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Convergent relaxations of polynomial matrix
inequalities and static output feedback

Didier Henrion, Jean-Bernard Lasserre

Abstract— Using a moment interpretation of recent results on
sum-of-squares decompositions of non-negative polynomial ma-
trices, we propose a hierarchy of convex linear matrix inequality
(LMI) relaxations to solve non-convex polynomial matrix in-
equality (PMI) optimization problems, including bilinear matrix
inequality (BMI) problems. This hierarchy of LMI relaxations
generates a monotone sequence of lower bounds that converges
to the global optimum. Results from the theory of moments are
used to detect whether the global optimum is reached at a given
LMI relaxation, and if so, to extract global minimizers that satisfy
the PMI. The approach is successfully applied to PMIs arising
from static output feedback design problems.

Index Terms— Polynomial matrix, nonconvex optimization,
convex optimization, static output feedback design

I. I NTRODUCTION

Most of synthesis problems for linear systems can be for-
mulated aspolynomial matrix inequality(PMI) optimization
problems in the controller parameters, a particular case of
which are bilinear matrix inequalities (BMI) [7]. Generally,
these PMI problems arenon-convexand hence, difficult to
solve. Only in very specific cases (static state feedback,
dynamic output feedback controller of the same order as the
plant) suitable changes of variables or subspace projections
have been found to convexify the design problem and derive
equivalent linear matrix inequality (LMI) formulations [2],
[27], [26]. However, for several basic control problems such
as PID design, simultaneous stabilization or static output
feedback design, no equivalent convex LMI formulation is
known. As a consequence, solving PMI problems is a difficult
numerical challenge, and there is still a lack of efficient
computer-aided control system design (CACSD) algorithms
to address them satisfactorily.

Traditionally, non-convex PMI optimization problems can
be tackled either locally or globally:

• Local methodscan be highly sensitive to the choice
of the initial point, and generally provide a guarantee
of convergence to points satisfying necessary first order
optimality conditions only. Several local methods have
been reported in the technical literature, but up to our
knowledge, the first and so far only publicly available
implementation of a BMI solver is PENBMI [16], [17],
based on a penalty function and augmented Lagrangian
algorithm;
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• Global methods, based on branch-and-bound schemes and
alike [6], are generally highly demanding computation-
ally. Efficient LMI bounding strategies can be designed
to derive tight upper and lower bounds on non-convex
objective functions and feasible sets [4], [5], but one
can hardly avoid the combinatorial explosion inherent to
branching schemes. Consequently these global methods
are restricted to small (if not academic) problem instances
only.

In this paper, we propose another strategy to overcome the
above shortcomings of local and global methods.

• On the one hand, our method isglobal in the sense
that it solves PMI problems and when finite convergence
occurs, it also provides a numericalcertificateof global
optimality (several distinct global optima can be found
without any combinatorial branching strategy).

• On the other hand, our method uses the LMI formalism
and makes extensive use ofconvex semidefinite program-
ming (SDP). In particular, we only rely on efficient SDP
codes already available, which avoids the considerably
difficult work of developing a specific algorithm and
solver.

The main idea behind the PMI optimization method de-
scribed in this paper is along the lines of that developed in
[19] for scalar polynomial constraints. Based on the theory
of sum-of-squares positive polynomialsand its dual theory of
moments, a hierarchy of LMI relaxationsof increasing dimen-
sions is built up in such a way that the designer has to trade
off between the expected accuracy and the computational load,
with the theoreticalguarantee of asymptotic convergenceto the
global optimum. Moreover, and asfinite convergence typically
occurs in many cases, numerical linear algebra procedures
are available to detect global optimality and extract global
optimizers. Practice reveals that for small to medium global
optimization problems, and up to machine precision, finite
convergence eventually occurs, that is, the global optimum
is reached at some LMI relaxation of reasonable dimension.
See [9] for a description of a Matlab implementation with an
extensive set of numerical examples, and [11] for applications
in systems control.

Interestingly enough, the feasible set of any PMI problem
is a semi-algebraic set and can be also represented by finitely
many polynomial scalar inequalities. However, typical in this
latter scalar representation is ahigh degreeoccurring for at
least one polynomial, which makes the scalar approach [19]
impractical in view of the present status of SDP solvers.

Our contribution is to extend the scalar moment approach
of [19] to the matrix case, using recent results by Hol and
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Scherer [14], [15] and Kojima [18] on sum-of-squares of
polynomial matrices, and deriving a dual theory of moments.
Thanks to the dual interpretation provided by the theory of
moments, we can certify global optimality and extract the
optimizers. In many applications this point is crucial, as one
is primarily interested in finding a global minimizer, rather
than just the global optimum. In other words, using standard
terminology in optimization, we can say that our method is
primal as it works in alifted primal space (the moments)
of the original primal space, whereas papers [14], [15], [18]
describe a dual approach which yields the optimal value but
not the minimizers, exactly as Lagrangian relaxation methods
in optimization yield optimal Lagrange multipliers but not
minimizers.

The outline of the paper is as follows. In Section II
we provide the matrix analogues of moment and localizing
matrices defined in [19] for the scalar case, and a specific
test to detect global optimality at a given LMI relaxation. In
Section III, we apply this methodology to solve PMI problems
coming from static output feedback (SOF) design problems.
A salient feature of our approach is the particular algebraic
(or polynomial) formulation of the SOF. Indeed, in contrast
with the standard state-space BMI approach that introduces
a significant number of instrumental additional Lyapunov
variables, the only decision variables of our SOF PMI problem
are precisely the entries of the feedback gain matrix.

II. LMI RELAXATIONS FOR PMI PROBLEMS

In this section we expose the convex LMI relaxation
methodology for non-convex PMI optimization problems. We
first state formally the problem to be solved and introduce
some notations. Then we briefly recall the main ideas for
scalar polynomial optimization problems, in order to smoothly
generalize them to matrix problems. Two small numerical
examples illustrate the LMI relaxation procedure.

