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Abstract—Using a moment interpretation of recent results on « Global methodsbased on branch-and-bound schemes and
sum-of-squares decompositions of non-negative polynomial ma- alike [6], are generally highly demanding computation-
trices, we propose a hierarchy of convex linear matrix inequality ally. Efficient LMI bounding strategies can be designed

(LMI) relaxations to solve non-convex polynomial matrix in- to derive tiaht d | b d
equality (PMI) optimization problems, including bilinear matrix 0 derive light uppéer and lower bounds on non-convex

inequality (BMI) problems. This hierarchy of LMI relaxations objective functions and feasible sets [4], [5], but one
generates a monotone sequence of lower bounds that converges  can hardly avoid the combinatorial explosion inherent to
to the global optimum. Results from the theory of moments are branching schemes. Consequently these global methods

used to detect whether the global optimum is reached at a given

: , L \ are restricted to small (if not academic) problem instances
LMI relaxation, and if so, to extract global minimizers that satisfy ( )P

the PMI. The approach is successfully applied to PMIs arising only.

from static output feedback design problems. In this paper, we propose another strategy to overcome the
Index Terms— Polynomial matrix, nonconvex optimization, above shortcomings of local and global methods.

convex optimization, static output feedback design . On the one hand, our method obal in the sense

that it solves PMI problems and when finite convergence
|. INTRODUCTION occurs, it also provides a numeriazértificate of global

Most of synthesis problems for linear systems can be for- OPtimality (several distinct global optima can be found

mulated aspolynomial matrix inequalitfPMI) optimization without any combinatorial branching strategy).

problems in the controller parameters, a particular case of On the other hand, our method uses the LMI formalism
which are bilinear matrix inequalities (BMI) [7]. Generally, ~ &nd makes extensive useainvex semidefinite program-
these PMI problems araon-convexand hence, difficult to ming (SDP). In part'lcular, We'only re!y on efﬂmenF SDP
solve. Only in very specific cases (static state feedback, Ccdes already available, which avoids the considerably
dynamic output feedback controller of the same order as the difficult work of developing a specific algorithm and
plant) suitable changes of variables or subspace projections SOIVer:

have been found to convexify the design problem and deriveThe main idea behind the PMI optimization method de-
equivalent linear matrix inequality (LMI) formulations [2],scribed in this paper is along the lines of that developed in
[27], [26]. However, for several basic control problems sudi9] for scalar polynomial constraints. Based on the theory
as PID design, simultaneous stabilization or static outpat sum-of-squares positive polynomialsd its dual theory of
feedback design, no equivalent convex LMI formulation ismomentsa hierarchy of LMI relaxationf increasing dimen-
known. As a consequence, solving PMI problems is a difficuions is built up in such a way that the designer has to trade
numerical challenge, and there is still a lack of efficiemff between the expected accuracy and the computational load,
computer-aided control system design (CACSD) algorithmgth the theoreticagjuarantee of asymptotic convergerioghe

to address them satisfactorily. global optimum. Moreover, and disiite convergence typically
Traditionally, non-convex PMI optimization problems camccurs in many cases, numerical linear algebra procedures
be tackled either locally or globally: are available to detect global optimality and extract global

« Local methodscan be highly sensitive to the choiceoPtimizers. Practice reveals that for small to medium global
of the initial point, and generally provide a guarante@pPtimization problems, and up to machine precision, finite
of convergence to points satisfying necessary first ordgpnvergence eventually occurs, that is, the global optimum
optimality conditions only. Several local methods havis reached at some LMI relaxation of reasonable dimension.
been reported in the technical literature, but up to oee [9] for a description of a Matlab implementation with an
knowledge, the first and so far only publicly ava”ab@xtenswe set of numerical examples, and [11] for applications
implementation of a BMI solver is PENBMI [16], [17], I Systems control. _
based on a penalty function and augmented Lagrangiarinterestingly enough, the feasible set of any PMI problem
algorithm; is a semi-algebraic set and can be also represented by finitely
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Scherer [14], [15] and Kojima [18] on sum-of-squares of This problem is a particular case of polynomial optimization
polynomial matrices, and deriving a dual theory of momentproblems considered in [19], [24] and the many references
Thanks to the dual interpretation provided by the theory dferein. Indeed, the matrix constrait¥(z) > 0 defines a
moments, we can certify global optimality and extract theemi-algebraic sekC C R"™ that can be described explicitly
optimizers. In many applications this point is crucial, as oria terms of m scalar polynomial inequalitieg;(z) > 0,

is primarily interested in finding a global minimizer, rathei = 1,...,m. The polynomialsg; are obtained as follows.
than just the global optimum. In other words, using standaFr every fixedz € R"™, lett — p(t, z) = det(tI,, — G(x))
terminology in optimization, we can say that our method ise the characteristic polynomial @f(z), and writep in the
primal as it works in alifted primal space (the moments)form

of the original primal space, whereas papers [14], [15], [18] m

describe a dual approach which yields the optimal value but  p(¢t,z) = t™ + Z(—l)igi(m)t"L_i7 teR. (2
not the minimizers, exactly as Lagrangian relaxation methods i=1

in optimization yield optimal Lagrange multipliers but norHence, as — p(t,z) has only real roots (becausé(z) is

