

tion with co(D). If f is strictly increasing, then all global minimum points belong to co(D).

Proof. The fact that the set of global minimum points is compact and convex is an immediate
consequence of continuity, radial unboundedness, and quasiconvexity. Let us prove the non-empty
intersection with co(D). Suppose that q∗ 6∈ co(D) is a global minimum point for H1. Let p

∗ ∈ co(D) be
the closest point to q∗, i.e., p∗ := argminx∈co(D) |q∗ − x|. Then |x− p∗| < |x− q∗| for all x ∈ D, so that,
for all x ∈ D, we have φ(x)f(|x− p∗|) ≤ φ(x)f(|x− q∗|) ≤ maxx∈D φ(x)f(|x− q∗|) = H1(q

∗). Therefore,
H1(p

∗) = maxx∈D φ(x)f(|x − p∗|) ≤ H1(q
∗) and p∗ also belongs to the set of global minimum points.

When f is strictly increasing, the previous argument leads to H1(p
∗) < H1(q

∗), which contradicts the
assumption that q∗ is a global minimum.

The last two lemmas show that the weighted 1-center problem over D is a quasiconvex optimization
problem, i.e., it consists in minimizing the quasiconvex function H1 over the convex set co(D). It
is known that every quasiconvex optimization problem can be solved by iterative techniques (via a
bisection algorithm solving a convex feasibility problem at each step; see Section 3.2 in [1]). We call
q∗(D) a weighted center of the region D if it is a (possibly non-unique) global minimum point:

q∗(D) := argmin
q∈co(D)

max
x∈D

φ(x)f(|x− q|).

Now, it is useful to consider the weighted multicenter problem again, and define W 7→ Q∗(W) as the
map that associates to W a collection of N (possibly non-unique) global minimum points for the cor-
responding weighted 1-center problems; in other words, Q∗({W1, . . . ,WN}) := {q∗(W1), . . . , q

∗(WN )}.
3Recall that a quasiconvex function is a function defined on a convex domain and with convex sublevel sets.
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Note that these weighted centers are well defined in view of the above discussion since each Wi is com-
pact. Finally, define the Lloyd map (or the Lloyd algorithm) L : (Q,W) 7→ (Q′,W ′) where W ′ := V(Q)
and Q′ := Q∗(W ′).

Lemma 7 At fixed Q, the global minimum of W 7→ H(Q,W) is achieved at W = V(Q). At fixed W,

a global minimum of Q 7→ H(Q,W) is achieved at Q = Q∗(W). The Lloyd map is a descent algorithm

for the cost function H, i.e., an application of the map is guaranteed not to increase H. Given an initial

pair (Q0,W0), the sequence {Lk(Q0,W0), k ≥ 0} approaches the largest set invariant under L such

that H(L(Q,W)) = H(Q,W).

Fixed points of the Lloyd map are pairs (Q,W) such that W is the Voronoi partition generated
by Q and at the same time the points in Q are weighted centers for W. It is an open conjecture that
global minima of H are fixed points of the Lloyd map and that the iteration described in the lemma
converges to such fixed points. Nevertheless, the algorithm is of interest to us because it is guaranteed
to improve a given quantizer design and provides a good indication as to whether or not N is large
enough to achieve the control objective.

The classic Lloyd algorithm is tailored to the continuous multimedian problem as it appears, for
example, in the problem of fixed-rate minimum-distorsion quantizer design; see [5, 9]. The classic Lloyd
algorithm differs from the one considered here only in the fact that the points in Q are moved to
the centroids—as opposed to the weighted centers—of the respective Voronoi regions. (Centroids are
solutions of the 1-median problems.)

Next, we consider the specific settings that arise in the quantizer design problems discussed in the
previous section. We study the multicenter problem (8), the spherical multicenter problem (28), and
the radially weighted multicenter problem (32). To implement the Lloyd algorithm, two tasks must be
carried out repeatedly. One consists in computing the Voronoi partition for a given set of points Q,
which is accomplished by the standard procedure described earlier. The other amounts to computing a
weighted center for each set Wi in a given partition. Thus for each of the specific multicenter problems
studied below, we only need to explain how to solve the corresponding 1-center problem. Some additional
remarks on the properties of these particular multicenter problems will also be provided.