A. PMI optimization

Let Sm denote the space of realm×m symmetric matrices,
and let the notationA � 0 (resp.A � 0) stand forA is positive
definite (resp. positive semidefinite). Consider the optimization
problem

f? = min f(x)
s.t. G(x) � 0, (1)

wheref is a real polynomial andG : Rn → Sm, a polynomial
mapping, i.e. each entryGij(x) of them×m symmetric matrix
G(x) is a polynomial in the indeterminatex ∈ Rn. We will
refer to problem (1) as apolynomial matrix inequality(PMI)
optimization problem. Note that
• if f andG have degree1 one, then problem (1) is a convex

linear matrix inequality(LMI) optimization problem;
• if G has degree two with no square term, then problem

(1) is a (generally non-convex)bilinear matrix inequality
(BMI) optimization problem. By a slight abuse of termi-
nology, BMI also sometimes refers to quadratic matrix
inequalities.

1By degree of a polynomial matrix we mean the largest degree of all the
scalar polynomial entries

This problem is a particular case of polynomial optimization
problems considered in [19], [24] and the many references
therein. Indeed, the matrix constraintG(x) � 0 defines a
semi-algebraic setK ⊂ Rn that can be described explicitly
in terms of m scalar polynomial inequalitiesgi(x) ≥ 0,
i = 1, . . . ,m. The polynomialsgi are obtained as follows.
For every fixedx ∈ Rn, let t 7→ p(t, x) = det(tIm − G(x))
be the characteristic polynomial ofG(x), and writep in the
form

p(t, x) = tm +
m∑
i=1

(−1)igi(x)tm−i, t ∈ R. (2)

Hence, ast 7→ p(t, x) has only real roots (becauseG(x) is
symmetric), we can use an extension (to nonnegative roots)
of Descartes’ rule of signs [1, p. 41] proved in [20]. That is,
all the roots oft 7→ p(t, x) are nonnegative if and and only if
gi(x) ≥ 0, for all i = 1, . . . ,m. Therefore, in principle, the
PMI problem (1) can be solved using recent LMI relaxation
(also called semidefinite programming, or SDP relaxation)
techniques developed in [19], and implemented in the software
GloptiPoly [9]. In particular this approach allows to detect
whether the global optimum is reached, and if so, to extract
global minimizers, see [12].

However, the latterscalar representation of the PMI is per-
haps not always appropriate, especially whenG(x) has high
degree and/or dimension. Typically one polynomialgi(x) in
(2) has high degree (for instance, in BMI problems polynomial
g0(x) has potentially degree2m). Recently, Hol and Scherer
[14], [15] and Kojima [18] have tried to handledirectly the
matrix inequality constraintG(x) � 0. Remarkably, they
have derived a hierarchy ofspecificLMI relaxations, whose
associated sequence of optimal values converges to the global
optimumf?. However, and so far, only theconvergenceof the
values has been obtained.

Our contribution is to complement these works by focusing
on the dual of the LMI relaxations defined in [14], [15],
[18] and briefly mentioned in [18]. In fact, a direct deriva-
tion of these LMI relaxations, in the spirit of the moment
approach of [19], permits to retrieve the notions ofmoment
and localizing matrices. Then, these LMI relaxations appear
as genuine matrix analogues of the scalar LMI relaxations of
[19]. A key feature of this dual approach is that we can apply
verbatim theglobal optimality detectionandglobal minimizer
extractionprocedures already available in the scalar case, and
implemented in GloptiPoly.

B. Moment and localizing matrices

LetR[x1, . . . , xn] denote the ring of real polynomials in the
variablesx1, . . . , xn, also denoted byP as anR-vector space,
with associated canonical basisb ∈ P∞, given by

x 7→ b(x) =
[
1 x1 x2 · · · xn x2

1 x1x2 · · ·
· · · x1xn x2x3 · · · x2

n x3
1 · · ·

]T
.
(3)

Let y = {yα}α∈Nn be a real-valued sequence indexed in the
basis (3). A polynomialp ∈ P is also identified with its vector
p = {pα}α∈Nn of coefficients in the basis (3). For every
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p ∈ P, the infinite vectorp has only finitely many nontrivial
entries. And so

x 7→ p(x) =
∑
α∈Nn

pαx
α = 〈p, b(x)〉

where 〈A,B〉 = trace(ATB) stands for the standard inner
product of two matrices or vectorsA, B of compatible
dimensions. For a fixed sequencey = {yα} indexed in the
basis (3), letLy : P 7→ R be the linear mapping

p 7→ Ly(p) = 〈p, y〉 =
∑
α∈Nn

pαyα.

Define the bilinear mapping〈., .〉y : P × P 7→ R by

〈p, q〉y = Ly(pq) = 〈p,M(y)q〉

for some infinite matrixM(y), with rows and columns indexed
in the basisb. With α, β ∈ Nn, the entry(α, β) of M(y) is
given by

[M(y)]αβ = Ly([b(x)b(x)T ]αβ) = yα+β .

A sequencey = {yα} is said to have a representingmeasure
µ if

yα =
∫
xα dµ ∀α ∈ Nn

and in this case

M(y) =
∫
bbT dµ =

∫
b(x)b(x)Tµ(dx).

One can check that for any two polynomialsp, q ∈ P,

Ly(pq) = 〈p,M(y)q〉 =
∫
〈p, bbTq〉 dµ

=
∫
〈p, b(x)〉〈b(x),q〉µ(dx) =

∫
pq dµ.

The infinite matrixM(y), with rows and columns indexed in
the basisb, is then called themoment matrixassociated with
the measureµ. Now, denote bybk the canonical basis of the
R-vector subspacePk ⊂ P of real polynomials of degree
at most k (the finite truncation ofb in (3) which consists
of monomials of degree at mostk), and whose dimension is
sr =

(
n+r
r

)
. Then for allp, q ∈ Pk

Ly(pq) = 〈p, q〉y = 〈p,Mk(y)q〉 (4)

whereMk(y) is the finite truncation ofM(y) with rows and
columns indexed in the basisbk. It immediately follows that
if y has a representing measure, thenMk(y) � 0 for all k =
0, 1, . . . because

〈p, p〉y = 〈p,Mk(y)p〉 =
∫
p2 dµ ≥ 0, ∀p ∈ Pk.