MINIMIZETS. Fymmetric), we can use an extension (to nonnegative roots)

The o_utlme of th? paper is as follows. In Sect|or_1 .Iof Descartes’ rule of signs [1, p. 41] proved in [20]. That is,
we provide the matrix analogues of moment and localizin | the roots oft — p(¢,x) are nonnegative if and and only if

matrices defined in [19] for the scalar case, and a speci I'(iw) >0 foralli=1 m. Therefore, in principle, the

test to detect global optimality at a given LMI relaxation. Ir‘gf . ;
. ) MI problem (1) can be solved using recent LMI relaxation
Section Ill, we apply this methodology to solve PMI problem% P (1) g

coming from static output feedback (SOF) design proble also called semidefinite programming, or SDP relaxation)

A salient feat ¢ his th fcul I bnl ‘chniques developed in [19], and implemented in the software
salient leature of our approach Is the particuiar algebr optiPoly [9]. In particular this approach allows to detect

(qr polynomial) formulation of the SOF. Indeed, 'n.contra%hether the global optimum is reached, and if so, to extract
with the standard state-space BMI approach that introduc Sbal minimizers. see [12]

a significant number of instrumental additional Lyapuno . . )
variables, the only decision variables of our SOF PMI probIeW However, the lattescalarrepresentation of the PMI is per

. . . . aps not always appropriate, especially w has high
are precisely the entries of the feedback gain matrix. degree and /ory dimFe)Esign. Typicrflly ong pg%(r:grry ale) I%

(2) has high degree (for instance, in BMI problems polynomial
) ) . go(x) has potentially degre2m). Recently, Hol and Scherer
In this section we expose the convex LMI relaxatio 4], [15] and Kojima [18] have tried to handigirectly the
methodology for non-convex PMI optimization problems. We, i inequality constraintG(z) = 0. Remarkably, they
first state formally the problem to be solved and introdugg, e derived a hierarchy ca‘pecificT_Ml relaxations, whose

some notations. Then we briefly recall the main ideas fggqciated sequence of optimal values converges to the global
scalar polynomial optimization problems, in order to Sm°°th|¥ptimumf*. However, and so far, only theonvergencef the
generalize them to matrix problems. Two small numericgly es has been obtained.

examples illustrate the LMI relaxation procedure.

II. LMl RELAXATIONS FORPMI PROBLEMS

Our contribution is to complement these works by focusing
o on the dual of the LMI relaxations defined in [14], [15],
A. PMI optimization [18] and briefly mentioned in [18]. In fact, a direct deriva-

Let S,, denote the space of real x m symmetric matrices, tion of these LMI relaxations, in the spirit of the moment
and let the notatiosl > 0 (resp.A > 0) stand forA is positive approach of [19], permits to retrieve the notionsrmbment
definite (resp. positive semidefinite). Consider the optimizati@nd localizing matrices Then, these LMI relaxations appear

problem as genuine matrix analogues of the scalar LMI relaxations of
f* = min f(z) (1) [19]. A key feature of this dual approach is that we can apply
st. G(z) =0, verbatim theglobal optimality detectiomndglobal minimizer

wheref is a real polynomial and : R* — S,,, a polynomial extractionprocedures already available in the scalar case, and

mapping, i.e. each enty; ; (z) of them xm symmetric matrix implemented in GloptiPoly.

G(z) is a polynomial in the indeterminate € R™. We will

ref(-_:-r Fo problem (1) as polynomial matrix inequalityPMI) 5 Moment and localizing matrices
optimization problem. Note that

« if f andG have degreleone, then problem (1) is a convexv Ir‘iethlR[xl’ -5 Tn] delnotg t:etrlggbof real Eﬂzl;\//nozmrals in the
linear matrix inequality(LMI) optimization problem; ariablesz,, ..., x,, also denoted by as anR-vector space,

« if G has degree two with no square term, then problevr¥1Ith associated canonical basis= P, given by

(1) is a (generally non-convexjlinear matrix inequality x—b(xr) = [1 T Ty - Ty T TiTy -
(BMI) optimization problem. By a slight abuse of termi- 2 43 ]T.
nology, BMI also sometimes refers to quadratic matrix " (3)

inequalities. Let y = {ya}aen~ be a real-valued sequence indexed in the

1By degree of a polynomial matrix we mean the largest degree of all tlkRéaSiS (3) A polynomiap 6 P is a_Iso idemiﬁe_d with its vector
scalar polynomial entries P = {Pa}acnn Of coefficients in the basis (3). For every
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p € P, the infinite vectorp has only finitely many nontrivial
entries. And so

z = p) = Y par® = (p,b())

aeN"?