3.1 Multicenter problem

Let us consider the problem (8) arising in Section 2.1. The domain is a ball centered at the origin or,
more generally, an ellipsoid, i.e., D = {x ∈ R

n : xTPx ≤ 1} for some positive definite symmetric matrix
P . Note also that the problem (19) arising in Section 2.2 reduces, via a linear change of coordinates, to
the multicenter problem considered here in a lower dimension.

In the problem (8), the weighting function φ and the performance function f are the identity maps.
Under these conditions, we refer to the optimization problem (35) simply as the multicenter problem;
see [23, 22]. The multicenter problem can be restated as the problem of covering the region D with
(possibly overlapping) balls of smallest radius. If B1 ⊂ R

n is the unit ball centered at the origin, and if
RB1 + q denotes the ball of radius R centered at a point q, the problem reads:

minR subject to ∪
i∈{1,...,N}

(RB1 + qi) ⊇ D.

Let us analyze the 1-center problem. From Lemma 5 we know that this is a convex optimization
problem. For each region Vi, the optimal solution q∗(Vi) is the unique center of the minimal-radius
enclosing sphere for Vi. When Vi ⊂ R

2 is a polygon, this sphere is referred to as the smallest enclosing
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circle and algorithms are available to compute it; see [4, Chapter 4]. When Vi ⊂ R
n is a polytope, the

smallest enclosing ellipsoid (in particular, sphere) can be computed via iterative convex optimization
algorithms; see [1]. For a Voronoi region Vi near the boundary of D, which is not a polytope, we can
under-approximate it by a polytope generated by the vertices of Vi and suitable additional points on
the intersection of Vi with the boundary of D, and then compute the center of this polytope. For a
sufficiently close under-approximation, this center will also be the center of Vi.

When D is a unit cube in R
n, the optimal value of the problem (8) satisfies the bounds

1

2⌊ n
√
N⌋

≤ ∆ ≤
√
n

2⌊ n
√
N⌋

.

The upper bound is easily obtained by constructing a uniform cubical quantization pattern, while the
lower bound is known as Sukharev’s lower bound on dispersion [17, 15]. In the present case when D is
a ball, it is straightforward to obtain similar bounds by considering inscribed and superscribed cubes
for D. The upper bound can be used to evaluate the convergence of the Lloyd algorithm. When the
lower bound on ∆ is not small enough for the inequality (4) or (17) to hold, it indicates that a different
destabilization measure and/or a different stabilizing feedback law must be used.

It is also useful to recall some known facts about the multimedian problem. It is conjectured in [8]
that for N sufficiently large, the optimal quantizer with respect to the uniform probability density is
given by a tessellation (i.e., translation and rotation) of a fixed polytope, except near the boundary of
the region of interest. In two dimensions, polygons that can give rise to such tessellations are equilateral
triangles, rectangles, and regular hexagons. Among these, the hexagon is optimal, because it has the
smallest mean-square quantization error with respect to its centroid per unit volume. This result remains
true if we consider the worst-case rather than mean-square quantization error, which is the quantity
being minimized in the multicenter problem. The hexagon achieves the smallest error with respect to
its center. (For the unit volume regular hexagon this error is approximately 0.62, compared with 0.707
for the square and 0.936 for the equilateral triangle; the unit-volume disk gives the error of 0.564 but
disks cannot be used to obtain tessellations.)

The spherical multicenter problem (28) from Section 2.3 corresponds to the setting where D = {x ∈
R
n : |x| = 1} is the unit sphere in R

n. Since the spherical multicenter problem is formulated in terms of
the Euclidean distance in R

n, Voronoi partitions of the sphere can be constructed as explained earlier
for the general case. Voronoi regions will be spherical polytopes, i.e., intersections of polytopes with the
unit sphere. The center of a spherical polytope Vi is the center of the minimal-radius enclosing sphere
for Vi. We can consider a polytope in R

n generated by the vertices of Vi and perhaps some other points
in Vi. If enough points are taken, then the center of this polytope will also be the center of Vi. As we
explained earlier, computing the center of a polytope is a computationally tractable task.