Similarly, for a given polynomialg ∈ P, let 〈., .〉gy : P×P 7→
R be the bilinear mapping

(p, q) 7→ 〈p, q〉gy = Ly(gpq) = 〈p,M(gy)q〉

whereM(gy) is called thelocalizing matrixassociated with
y andg ∈ P. With α, β, γ ∈ Nn one can check that

[M(gy)]αβ = Ly([g(x)b(x)b(x)T ]αβ) =
∑
γ

gγyα+β+γ .

If y has a representing measureµ with support contained in
the closed set{x ∈ Rn | g(x) ≥ 0}, then

〈p, p〉gy = 〈p,Mk(gy)p〉 =
∫
gp2 dµ ≥ 0, ∀p ∈ Pk

so that the truncated localizing matrix satisfiesMk(gy) � 0,
for all k.

C. Scalar case

In this section, we briefly recall the results of [19]. Consider
the (generally non-convex) polynomial optimization problem

f? = minx f(x)
s.t. gi(x) ≥ 0, i = 1, . . . ,m (5)

wheref(x) andgi(x) are scalar real multivariate polynomials
of the indeterminatex ∈ Rn. Let

K = {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . ,m}

denote the set of feasible solutions of (5), a semi-algebraic set
of Rn.

Problem (5) can be equivalently written as themoment
optimization problem

f? = minµ
∫
f(x)dµ

s.t.
∫
K
dµ = 1,

∫
R−K

dµ = 0.
(6)

In other words, we have replaced the (finite dimensional)
nonconvex problem (5) with theconvex(even linear !) op-
timization problem, but on an infinite dimensional space,
namely, the space of measures onRn. At first glance, (6)
seems to be just arephrasing of the original problem (5),
with no specific progress. However, we next use the fact that
f, gi are all polynomials, in which case the formulation (6)
can be further exploited.

Indeed, ifK is compact, and under mild assumptions on
the polynomialsgi that defineK, one may define finite-
dimensional relaxations of the above problem (6) that involve
finitely many momentsof µ, and whose sequence of optimal
values converges to the desired global optimumf∗.

For 2k ≥ max[deg f,maxi deg gi], consider the following
semidefinite program

f (k) = miny Ly(f) (=
∑
α fαyα)

s.t. y0 = 1
Mk(y) � 0
Mk−di(giy) � 0, i = 1, . . . ,m,

(7)

wherey ∈ R(sr), andMk(y) � 0 andMk−di(giy) � 0 are
linear matrix inequality (LMI) constraints iny corresponding
to respective truncations of moment and localizing matrices,
and where2di or 2di − 1 is the degree of polynomialgi for
i = 1, . . . ,m. In other words, problem (7) is a convex LMI
optimization problem. Obviously, the optimumf (k) is a lower
bound on the global optimumf? of the original problem, and
f (k) ≥ f (k′) wheneverk ≥ k′. Problem (7) is referred to as
the LMI relaxation of orderk of problem (5).
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Write Mk(y) =
∑
αBαyα andMk−di(giy) =

∑
α C

i
αyα

for i = 1, . . . ,m and appropriate symmetric matricesBα and
Ciα. The dual of (7) is then the LMI problem

λ(k) =
max
λ,X,Zi

λ

s.t. 〈B0, X〉+
∑m
i=1〈Ci0, Zi〉 = f0 − λ

〈Bα, X〉+
∑m
i=1〈Ciα, Zi〉 = fα, ∀0 6= |α| ≤ 2k

X � 0, Zi � 0, i = 1, . . . ,m.
(8)

As shown in [19], the spectral decompositions of the positive
semi-definite matricesX,Zi provide coefficient vectors of
some associatedsums of squares(s.o.s.) polynomialspi, and
the above LMI problem can be written as a polynomial s.o.s.
problem

λ(k) =
max
λ,pi

λ

s.t. f − λ = p0 +
∑m
i=1 pigi

p0, . . . , pm s.o.s.
max[deg p0,maxi deg pigi] ≤ 2k.

(9)

Theorem 2.1:Assume that

• there exists a polynomialp such thatp = p0 +
∑
i pigi

for some s.o.s. polynomialspi, i = 0, 1, . . . ,m, and
• the level set{x ∈ Rn | p ≥ 0} is compact.

Then, ask → ∞, f (k) ↑ f∗ andλ(k) ↑ f∗ in LMI problems
(7) and (8).

Proof: The proof can be sketched as follows, see [19]
for details. Letε ∈ R > 0 be fixed arbitrary. The polynomial
f − f∗+ ε is strictly positive onK. Then, by a representation
theorem of Putinar [25]

f − f∗ + ε = p0 +
m∑
i=1

pigi

for some s.o.s. polynomialspi, i = 0, 1, . . . ,m. Let 2k ≥
max(deg p0, maxi deg pigi). Then (f∗ − ε, p0, . . . , pm) is a
feasible solution of (9) with valueλ = f∗−ε. By weak duality
λ(k) ≤ f (k), and hencef∗ − ε ≤ λ(k) ≤ f (k) ≤ f∗. As ε > 0
was arbitrary, the result follows.

The Matlab software GloptiPoly [9], released in 2002, builds
up and solves the above LMI relaxations (7) of polynomial
optimization problem (5). It was tested extensively on a set
of benchmark engineering problems coming from continuous
optimization, combinatorial optimization, polynomial systems
of equations and control theory [9], [11]. In practice, it is
observed that the global optimum is reached numerically (i.e.
at given reasonable computational accuracy) at a relaxation
orderk which is generally small (typically 1, 2 or 3). More-
over, the relative gap|f (k) − f?||f?|−1 is generally small for
all k, meaning that the LMI relaxations generate good quality
approximations.

Last but not least, a result of Curto and Fialkow [3] in
the theory of moments can be exploited todetectwhether the
global optimum is reached numerically at a given relaxation
orderk, and to extractglobal minimizersx∗ ∈ Rn. All these
tasks can be performed with standardnumerical linear algebra
(singular value decomposition, Cholesky factorization) and are

implemented in GloptiPoly, see [12]. Thus, when some LMI
relaxation is exact and the test of global optimality is passed,
one also obtains one (or several) global minimizers, a highly
desirable feature in most applications of interest.