If y has a representing measuyrewith support contained in
the closed sefr € R™ | g(x) > 0}, then

(0D gy = (P, Mr(gy)P) = /gp2 dp >0, Vpe Py

where (4, B) = trace(A” B) stands for the standard innerso that the truncated localizing matrix satisfieg (gy) = 0,

product of two matrices or vectorsl, B of compatible for all k.
dimensions. For a fixed sequenge= {y,} indexed in the
basis (3), letL, : P — R be the linear mapping
: C. Scalar case
p = Lyp) ={p.y) = Z PaYa- In this section, we briefly recall the results of [19]. Consider
achr the (generally non-convex) polynomial optimization problem
Define the bilinear mapping,.), : P x P +— R by )
‘ f* = min, f(z)

(p,q)y = Ly(pg) = (p, M(y)a) st. gi(x)>0, i=1,...,m ©)

for some infinite matrix\/(y), with rows and columns indexedwhere f(x) andg;(x) are scalar real multivariate polynomials
in the basish. With a, 3 € N", the entry(«, 3) of M(y) is  of the indeterminate: € R”. Let

given by

K={zeR" : g(z) >0, i=1,...,m}

[M(y)]aﬂ = Ly([b(x)b(x)T]aﬂ) = Ya+3- ] ] ) .
. . . denote the set of feasible solutions of (5), a semi-algebraic set
A sequencey = {y, } is said to have a representimgeasure

of R™.

pif Problem (5) can be equivalently written as theoment
Yo = /x“ dpy Vo e N optimization problem
and in this case f* = min, /f(x)du
6
M) = [ W0dp = [ b)) o). st [an=1. [ au=o ©
K R-K

One can check that for any two polynomialsy € P, . . .
In other words, we have replaced the (finite dimensional)

Ly,(pq) = (p, M(y)q) = /(p,bqu> du nonconvex problem (5) with theonvex(evenlinear !) op-
‘ timization problem, but on an infinite dimensional space,
= /<p7b(x)><b(;y)’q>p,(d(1;) = /pqdu, namely, the space of measures Bfi. At first glance, (6)

seems to be just aephrasing of the original problem (5),
The infinite matrix)/ (y), with rows and columns indexed inwith no specific progress. However, we next use the fact that
the basish, is then called thenoment matrixassociated with f, g; are all polynomials in which case the formulation (6)
the measurg.. Now, denote byb, the canonical basis of thecan be further exploited.
R-vector subspacé’, C P of real polynomials of degree Indeed, if  is compact, and under mild assumptions on
at mostk (the finite truncation oft in (3) which consists the polynomialsg; that define C, one may define finite-
of monomials of degree at mo&), and whose dimension is dimensional relaxations of the above problem (6) that involve
Sp = ("*7’) Then for allp, g € Py, finitely many momentsof u, and whose sequence of optimal
values converges to the desired global optimgim
L = = M, 4 . .
v(Pg) = (P q)y = (P, My(y)a) “) For 2k > max[deg f, max; deg g;], consider the following
where My (y) is the finite truncation of\/ (y) with rows and semidefinite program
columns indexed in the basig. It immediately follows that
. . (k) — ] —
if y has a representing measure, thefp(y) = 0 for all k& = £o= mgny Ly(f)l(_ 2o faya)
0,1,... because St Yo = 7
My(y) = 0 @
(P, )y = (P, Mi(y)P) = / P du>0, VpeP; Mia,(9i9) 20, i=1,....m,

wherey € R, and My, (y) = 0 and Mj,_q4, (g:y) >= 0 are
linear matrix inequality (LMI) constraints ig corresponding
to respective truncations of moment and localizing matrices,
(P, q) — 0, ¢V gy = Ly(gpg) = (p, M(g9y)q) and where2d; or 2d; — 1 is the degree of polynomiaj; for

=1,...,m. In other words, problem (7) is a convex LMI
optlmlzat|on problem. Obviously, the optimufié®) is a lower
bound on the global optimurfi* of the original problem, and
[M(gy)]as = Ly([9(2)b(2)b(x) |ag) = ngyawﬂ. f® > r(&) wheneverk > k’. Problem (7) is referred to as

5 the LMI relaxation of order k& of problem (5).