3.2 Radially weighted multicenter problem

Here, we study the problem (32) formulated in Section 2.4, namely,

min
Q,W

max
i∈{1,...,N}

max
x∈Wi

|qi − x|
|x|

where the domain is the spherical annulus D = {x ∈ R
n : m < |x| < M}. We consider the corresponding

radially weighted 1-center problem over a set V ⊂ D:

min
q∈co(V )

max
x∈V

|q − x|
|x| . (36)
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The problem is well-posed because V is a subset of D and therefore does not contain the origin. In
what follows, we take V to be a polytope; if it is not, we approximate it by a polytope as before. We
begin by making the following observation.

Lemma 8 The optimal cost in the problem (36) is smaller than 1 if and only if the set V is separated

from the origin by a hyperplane.

Proof. Suppose first that V is separated from the origin by a hyperplane, so that 0 /∈ co(V ). Let q̃
be the projection of the origin onto co(V ), i.e., q̃ := argminx∈co(V ) |x|. By construction, |x − q̃| < |x|
for all x ∈ V , hence maxx∈V |q̃ − x|/|x| < 1. This implies that the optimal cost in the problem (36)
is less than 1. To prove the converse, suppose on the contrary that 0 ∈ co(V ). This means that the
origin lies on the line segment between two points x1, x2 ∈ V . For the optimal cost to be less than 1,
the optimal point q∗ must belong to the open ball {q ∈ R

n : |q − x1| < |x1|} as well as to the open
ball {q ∈ R

n : |q − x2| < |x2|}. But the intersection between these two sets is empty, which is a
contradiction.

We shall henceforth assume that the set V is separated from the origin by a hyperplane. For N
sufficiently large, the initial quantization points can be chosen in such a way that each of the resulting
Voronoi regions indeed has this property. Since the Lloyd algorithm decreases the cost, Lemma 8 implies
that all Voronoi regions will then have this property at every step of the iteration.

From Lemma 5 and 6 we know that the problem (36) is quasiconvex and can thus be handled by
iterative convex optimization algorithms. However, its structure can be utilized to obtain a solution
more constructively. Let us first present an equivalent formulation of this optimization problem.

Lemma 9 Let V be a polytope separated from the origin by a hyperplane. Consider the problem of

finding the sphere with center c and radius r which encloses V and minimizes r/|c|. Let (c∗, r∗) be the

parameters of the optimal sphere. Then the optimal value for the problem (36) is γ∗ := r∗/|c∗| and the

optimal point is q∗ :=
(

1− (γ∗)2
)

c∗.

Proof. Let fq(x) := |q − x|/|x|. In the problem (36), we search for q that minimizes the value of the
function fq on its smallest level set enclosing V . For any γ > 0, the γ-level set of fq is described by

|q − x|2 − γ2|x|2 = 0.

Because V is separated from the origin by a hyperplane, we know from Lemma 8 that the optimal value
of γ is smaller than 1. Thus from here on we will only be interested in γ < 1. A square completion
argument leads to

1

1− γ2
(

|q − x|2 − γ2|x|2
)

=
∣

∣

∣
x− q

1− γ2

∣

∣

∣

2
− γ2

(1− γ2)2
|q|2,

so that the γ-level set of fq is the sphere |x− c|2 = r2, with center c := q/(1− γ2) and radius r := γ|c|.
In the new variables (c, r), we must minimize γ = r/|c| among all spheres enclosing V .

Note that the point q∗ belongs to co(V ) by Lemma 6, while c∗ might not. The above result leads
us to considering the problem

min
c∈Rn,r∈R

γ2(c, r) :=
r2

|c|2 subject to |c− vi|2 ≤ r2, i = 1, . . . , p (37)

where v1, . . . , vp are the vertices of the polytope V . This is an optimization problem subject to inequality
constraints, which can be solved with a finite number of computations. The idea is to enumerate active
constraints, according to the procedure described in the following algorithm:
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1: for all subsets S of the set of vertices of V do

2: compute the (cS , rS)-sphere minimizing γ2 among all (c, r)-spheres touching all points in S
3: end for

4: discard all (cS , rS)-spheres not containing all vertices of V
5: find global minima for (37) by comparing the values of r2S/|cS |2 among all remaining candidate

spheres

Steps 4 and 5 are straightforward comparison checks. Regarding step 1, it turns out we can restrict
our search to sets S containing at least two vertices of V , by virtue of the following result.