D. Matrix case

To derive results in the matrix case, we proceed by close
analogy with the scalar case described in the previous section.
We now consider the PMI optimization problem (1), where
G : Rn → Sm is a polynomial mapping in the indeterminate
x ∈ Rn. So, each entryGij(x) = Gji(x) of the matrixG(x) ∈
Sm is a polynomial. Let

K := {x ∈ Rn : G(x) � 0}

denote the set of feasible solutions of (1), which is a semi-
algebraic set ofRn.

For a polynomial mappingP : Rn → R
m of degree at

most k, i.e. P ∈ Pmk , write x 7→ P (x) = Pbk(x) ∈ Rm,
for somem× sk matrix P, wheresk is the dimension of the
vector spacePk as defined previously. Also, the notationvecP
denotes the vector obtained from the matrixP by stacking up
its columns.

As in the scalar case, letMk(y) = {yα+β}α,β , be the mo-
ment matrix of orderk (i.e. such that|α|, |β| ≤ k), associated
with a sequencey. Similarly, we define the localizing matrix
Mk(Gy), associated with a sequencey and the polynomial
matrix x 7→ G(x), as follows.

Writing G(x) =
∑
γ∈Nn Gγx

γ , for some finite family of
real symmetric matrices{Gγ}γ ⊂ Sm, we also define the
(m-block) sk-vectorGy by (Gy)α :=

∑
γ Gγyα+γ , for all α

with |α| ≤ k. That is, each entry(Gy)α, |α| ≤ k, is am×m
matrix. Then, the localizing matrixMk(Gy) has the block
structure{(Gy)α+β}α,β , with |α|, |β| ≤ k; equivalently, from
its definition,Mk(Gy) is obtained from the moment matrix
Mk(y) by

[Mk(Gy)]αβ = Ly([(bk(x)bk(x)T⊗G(x)]αβ), |α|, |β| ≤ k,

where⊗ stands for the Kronecker, or tensor product. In short
and with abuse of notation, we can write

Mk(Gy) = Ly(bk(x)bk(x)T ⊗G(x)) (10)

meaning thatLy is appliedentrywiseto the polynomial matrix
x 7→ bk(x)bk(x)T ⊗G(x).

As in the scalar case, we come up with the followingk-
truncated linear problem

Qk : f (k) = miny Ly(f) (=
∑
α fαyα)

s.t. y0 = 1
Mk(y) � 0
Mk−d(Gy) � 0,

(11)

whereMk(y) andMk−d(Gy) are the truncated moment and
localizing matrices associated withy andG.

Obviously,f (k) ≤ f∗ for all k (i.e., Qk is a relaxation of
(1)) because ifx ∈ Rn is feasible in (1) theny := b2k(x)
is a feasible solution of (11). Indeed,Ly(f) = f(x), and
Mk(y) = bk(x)bk(x)T � 0. Finally, Mk−d(y) � 0, because
Mk−d(y) is the tensor product ofG(x) � 0 andMk−d(y) � 0.
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Next, as in Hol and Scherer [14], [15], we say that a
polynomial matrixx 7→ R(x) ∈ Sm of dimensionm × m
and degree2k is s.o.s. if it can be written in the form

x 7→ R(x) =
∑
j

Qj(x)Qj(x)T ∈ Sm

for a family of polynomial vectorsQj ∈ Pmk . Then, consider
the polynomial s.o.s. problem

λ(k) = max
λ,p0,R

λ

s.t. f − λ = p0 + 〈R,G〉
p0, R s.o.s.
deg p0, deg 〈R,G〉 ≤ 2k,

(12)

the matrix analogue of (8). We can verify that

λ(k) ≤ f (k). (13)

Indeed, letλ, p0, R be a feasible solution of (12), and lety be
a feasible solution of (11). Then fromf − λ = p0 + 〈R,G〉,
we obtainLy(f − λ) = Ly(f) − λy0 = Ly(f) − λ =
Ly(p0) + Ly(〈R,G〉). We next prove thatLy(p0) ≥ 0 and
Ly(〈R,G〉) ≥ 0, and soLy(f) ≥ λ, which in turn will imply
(13).

As p0 is s.o.s., sayp0 =
∑l
i=1 p

2
0l, for some family

{p0l} ⊂ R[x], and using the linearity ofLy, we obtain
Ly(p0) =

∑l
i=1 Ly(p2

0l) =
∑l
i=1〈p0l,Mk(y)p0l〉 ≥ 0,

becauseMk(y) � 0 (see (4)).
Similarly, write x 7→ R(x) =

∑l
j=1Qj(x)Qj(x)T , with

Qj(x) = Qjbk−d(x) and whereQj ∈ Rm×sk−d , for all j =
1, . . . , l. Then, withvj = vecQj for all j = 1, . . . , l,

〈R(x), G(x)〉 =
∑l
j=1〈Qjbk−d(x)bk−d(x)TQT

j , G(x)〉
=
∑l
j=1〈bk−d(x)bk−d(x)T ⊗G(x),vjvTj 〉

=
∑l
j=1 vTj

[
bk−d(x)bk−d(x)T ⊗G(x)

]
vj

and

Ly(〈R(x), G(x))〉
=
∑l
j=1 Ly

(
vTj
[
bk−d(x)bk−d(x)T ⊗G(x)

]
vj
)

=
∑l
j=1〈vj , Ly

(
bk−d(x)bk−d(x)T ⊗G(x)

)
vj〉

=
∑l
j=1〈vj ,Mk−d(Gy)vj〉 [by (10)].

SinceMk−d(Gy) � 0, it follows thatLy(〈R(x), G(x)〉) ≥ 0.
Therefore, we have proved thatLy(f−λ) ≥ 0, i.e.Ly(f) ≥

λ for any two solutionsy andλ of (11) and (12) respectively,
the desired result. In fact both LMI (11) and (12) are dual of
each other.

We next use a result by Hol and Scherer [14], [15] and
Kojima [18] to prove the following

Theorem 2.2:Assume that
• there exists a polynomialp such thatp = p0 + 〈R,G〉 for

some s.o.s. polynomialsp0 andR, and
• the level set{x ∈ Rn | p(x) ≥ 0} is compact.

Then, ask →∞, f (k) ↑ f∗ andλ(k) ↑ f∗ in LMI relaxations
(11) and (12).