Similarly, for a given polynomiay € P, let(.,.) g, : PxP —
R be the bilinear mapping

where M (gy) is called thelocalizing matrixassociated with
y andg € P. With «, 5,7 € N” one can check that



Write My, (y) = >, Baya and My_q,(g;y) = >, Ciy. implemented in GloptiPoly, see [12]. Thus, when some LMI

for i =1,...,m and appropriate symmetric matricgs, and relaxation is exact and the test of global optimality is passed,
C!. The dual of (7) is then the LMI problem one also obtains one (or several) global minimizers, a highly
\(®) — desirable feature in most applications of interest.
max A .
X2 D. Matrix case

s.t. (Bo, X " ACE, Z) = fo— A _ _ .
> EBO Xéi§%1<<0% Z>> 7{? V0 # |a| < 2 To derive results in the matrix case, we proceed by close
s =1 o 7 - « —

X>0 Z>=0. i—=1 m analogy with the scalar case described in the previous section.
- e A 8 We now consider the PMI optimization problem (1), where

As shown in [19], the spectral decompositions of the positivé : R” — Sm is a polynomial mapping in the indeterminate
semi-definite matricesX,Z; provide coefficient vectors of # € R". So, each entrgi;; (z) = Gi(x) of the matrixG (x) &
some associatesums of square€s.o.s.) polynomialg;, and Sm iS @ polynomial. Let

the above LMI problem can be written as a polynomial s.o.s. K:={zeR": G() > 0}

problem

denote the set of feasible solutions of (1), which is a semi-

A = algebraic set oR™.
nex A For a polynomial mapping® : R® — R™ of degree at
st f—A=po+ 0, pigi (9) mostk, i.e. P € P, write z +— P(x) = Pby(z) € R™,
D0y - - - s Pm S.0.S. for somem x s, matrix P, wheres,, is the dimension of the
max[deg pg, max; deg p;g;] < 2k. vector spac®;, as defined previously. Also, the notatieacP
Theorem 2.1:Assume that g:r::(())tli;t:se. vector obtained from the matfby stacking up
« there exists a polynomial such thatp = po + >, pi9;  As in the scalar case, 16/j,(y) = {Ya+s}a,s, be the mo-
for some s.0.s. polynomials;, i = 0,1,...,m, and ment matrix of ordet: (i.e. such thatal, |3| < k), associated
« the level set{x € R" [p > 0} is compact. with a sequence. Similarly, we define the localizing matrix
Then, ask — oo, f*) 1 f* andA®) 1 f* in LMI problems A7, (Gy), associated with a sequengeand the polynomial
(7) and (8). matrix z — G(x), as follows.

Proof: The proof can be sketched as follows, see [19] Writing G(z) = ZveNn G,z", for some finite family of
for details. Lete € R > 0 be fixed arbitrary. The polynomial real symmetric matrice§G,}, C S, we also define the
f— f* +eis strictly positive onkC. Then, by a representation(m-block) s;-vector Gy by (Gy), := >, GYaty, for all a

theorem of Putinar [25] with |a| < k. That is, each entryGy),, |a| < k,isam xm
m matrix. Then, the localizing matrid{;(Gy) has the block
f=ff+e=p+ Zpigi structure{(Gy)a+s}a,g, With |, |5] < k; equivalently, from
i=1 its definition, M} (Gy) is obtained from the moment matrix

for some s.o.s. polynomialg;, i = 0,1,...,m. Let 2k > My.(y) by
max(deg po, max; degp;g;). Then (f* — €, po,...,pm) IS @ 37 (2 = L. ([(br(2)be (2) T RG ( o <k
feasible solution of (9) with valug — f*—e. By weak duality Mi(GY)lag = Ly ([(be(@)bi(@)" @C(@)]as), ol 1] < F,
M) < £(®) and hencef* —e < AX#) < f(F) < f* Ase >0 where® stands for the Kronecker, or tensor product. In short
was arbitrary, the result follows. m and with abuse of notation, we can write
The Matlab software GloptiPoly [9], released in 2002, builds T

; ) My, = L,(bx(x)b 10
up and solves the above LMI relaxations (7) of polynomial KGY) y(br(@)be(@)” ® G(2)) (10)
optimization problem (5). It was tested extensively on a sateaning that., is appliedentrywiseto the polynomial matrix
of benchmark engineering problems coming from continuous— by ()b (x)? ® G(z).
optimization, combinatorial optimization, polynomial systems As in the scalar case, we come up with the followikg
of equations and control theory [9], [11]. In practice, it igruncated linear problem
observed that the global optimum is reached numerically (i.e. ) ") _ . _ .
at given reasonable computational accuracy) at a relaxation Q: f = miny Ly (f) (= 2o fabi)

order k£ which is generally small (typically 1, 2 or 3). More- 8.t Z]/V(}Z( § “ 0 (12)
over, the relative gapf*) — f*||f*|~" is generally small for KUY =
Mjy—a(Gy) = 0,

all k, meaning that the LMI relaxations generate good quality
approximations. where M}, (y) and My_4(Gy) are the truncated moment and
Last but not least, a result of Curto and Fialkow [3] idocalizing matrices associated withand G.

the theory of moments can be exploiteddetectwhether the  Obviously, f*) < f* for all k& (i.e., Q; is a relaxation of
global optimum is reached numerically at a given relaxatigil)) because ifx € R"™ is feasible in (1) theny := bog(z)
order k, and to extracglobal minimizersz* € R™. All these is a feasible solution of (11). Indeed,,(f) = f(«), and
tasks can be performed with standardnerical linear algebra M. (y) = bi(x)bi(x)T = 0. Finally, My_4(y) = 0, because
(singular value decomposition, Cholesky factorization) and aié,_,(y) is the tensor product & (z) > 0 andM_4(y) = 0.