Lemma 10 The optimal sphere for the problem (37) touches at least two vertices of V , i.e., at least

two constraints are active at the minimum.

Proof. The proof is by contradiction. Suppose that the optimal sphere touches only one vertex. We
denote this vertex by v and assume, performing an affine coordinate change, that it has coordinates
(1, 0, . . . , 0)T . Let c = (x̄1, x̄2, . . . , x̄n)

T . Then we are led to minimizing

γ2(x̄1, x̄2, . . . , x̄n) =
(x̄1 − 1)2 +

∑n
i=2 x̄

2
i

∑n
i=1 x̄

2
i

= 1 +
1− 2x̄1
∑n

i=1 x̄
2
i

. (38)

Let us show that this function has no critical points besides the pole at the origin and the zero at v.
We have

∂γ2

∂x̄1
=

2
(

x̄21 −
∑n

i=2 x̄
2
i − x̄1

)

(
∑n

i=1 x̄
2
i

)2 (39)

and
∂γ2

∂x̄i
=

−2x̄i(1− 2x̄1)
(
∑n

i=1 x̄
2
i

)2 , i 6= 1. (40)

In view of the formula (40), every critical point satisfies either x̄1 = 1/2 or x̄i = 0 for all i 6= 1. In
the first case, the formula (39) implies that we must have

∑n
i=2 x̄

2
i = −1/2, and this equation has no

solution. In the second case, (39) gives two solutions: x̄1 = 0 (pole at 0) and x̄1 = 1 (zero at v). The
pole at the origin is not a minimum. The zero at v corresponds to the sphere of radius 0 centered at
v, which is not a feasible solution because it does not enclose V . In summary, we have shown that the
optimal sphere cannot touch only a single vertex of V .

Regarding step 2, we need to minimize γ2 over spheres passing through two or more vertices of V .
Spheres passing through l generic points in R

n are parameterized by n + 1− l variables. A convenient
parameterization is obtained by intersecting hyperplanes of points equidistant from pairs of points from
a given set. Coordinates of the points on the intersection are given by affine functions of n + 1 − l
free parameters. Note that the radius r of the sphere is uniquely determined by its center c and the
vertices of V which lie on the sphere. It is straightforward to verify that the function γ2 in (37) is a
rational function whose numerator and denominator are quadratic inhomogeneous polynomials in these
free parameters, and that critical points of γ2 are solutions of n+1− l quadratic equations in the same
number of unknowns. According to Bezout’s theorem, this genericaly gives 2n+1−l candidate optimal
spheres (see [3]). Step 2 is completed by choosing the one with the smallest radius.

As an example of step 2, let us work out the planar case. When n = 2, the problem reduces to
finding critical points of γ for circles passing through l vertices of V , where l > 1 by Lemma 8. Since
for l > 2 there is at most one circle passing through the corresponding vertices, we only need to explain
how to solve this problem for l = 2. For convenience, let us consider an affine change of coordinates
which places the two vertices at (1, 0)T and (−1, 0)T and the origin at some point (x0, y0)

T . Without
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loss of generality, assume that y0 ≥ 0. The center of the circle is denoted by c = (x̄, ȳ)T . We know that
c must be equidistant from the two vertices, hence x̄ = 0. Then we have

γ2 =
1 + ȳ2

x20 + (ȳ − y0)2

and so

∂γ2

∂ȳ
=

2ȳ
(

x20 + (ȳ − y0)
2
)

− 2(ȳ − y0)(1 + ȳ2)
(

x20 + (ȳ − y0)2
)2 =

−2ȳ2y0 + 2ȳ(x20 + y20 − 1) + 2y0
(

x20 + (ȳ − y0)2
)2 .

Equating the numerator to 0, we arrive at the equation

−ȳ2y0 + ȳ(x20 + y20 − 1) + y0 = 0.

In the special case when y0 = 0, this reduces to ȳ(x20 − 1) = 0. Since x0 = ±1 corresponds to one of the
vertices being at the origin, which cannot happen by our earlier assumption, the solution is ȳ = 0 (as
is also clear from symmetry). When y0 6= 0, the minimum is achieved at

ȳ =
x20 + y20 − 1−

√

(x20 + y20 − 1)2 + 4y20
2y0

< 0.

(Note that this goes to 0 as y0 approaches 0 or ∞.)
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