Proof: We already havef (k) ≤ f∗ for all k, and from
(13), λ(k) ≤ f (k) ≤ f∗. Next, under the assumption of the
theorem, Hol and Scherer [14], [15] and Kojima [18] have
proved thatλ(k) in (12), satisfiesλ(k) ↑ f∗ ask →∞. From
what precedes, the result follows.

Remark 2.3:The assumptions of Theorem 2.2 are not very
restrictive. For instance, suppose that one knows an a priori
boundρ on the Euclidean norm‖x∗‖ of a global minimizer
x∗. Then, one introduces the new BMI constraintG̃(x) =
diag {G(x), ρ2−‖x‖2} � 0 and the feasibility set̃K = {x ∈
R
n : G̃(x) � 0} for which both assumptions are satisfied.

Indeed, lete ∈ Rm+1 be such thatej = δj,m+1 for all j =
1, . . . ,m+1. Then, the polynomialx 7→ p(x) = ρ2−‖x‖2 can
be written asp = 〈eeT , G̃〉 and the level set{x ∈ Rn : p ≥ 0}
is compact.

We now prove a result that permits todetectwhether the
LMI Qk provides the optimal valuef∗, and if so, global
minimizers as well. This is important because it will permit
to use the extraction procedure already described in [12], and
obtain global minimizers, exactly in the same manner as in the
scalar case. We strongly use an important theorem of Curto and
Fialkow [3] on (positive) flat extensions of moment matrices.

Theorem 2.4:Suppose that an optimal solutiony∗ of the
LMI Qk in (11) satisfies

s = rankMk(y∗) = rankMk−d(y∗). (14)

Then y∗ is the vector of moments (up to order2k) of an s-
atomic probability measureµ∗ with support contained in the
setK. That is, there ares distinct points{xj}sj=1 ⊂ K such
that

µ∗ =
s∑
j=1

γjδxj ,

s∑
j=1

γj = 1, γj > 0, j = 1, . . . , s

(15)
andG(xj) � 0, whereδx denotes the Dirac measure atx ∈
R
n. Thereforefk = f∗ andx1, . . . , xs are global minimizers.

Proof: From (14), Mk(y∗) is a flat extension of
Mk−d(y∗), that is, Mk(y∗) � 0, Mk−d(y∗) � 0 and
rankMk−d(y∗) = rankMk(y∗). Therefore, by the flat ex-
tension theorem,y∗ is the vector of moments (up to order2k)
of somes-atomic probability measureµ∗ onRn, see [3] or [21,
Theor. 1.3]. That is, there ares distinct points{xj}sj=1 ⊂ Rn
such that (15) is satisfied.

Next, let {λj}sj=1 be an arbitrary set of nonzero eigenval-
ues of the matrices{G(xj)}sj=1 ⊂ R

m×m, with associated
set {uj}sj=1 ⊂ R

m of (normalized) eigenvectors. That is,
G(xj)uj = λjuj , with λj 6= 0, for all j = 1, . . . , s. As s =
rankMk−d(y∗), then there exists interpolation polynomials
{gi}si=1 ⊂ R[x] at points{xj}sj=1, of degree at mostk−d, i.e.,
gi(xj) = δij for i, j = 1, . . . , s, whereδij is the Kronecker
symbol; see [21, Lemma 2.7].

Then for every j = 1, . . . , s, let Hj ∈ Pmk−d be the
polynomial vectorRn → R

m,

x 7→ Hj(x) = gj(x)uj , j = 1, . . . , s.

Then observe thatHj(xk) = δjkuk for all j, k = 1, . . . , s.
In addition, by the feasibility ofy∗ in the LMI Qk, for every
j = 1, . . . , s,

〈vecHj ,Mk−d(Gy∗)vecHj〉
=
∫
〈Hj(x), G(x)Hj(x)〉 dµ∗

=
∑s
l=1 γl〈Hj(xl), G(xl)Hj(xl)〉

= γj〈Hj(xj), G(xj)Hj(xj)〉
= γjλj ≥ 0.
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Therefore, asγj > 0, it follows that λj ≥ 0 for all j =
1, . . . , s. As the set of nonzero eigenvalues{λj}sj=1 was
arbitrary, it thus follows that all eigenvalues ofG(xj) are
nonnegative, i.e.,G(xj) � 0, for all j = 1, . . . , s. And so, the
probability measureµ∗ is supported on the setK, the desired
result.

Using the condition (14) in Theorem 2.4, we can now extract
global minimizersx∗ ∈ R

n, exactly along the same lines
described in [12]. It is illustrated in the examples below.

E. First example

Consider the 2x2 quadratic matrix inequality in 2 variables

f? =
minx f(x) = −x2

1 − x2
2

s.t. G(x) =
[

1− 4x1x2 x1

x1 4− x2
1 − x2

2

]
� 0.

(16)

The non convex bounded feasible setK = {x |G(x) � 0}
is represented in Figure 1. There are two global optimax =
[0,±2], both with optimal valuef? = −4.

Fig. 1. Example II-E. Non-convex PMI feasible set.

1) Scalarizing: First, we translate the PMI optimization
problem (16) into a scalar polynomial optimization problem,
see Section II-A.

The quadratic matrix inequalityG(x) � 0 is feasible if and
only if the characteristic polynomialt 7→ p(t, x) = det (tI −
G(x)) = t2−(5−4x1x2−x2

1−x2
2)t+(4−16x1x2−2x2

1−x2
2+

4x3
1x2 + 4x1x

3
2) has only non-negative real roots. According

to [20], this is the case if and only if the coefficients ofp(t, x)
have alternating signs, i.e. if and only if

g1(x) = 5− 4x1x2 − x2
1 − x2

2 ≥ 0
g2(x) = 4− 16x1x2 − 2x2

1 − x2
2 + 4x3

1x2 + 4x1x
3
2 ≥ 0.

Our PMI optimization problem (16) is then equivalent to the
scalar polynomial optimization problem

f? = minx f(x)
s.t. g1(x) ≥ 0

g2(x) ≥ 0.