Next, as in Hol and Scherer [14], [15], we say that
polynomial matrixz — R(z) € S,, of dimensionm x m
and degreek is s.o.s. if it can be written in the form

- 20

for a family of polynomlal vectorg); € P;*. Then, consider
the polynomial s.o.s. problem

iLF—>R GSm,

AR = max A
k,po,R
st. f=A=po+(RG) (12)
po, R S.0.S.
degpo, deg (R, G) < 2k,
the matrix analogue of (8). We can verify that
AF) < f(k). (13)

Indeed, let\, py, R be a feasible solution of (12), and letbe
a feasible solution of (11). Then froti— XA = pg + (R, G),
we obtainL,(f — A) = Ly(f) — Ayo = Ly(f) — A
L,(po) + L,((R,G)). We next prove thatL,(p,) > 0 and
L,({R,G)) > 0, and soL,(f) > A, which in turn will imply
(13).

As pg is s.0.s., saypy = zﬁzlpgl, for some family
{pai} C Rz], and using the linearity ofL,, we obtain
Ly(po) = i Lyy) = Sisi(po, Me(y)por) > O,
becauseMy(y) = 0 (see (4)).

S, Qi(@)Q; ()T, with

Similarly, write © — R(x) =
Q;(z) = Q;br_a(x) and whereQ; € R™*ss¢, for all j =

., 1. Then, withv; = vecQ; for all j = 1,...,l,
(R(), G() =i (Q bk—a(x)bi—a(z)T QT , G())
= 1<bk a(@)br—a(z)" @ G(x),v;v])
= Y1 V] [br—a(@)bp—a(z)" @ G(z)] v

and

Ly((R(z)
>
>
=2,

G(x)))
1 Ly (v]

; § [or—a(@)br—a(x)” ® G(x)] v;)
= 1<Vg» (bk a(@)b—a(x)” @ G(x)) v;)
i=1(V; -a(Gy)v;) [by (10)].

Since Mj,_q(Gy) = 0, it follows that L, ((R(x), G(z))) > 0.
Therefore, we have proved thag(f—X) > 0, i.e. L,(f) >

a Remark 2.3:The assumptions of Theorem 2.2 are not very
restrictive. For instance, suppose that one knows an a priori
boundp on the Euclidean nornfjz*|| of a global minimizer

z*. Then, one introduces the new BMI constraififz) =
diag {G(z), p* — ||=||*} = 0 and the feasibility sek = {z €

R” : G(z) = 0} for which both assumptions are satisfied.
Indeed, lete € R™*! be such that; = 4,41 for all j =
1,...,m+1. Then, the polynomiat — p(z) = p?—||z||* can

be written ag = (ee”, G) and the level sefz € R™ : p > 0}

is compact.

We now prove a result that permits tetectwhether the
LMI Qg provides the optimal valug™*, and if so, global
minimizers as well. This is important because it will permit
to use the extraction procedure already described in [12], and
obtain global minimizers, exactly in the same manner as in the
scalar case. We strongly use an important theorem of Curto and
Fialkow [3] on (positive) flat extensions of moment matrices.

Theorem 2.4:Suppose that an optimal solutiaff of the
LMI Qg in (11) satisfies

s = rank My (y*) = rank My_q(y™). (14)

Theny* is the vector of moments (up to ordek) of an s-
atomic probability measurg* with support contained in the
setK. That is, there are distinct points{z;}?_, C K such
that

W= 0 Do u=1
j=1 j=1
(15)

and G(z;) = 0, whered, denotes the Dirac measure atc
R™. Thereforef* = f* andx,,...,z, are global minimizers.

Proof: From (14), M;(y*) is a flat extensionof
]\/fk,d(y*), that is, Mk(y*) = 0, Mk,d(y*) > 0 and
rank My_q(y*) = rank My (y*). Therefore, by the flat ex-
tension theoremy* is the vector of moments (up to ordek)
of somes-atomic probability measure* onR™, see [3] or [21,
Theor. 1.3]. That is, there aredistinct points{z;};_; C R"
such that (15) is satisfied.