LMI Lower Ranks of Number Size
relax. bound moment of LMI of LMI

orderk f (k) matrices variables constraints
2 -4.8382 3,4 14 6+3+1
3 -4.2423 3,5,7 27 10+6+3
4 -4.0947 3,6,10,12 44 15+10+6
5 -4.0353 3,6,10,14,16 65 21+15+10
6 -4.0062 3,6,10,15,21,28 90 28+21+15
7 -4.0000 2,2,2,2,2,2,2 119 36+28+21

TABLE I

EXAMPLE II-E. A PPLYING GLOPTIPOLY ON THE SCALARIZED PMI.

Applying GloptiPoly on this problem, using the LMI solver
SeDuMi with default tunings, we get the results summarized
in Table I. We report there the LMI relaxation orderk, the
computed lower boundsf (k) on the global optimum, the ranks
of partitions of successive moment matrices, as well as the
number of scalar variables and the size of the LMI constraints.
Note that we have to start with the LMI relaxation of order
k = 2 since the scalarized problem features a polynomialg2

of degree2k = 4.

The global optimum is reached at the 7th LMI relaxation:
the moment matrix has rank two and the two global optima
are extracted using the algorithm described in [12].

2) Keeping the matrix structure:Now we apply the LMI
relaxations described in section II-D. They keep the matrix
structure of the PMI.

The first LMI relaxation of the PMI optimization problem
(16) is given by

f (1) = min −y20 − y02

s.t. M1(y) =

 1
y10 y20

y01 y11 y02

 � 0

M0(Gy) =
[

1− 4y11

y10 4− y20 − y02

]
� 0,

where symmetric upper triangular entries are omitted.

The second LMI relaxation is given by

f (2) = min −y20 − y02

s.t. M2(y) =


1
y10 y20

y01 y11 y02

y20 y30 y21 y40

y11 y21 y12 y31 y22

y02 y12 y03 y22 y13 y04

 � 0

M1(Gy) =

 M00(Gy)
M10(Gy) M20(Gy)
M01(Gy) M11(Gy) M02(Gy)

 � 0
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LMI Lower Ranks of Number Size
relax. bound moment of LMI of LMI

orderk f (k) matrices variables constraints
1 -4.0000 3 5 3+2
2 -4.0000 2,2 14 6+6

TABLE II

EXAMPLE II-E. SOLVING THE LMI RELAXATIONS OF THE PMI.

where

M00(Gy) =
[

1− 4y11

y10 4− y20 − y02

]
M10(Gy) =

[
y10 − 4y21

y20 4y10 − y30 − y12

]
M01(Gy) =

[
y01 − 4y12

y11 4y01 − y21 − y03

]
M20(Gy) =

[
y20 − 4y31

y30 4y20 − y40 − y22

]
M11(Gy) =

[
y11 − 4y22

y21 4y11 − y31 − y13

]
M02(Gy) =

[
y02 − 4y13

y12 4y02 − y22 − y04

]
.

Solving these two LMI relaxations, we get the results summa-
rized in Table II. We see that, in contrast with the scalarization
technique, the global optimum is reached already at the first
LMI relaxation, at a very moderate cost. We only have to
resort to the second LMI relaxation in order to obtain a
numerical certificate of global optimality and to extract the
two solutions, also at a very moderate cost when compared
with the scalarization technique. Remarkably, we have only
used moment variablesyα of order at most4, in contrast to
14, in the scalar case.

For illustration, we briefly recall the extraction procedure
described in [12]. At the optimum, the moment matrix of the
second LMI relaxation, rounded to three significant digits, is
given by

M2(y∗) =


1.00
0.00 0.00
0.00 0.00 4.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
4.00 0.00 0.00 0.00 0.00 16.0

 .

A Cholesky factorization, obtained via e.g. the Schur decom-
position or the singular value decomposition, is given by

M2(y∗) =


1.00 0.00
0.00 0.00
0.00 1.00
0.00 0.00
0.00 0.00
4.00 0.00


[

1.00 0.00
0.00 4.00

]


1.00 0.00
0.00 0.00
0.00 1.00
0.00 0.00
0.00 0.00
4.00 0.00



T

From this rank-two Cholesky factor in echelon form, it follows
from [12] that global optimizers satisfy the polynomial system

LMI Lower Ranks of Number Size
relax. bound moment of LMI of LMI

orderk f (k) matrices variables constraints
2 -1.8926 2,2 14 6+3+1
3 -1.8926 2,2,2 27 10+6+3

TABLE III

EXAMPLE II-F. A PPLYING GLOPTIPOLY ON THE SCALARIZED PMI.

LMI Lower Ranks of Number Size
relax. bound moment of LMI of LMI

orderk f (k) matrices variables constraints
1 -2.0000 2 5 3+2
2 -1.8926 2,2 14 6+6

TABLE IV

EXAMPLE II-F. SOLVING THE LMI RELAXATIONS BY KEEPING THE

MATRIX STRUCTURE OF THEPMI.

of equations
1 = 1
x1 = 0
x2 = x2

x2
1 = 0

x1x2 = 0
x2

2 = 4

whose right hand-side can be expressed in the polynomial
basis(1, x2). Note that these equations come from the polyno-
mials lying in the kernel of the moment matrix. As explained
in [12], this kind of polynomial system can be solved via
eigenvalue extraction. Here it is straightforward to conclude
that the two global optimizers arex = [0 ± 2].

F. Second example

Now change the objective function in example II-E to

f(x) = x1x2.

1) Scalarizing: Solving the scalarized problem with Glop-
tiPoly, we get the results reported in Table III, showing that the
global optimum is now reached at the second LMI relaxation,
and certified at the third LMI relaxation. The two extracted
solutions arex = ±[−1.3383, 1.4142], with optimal value
f∗ = −1.8926. Here, we have used moment variablesyα of
order at most6.

2) Keeping the matrix structure:Solving the LMI relax-
ations of the PMI by keeping the matrix structure, we obtain
the results summarized in Table IV. The global optimum is
reached and certified at the second LMI relaxation. Here the
advantage of keeping the matrix structure of the PMI is less
apparent, but we still have only used moment variables of
order at most4, in contrast to6 in the scalar case.