Next, let {\;};_; be an arbitrary set of nonzero eigenval-
ues of the mrcltrlces{cr*(x])}7 1 € R™*™ with associated
set {u;}5_, C R™ of (normalized) eigenvectors. That is,
G(xj)uj = \ju;, with X\; #0, forall j =1,...,s. Ass =

v >0, 7=1,...,s

) for any two solutiong; and A of (11) and (12) respectlvely rank My_q(y*), then there exist |nterpolat|on polynomials

the desired result. In fact both LMI (11) and (12) are dual df9: };

each other.

i—1 C R[z] at points{z;};_,, of degree at most—d, i.e.,

gi(zj) = 6,5 for i,j = 1,...,s, whered,; is the Kronecker

We next use a result by Hol and Scherer [14], [15] angymbol; see [21, Lemma 2.7].

Kojima [18] to prove the following
Theorem 2.2:Assume that
« there exists a polynomial such thap = po+ (R, G) for
some s.0.S. polynomials, and R, and
« the level set{x € R™ | p(z) > 0} is compact.
Then, ask — oo, f*) 7 f* andA\(®) 1 £* in LMI relaxations
(11) and (12).
Proof: We already havef(®) < f* for all k, and from
(13), \B) < f(k)

proved that\(*) in (12), satisfies\(¥) 1 f* ask — oco. From
what precedes, the result follows. ]

< f*. Next, under the assumption of the
theorem, Hol and Scherer [14], [15] and Kojima [18] have

Then for every; = 1,...,s,
polynomial vectorR™ — R™,

z — Hj(x) = gj(x)uy,

Then observe thatd;(xy) = kU forall j,k = 1,.
In add|t|on by the feaS|b|I|ty ofy* in the LMI Q, for every

7j=1,.

let H; € P, be the

j=1...s

(Vech,Mk 4(Gy*)vecH;)
= [(H;(x), G(x)H;(x)) dp*
=2 171< Hj(a), G(a) Hj(21))

vi(Hj (), G(x;)Hj(x)))
%‘/\jZO



Therefore, asy; > 0, it follows that A; > 0 for all j
1,...,s. As the set of nonzero eigenvalugs\;};_, was
arbitrary, it thus follows that all eigenvalues ¢f(z;) are
nonnegative, i.e(7(x;) = 0, forall j =1,...,s. And so, the
probability measure.* is supported on the sét, the desired
result.

Using the condition (14) in Theorem 2.4, we can now extract
global minimizersz* € R"™, exactly along the same lines

LMI Lower Ranks of Number Size

relax. bound moment of LMI of LMI

orderk | f(® matrices variables | constraints
2 -4.8382 3,4 14 6+3+1
3 -4.2423 3,5,7 27 10+6+3
4 -4.0947 3,6,10,12 44 15+10+6
5 -4.0353 3,6,10,14,16 65 21+15+10
6 -4.0062 | 3,6,10,15,21,28| 90 28+21+15
7 -4.0000 2,222,222 119 36+28+21

TABLE |

described in [12]. It is illustrated in the examples below.

E. First example

EXAMPLE II-E. APPLYING GLOPTIPOLY ON THE SCALARIZED PMI.

Consider the 2x2 quadratic matrix inequality in 2 variables

fr =
min, f(z) = —2} — 23 (16)
s.t G(z) = 1 —daizs o =0
o T 4—g2 —22 | =7

The non convex bounded feasible $ét= {z|G(z) = 0}
is represented in Figure 1. There are two global optima
[0,£2], both with optimal valuef* = —4.

25

2t

-2.5
-25

I
-2

Applying GloptiPoly on this problem, using the LMI solver
SeDuMi with default tunings, we get the results summarized
in Table 1. We report there the LMI relaxation ordey the
computed lower bounds*) on the global optimum, the ranks
of partitions of successive moment matrices, as well as the
number of scalar variables and the size of the LMI constraints.
Note that we have to start with the LMI relaxation of order
k = 2 since the scalarized problem features a polynompial
of degree2k = 4.

The global optimum is reached at the 7th LMI relaxation:
the moment matrix has rank two and the two global optima
are extracted using the algorithm described in [12].

2) Keeping the matrix structureNow we apply the LMI
relaxations described in section 1I-D. They keep the matrix
structure of the PMIL.

The first LMI relaxation of the PMI optimization problem
(16) is given by

fO =min  —ya9 — yo2

‘ st. Mi(y) = Y20 =0
I feasibl g
Fig. 1. Example II-E. Non-convex PMI feasible set. 1—4
My(Gy) = v =0,
Y10 4 — Y20 — Yoz

1) Scalarizing: First, we translate the PMI optimization
problem (16) into a scalar polynomial optimization problem,
see Section II-A.