III. A PPLICATION TO STATIC OUTPUT FEEDBACK DESIGN

In this section we apply the LMI relaxation methodology
of section II to solve PMI optimization problems arising from
static output feedback (SOF) design problems. After recalling
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the SOF problem statement and its standard BMI state-space
formulation, we propose an alternative PMI polynomial formu-
lation. Then we illustrate the relevance of the LMI relaxation
mechanism on non-trivial PMI problems arising from SOF
problems.

A. SOF design

Consider the linear system

ẋ = Ax+Bu
y = Cx

of order n with m inputs andp outputs, that we want to
stabilize by static output feedback

u = Ky.

In other words, given matricesA ∈ R
n×n, B ∈ R

n×m,
C ∈ Rp×n, we want to find matrixK ∈ Rm×p such that
the eigenvalues of closed-loop matrixA+BKC all belong to
a region

D = {s ∈ C : a+ b(s+ s̄) + css̄ < 0}

of the complex plane, wherea, b, c ∈ R are given scalars and
the bar denotes the complex conjugate. Typical choices are
a = c = 0, b = 1 for the left half-plane (continuous-time
stability) andc = −a = 1, b = 0 for the unit disk (discrete-
time stability).

Problem SOF:Given matricesA,B,C, find matrixK such
that eigenvalues of matrixA + BKC all belong to given
stability regionD.

B. State-space BMI formulation

Following a standard state-space approach [27], the SOF
problem can be formulated as the BMI

(A+BKC)TP + (A+BKC)P ≺ 0, P = PT � 0

in decision variablesK and P where≺ 0 and � 0 stand
for positive and negative definite, respectively. We see that
SOF matrixK (the actual problem unknown) containsmp
scalar entries, whereas Lyapunov matrixP (instrumental to
ensuring stability) containsn(n + 1)/2 scalar entries. When
n is significantly larger thanmp, the important number of
resulting Lyapunov variables may be prohibitive.

C. PMI formulation

In this section we propose an alternative PMI formulation
of the SOF problem featuring entries of matrixK only. In
order to get rid of the Lyapunov variables, we focus on a
polynomial formulation of the SOF problem, applying the
Hermite stability criterion on the closed-loop characteristic
polynomial, in the spirit of [8].

1) Characteristic polynomial:Let κ ∈ Rmp be the vector
obtained by stacking the columns of matrixK. Define

q(s, κ) = det (sI −A−BKC) =
n∑
i=0

qi(κ)si

as the characteristic polynomial of matrixA+BKC. Coeffi-
cients of increasing powers of indeterminates in polynomial
q(s, κ) are multivariate polynomials inκ, i.e.

qi(κ) =
∑
α

qiακ
α

whereα ∈ Nmp describes all monomial powers.
2) Hermite stability criterion: The roots of polynomial

q(s, κ) belong to stability regionD if and only if

H(κ) =
n∑
i=0

n∑
j=0

qi(κ)qj(κ)Hij � 0

whereH(κ) = HT (κ) ∈ Rn×n is the Hermite matrix of
q(s, κ). CoefficientsHij = HT

ij ∈ R
n×n depend on the

stability regionD only, see [10].
3) Polynomial matrix inequality:Hermite matrixH(κ) de-

pends polynomially on vectorκ, hence the equivalent notation

H(κ) =
∑
α

Hακ
α � 0 (17)

where matricesHα = HT
α ∈ Rn×n are obtained by combining

matricesHij , andα ∈ Nmp describes all monomial powers.
Lemma 3.1:Problem SOF is solved if and only if vectorκ

solves the PMI (17).

D. Numerical aspects

In [13], we discuss various numerical aspects regarding the
derivation of PMI (17). For conciseness, they are only briefly
mentioned here and not reported in full detail:

• Computing the characteristic polynomial: to build up
polynomialq(s, κ) we need to evaluate coefficientsqiα of
the determinant of matrixsI − A − BKC. We proceed
numerically by interpolation: coefficients ofq(s, κ) are
determined by solving a linear system of equation built
on a perfectly conditioned truncated multivariate Vander-
monde matrix;

• Building up the Hermite matrix: coefficientsHij depend
only on the stability regionD. They are computed by
solving a simple linear system of equations, as shown in
[10]. In the case of continuous-time stability, the Hermite
matrix can be split down into two blocks of approximate
half size;

• Strict feasibility: to solve the strict PMI feasibility prob-
lem (17), we can solve the non-strict problem

H(κ) � λI

trying e.g. to maximize scalarλ > 0. In practice however
the feasibility set of PMI (17) can be unbounded in some
directions andλ can grow unreasonably large. In our
experiments we setλ to some small positive constant
value;



9

• Minimizing the trace of the moment matrix: as noticed in
[12] for such problems, in order to improve convergence
of the hierarchy of LMI relaxations, it is recommended
to minimize the trace of the moment matrixMk(y).
Existence of a scalarγ > 0 such that

traceMk(y) ≤ γ

ensures boundedness of all the momentsyα, and thus,
feasibility of the relaxations.

E. Numerical experiments

In this section we report numerical experiments showing
that the methodology developed in section II can indeed prove
useful for solving non-trivial SOF problems formulated in
this polynomial setting. The problems are extracted from the
publicly available benchmark collection COMPleib [22]. These
problems are formulated in continuous-time (regionD is the
left half-plane,a = c = 0, b = 1). LMI problems were
built with the YALMIP Matlab interface [23] and solved
with SeDuMi [29] with default tunings. When testing ranks
of moment matrices, we use a relative gap threshold of
10−4 between successive singular values. Numerical data are
rounded to 5 digits.

1) ExampleAC8: A model of a modern transport airplane
with n = 9 states,m = 1 input andp = 5 outputs. The state-
space BMI formulation of Section III-B would introduce45
scalar Lyapunov variables in addition to the5 feedback gain
entries. Scalarization as in Section II-A would result in a set
of 9 scalar polynomial constraints of degree up to 18 in 5
variables. Therefore, the first LMI relaxation in the hierarchy
(7) would involve

(
23
5

)
= 33649 variables.

By keeping the matrix structure, solving the first LMI
relaxation (24 moment variables, LMI size 5+4+6) returns a
moment matrixM1 whose 4 largest singular values are1.0000,
5.6595 · 10−6, 2.3851 · 10−7 and2.2305 · 10−7. So matrixM1

has numerical rank one, the global optimum is reached, and
factorizingM1 yields the stabilizing feedback matrix

K =
[
3.6275 · 10−6 − 3.8577 · 10−4 · · ·

−1.0121 · 10−5 1.7389 · 10−3 2.0960 · 10−4
]
.