The quadratic matrix inequalitg (x) > 0 is feasible if and
only if the characteristic polynomial— p(t,z) = det (tI —
G(z)) = t?—(5—4x1mo—2? —23)t+(4— 162100 — 227 — 23+
4z3x9 + 4z123) has only non-negative real roots. According

The second LMI relaxation is given by

where symmetric upper triangular entries are omitted.

to [20], this is the case if and only if the coefficientsygt, z) ) = min  —y20 — Yoo

have alternating signs, i.e. if and only if 1

gi(z) = b—dxire —2?—23>0 Y10 | Y20

g2(z) = 4—16x1m9 — 222 — 23 + 4adwgy + dzy235 > 0. st My(y) = Yo1 | Y11 Yo2 =0
Our PMI optimization problem (16) is then equivalent to the Y20 | Yso Y21 | Yao
scalar polynomial optimization problem yun| b2 iz | Ys1 o Y22

Yo2 | Y12 Yo3 | Y22 Y13 Yoa
f* = min, f(x) Moo (Gy) |
s.t. g1 (.’E) Z 0 Ml(Gy) = Mlo(Gy> Mgo(Gy) >_‘ 0
g2(z) >0 Mo1(Gy) | M11(Gy)  Mo2(Gy)



LMI Lower | Ranks of | Number Size LMI Lower | Ranks of | Number Size
relax. bound moment | of LMI of LMI relax. bound moment | of LMI of LMI
orderk | f) matrices | variables | constraints orderk | f®) matrices | variables | constraints
1 -4.0000 3 5 3+2 2 -1.8926 2,2 14 6+3+1
2 -4.0000 2,2 14 6+6 3 -1.8926 2,22 27 10+6+3
TABLE I TABLE Il
EXAMPLE II-E. SOLVING THE LMI RELAXATIONS OF THE PMI. EXAMPLE II-F. APPLYING GLOPTIPOLY ON THE SCALARIZED PMI.
LMI Lower | Ranks of | Number Size
h relax. bound | moment | of LMI of LMI
where orderk | f) matrices | variables | constraints
11— 4y11 1 -2.0000 2 5 3+2
Mo (Gy) = 2 -1.8926 2,2 14 6+6
| Y10 4 — Y20 — Yo2
—4 1
Myo(Gy) = | 0~ A TABLE IV
- Y20 Y10 — Ys0 — Y12 - EXAMPLE II-F. SOLVING THE LMI RELAXATIONS BY KEEPING THE
Yo1 — 4y12 MATRIX STRUCTURE OF THEPMI.
Moy (Gy) = 4
L Y11 Yo1 — Y21 — Yo3 |
[ y20 — 4ys31 ]
Mo (Gy) = y: 420 — Yao — Y
L 30 20 7 940 22 of equations
y11 — 4y22 1 = 1
Mu(Gy) = 4 —
L Y21 Y11 — Y31 — Y13 | z; = 0
B o 1 To = X2
Yoz — 4Y13
Moa(Gy) = 4 : a2 = 0
Y12 Yo2 — Y22 — Yo4
L - X1T9 = O
Solving these two LMI relaxations, we get the results summa- 3 = 4

rized in Table Il. We see that, in contrast with the scalarization

technique, the global optimum is reached already at the fi que right hand-side can be e>.<pressed in the polynomial
LMI relaxation, at a very moderate cost. We only have t asis(1, z2). Note that these equations come from the polyno-

resort to the second LMI relaxation in order to obtain gnals lying in the kernel of the moment matrix. As explained

numerical certificate of global optimality and to extract th! [12], this kind 9f polynon_ua}l syst_em can be solved via
two solutions, also at a very moderate cost when compar |genvalue extraction. _nge it is straightforward to conclude
with the scalarization technique. Remarkably, we have onﬁ at the two global optimizers ate= [0 +2].
used moment variableg, of order at most, in contrast to
14, in the scalar case. F. Second example

For illustration, we briefly recall the extraction procedure Now change the objective function in example 1I-E to
described in [12]. At the optimum, the moment matrix of the

second LMI relaxation, rounded to three significant digits, is f(z) = 2122,
given by 1) Scalarizing: Solving the scalarized problem with Glop-
1.00 tiPoly, we get the results reported in Table IIl, showing that the

0.00 1 0.00 global optimum is now reached at the second LMI relaxation,
0'00 0'00 4.00 and certified at the third LMI relaxation. The two extracted
Ma(y*) = |- : ' : solutions arex = +[—1.3383, 1.4142], with optimal value

0.00 | 0.00 0.00 | 0.00 .
0.00 | 0.00 0.001000 0.00 f* = —1.8926. Here, we have used moment variabjgs of

order at mosb.
4. . . . . 16. . . .
00 0.00 0.0  0-00 0.00 16.0 2) Keeping the matrix structureSolving the LMI relax-

A Cholesky factorization, obtained via e.g. the Schur decorations of the PMI by keeping the matrix structure, we obtain
position or the singular value decomposition, is given by the results summarized in Table IV. The global optimum is
r reached and certified at the second LMI relaxation. Here the

1.00 0.00 1.00_0.00 advantage of keeping the matrix structure of the PMI is less

0.00 0.00 0.00 0.00 apparent, but we still have only used moment variables of
Ma(y") = 0.00 1.00 { 1.00 0.00 } 0.00 1.00 order at mostt, in contrast to6 in the scalar case.