Observe that one obtains the global optimum at a relaxation
that involves moments of order up to2 only.

2) ExampleREA3: A model of a nuclear reactor withn =
12 states,m = 1 input andp = 3 outputs. The state-space BMI
formulation would introduce78 scalar Lyapunov variables in
addition to the5 feedback gain entries. Scalarization would
result in a set of 12 scalar polynomial constraints of degree
up to 24 in 3 variables. Therefore, the first LMI relaxation in
the hierarchy (7) would involve

(
27
3

)
= 2925 variables.

Solving the first LMI relaxation (10 variables, LMI size
6+6+4) returns a moment matrixM1 whose 4 singular values
are 6326.0, 1.0000, 2.1075 · 10−7 and 1.3116 · 10−6. Matrix
M1 has numerical rank two.

Solving the second LMI relaxation (35 variables, LMI size
24+24+10) returns a moment matrixM1 with singular values
6327.0, 2.4620 · 10−3, 1.9798 · 10−3, 3.9060 · 10−6 and a
moment matrixM2 whose 4 largest singular values are4.0025·

107, 21.092, 15.397 and 4.6680. We consider that bothM1

andM2 have rank one so that the global optimum is reached.
FactorizingM1 yields the stabilizing feedback matrix

K =
[
−1.1037 · 10−7 −0.15120 −79.536

]
.

One obtains the global optimum at a relaxation that involves
moments of order up to4 only.

3) ExampleHE1: A model of the longitudinal motion of a
helicopter, withn = 4 states,m = 2 inputs andp = 1 output.

Solving the first LMI relaxation (6 variables, LMI size
2+2+3) returns a moment matrixM1 whose 3 singular values
are 1.0076, 2.6562 · 10−2, 2.1971 · 10−9 so matrixM1 has
numerical rank two.

Solving the second LMI relaxation (15 variables, LMI size
6+6+6) returns a moment matrixM1 with singular values
1.0085, 6.4009 · 10−2, 6.9224 · 10−10 and a moment matrix
M2 whose 4 largest singular values are1.0128, 8.0720 ·10−2,
1.7875 · 10−2, 8.0773 · 10−10. So matrixM1 has numerical
rank two, whereas matrixM2 has numerical rank three, and
we cannot conclude.

Solving the third LMI relaxation (28 variables, LMI size
12+12+10) we obtain a moment matrixM1 with singular
values 1.1404, 9.8176 · 10−10, 4.5344 · 10−11, a moment
matrixM2 with 4 largest singular values1.1583, 1.1052·10−9,
8.0379 ·10−11, 6.0171 ·10−11, and a moment matrixM3 with
4 largest singular values1.1605, 1.1716 ·10−9, 3.8334 ·10−10,
7.2405·10−11. All these moment matrices have numerical rank
one, so the global optimum is reached. FactorizingM1 yields
the stabilizing feedback matrix

K =
[
−0.11972 0.35500

]
.

One obtains the global optimum at a relaxation that involves
moments of order up to6 only. The global optimum, together
with the non-convex set of stabilizing SOF gains, are repre-
sented in Figure 2.

Fig. 2. ExampleHE1. Non-convex set of stabilizing SOF gains (gray zone)
and global optimum (black dot).
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IV. CONCLUSION

We have proposed a methodology to solve, in asystem-
atic way, non-convex polynomial matrix inequalities (PMI)
problems. Based on a moment interpretation of recent results
on sum-of-squares decompositions of positive polynomial ma-
trices, a hierarchy of convex linear matrix inequality (LMI)
relaxations is built up, with a guarantee of convergence to
the global optimum of the original non-convex PMI problem.
When finite convergence occurs (as observed in practice),
results from the theory of moments allows todetect global
optimality and extract global optimizerswith the help of
existing numerical linear algebra algorithms. It is planned
to incorporate PMI constraints into the next release of the
GloptiPoly software [9].

The methodology is then applied to solve non-trivial static
output feedback (SOF) problems formulated as PMI problems.
Since the number of variables as well as the number of
constraints both grow relatively fast when building up the
hierarchy of successive LMI relaxations, it is important to
reduce the number of variablesin the SOF PMI problem as
much as possible. Our approach for solving SOF problems
allows this by focusing on an algebraic, orpolynomial for-
mulation: namely, the Hermite stability criterion is applied
on the closed-loop characteristic polynomial, resulting in PMI
SOF stabilizability conditions involving feedback matrix gain
entries only, without additional Lyapunov variables.

One may argue that every PMI problem can be transformed
into an equivalentscalarpolynomial optimization problem by
an application of Descartes’ rule of signs as in Section II-
A. Therefore, theoretically, one may solve a PMI problem by
solving the hierarchy of LMI relaxations defined in [19], and
implemented in the software GloptiPoly [9]. However, notice
that at least one polynomial in the scalar representation of the
PMI has high degree, which induces LMI relaxations of size
too large for the present status of SDP solvers, see Examples
REA3 and A8 of Section III-E. In contrast, the approach
developed in the present paper takes explicitly into account
the matrix structure of the PMI problems and the designer
has a better control on the size growth of the successive LMI
relaxations in the hierarchy.

As far as control applications are concerned, the PMI
formulation must be extended to cope withH2 or H∞
performance criteria. The key issue is to formulate these
criteria algebraically, without using state-space arguments.
Similarly as for the SOF design problem, all the instrumental
Lyapunov variables must be removed in order to derive a PMI
formulation directly in the controller parameters.

Several numerical aspects of PMI problems deserve to be
studied in further detail. In our opinion, the field of numerical
analysis for polynomials (monovariate, multivariate, scalar or
matrix) is still mostly unexplored [28]. There is a crucial need
for reliable numerical software dealing with polynomials and
polynomial inequalities. Other potentially interesting research
topics include reducing the number of constraints in a PMI
(removing redundant semi-algebraic constraints), detecting
convexity (some PMI SOF problems are convex) or exploiting
the structure of the LMI relaxations in interior point schemes.
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