0.00 0.00 0.00 4.00 0.00 0.00

0.000.00 0.000.00 I1l. A PPLICATION TO STATIC OUTPUT FEEDBACK DESIGN

4.00 0.00 4.00 0.00

In this section we apply the LMI relaxation methodology
From this rank-two Cholesky factor in echelon form, it followsf section Il to solve PMI optimization problems arising from
from [12] that global optimizers satisfy the polynomial systerstatic output feedback (SOF) design problems. After recalling



the SOF problem statement and its standard BMI state-spacé&) Characteristic polynomial:iLet x € R™? be the vector
formulation, we propose an alternative PMI polynomial formusbtained by stacking the columns of matd& Define

lation. Then we illustrate the relevance of the LMI relaxation n

mechanism on non-trivial PMI problems arising from SOF q(s,x) = det (sI — A— BKC) = Zqz'(ff)si
problems. i—0

as the characteristic polynomial of mattix+ BK C. Coeffi-
cients of increasing powers of indeterminatén polynomial
q(s, k) are multivariate polynomials i, i.e.

qi(k) = Z(Iiaﬁa
t = Ax+ Bu «

y = Cux wherea € N™P describes all monomial powers.
2) Hermite stability criterion: The roots of polynomial
of order n with m inputs andp outputs, that we want to 4(s, x) belong to stability regiorD if and only if
stabilize by static output feedback

A. SOF design

Consider the linear system

H(k) = qi(k)q;(k)Hij = 0

u=Ky. i=0 j=0

In other words, given matricest € R"*", B < R"*™  where H(k) = HT(k) € R™" is the Hermite matrix of
C e RP*™, we want to find matrixk € R™*? such that q(s,x). Coefficients H;; = H}; € R"*" depend on the
the eigenvalues of closed-loop matrix+ BK C all belong to stability regionD only, see [10].
a region 3) Polynomial matrix inequalityHermite matrixH (x) de-
pends polynomially on vectot, hence the equivalent notation
D={seC:a+b(s+35)+css<0
{ (s +3) } H(k) =Y Huok® =0 17)
of the complex plane, where b, c € R are given scalars and o
the bar denotes the complex conjugate. Typical choices avhere matrices?, = HX € R™"*" are obtained by combining
a=c=0,b=1 for the left half-plane (continuous-timematricesH,;, anda € N""? describes all monomial powers.
stability) andc = —a = 1, b = 0 for the unit disk (discrete- Lemma 3.1:Problem SOF is solved if and only if vectar
time stability). solves the PMI (17).
Problem SOFGiven matricesA, B, C, find matrix X such
that eigenvalues of matrixt + BKC all belong to given p Numerical aspects

stability regionD. . , , .
In [13], we discuss various numerical aspects regarding the

derivation of PMI (17). For conciseness, they are only briefly
mentioned here and not reported in full detail:

. o Computing the characteristic polynomial: to build up
Following a standard state-space approach [27], the SOF polynomialg(s, x) we need to evaluate coefficients, of

B. State-space BMI formulation

problem can be formulated as the BMI the determinant of matrix/ — A — BKC. We proceed
T numerically by interpolation: coefficients af(s, ) are
(A+BEC)TP+(A+BKC)P <0, P=P" >0 determined by solving a linear system of equation built

on a perfectly conditioned truncated multivariate Vander-

monde matrix;

Building up the Hermite matrix: coefficientd;; depend

only on the stability regiorD. They are computed by

solving a simple linear system of equations, as shown in

[10]. In the case of continuous-time stability, the Hermite

matrix can be split down into two blocks of approximate

half size;

« Strict feasibility: to solve the strict PMI feasibility prob-
lem (17), we can solve the non-strict problem

in decision variablesK and P where < 0 and > 0 stand

for positive and negative definite, respectively. We see that.
SOF matrix K (the actual problem unknown) contaimsp
scalar entries, whereas Lyapunov matfix (instrumental to
ensuring stability) containa(n + 1)/2 scalar entries. When

n is significantly larger thannp, the important number of
resulting Lyapunov variables may be prohibitive.

C. PMI formulation

. . . . H(k) = M
In this section we propose an alternative PMI formulation

of the SOF problem featuring entries of matdx only. In trying e.g. to maximize scalax > 0. In practice however
order to get rid of the Lyapunov variables, we focus on a the feasibility set of PMI (17) can be unbounded in some
polynomial formulation of the SOF problem, applying the directions and\ can grow unreasonably large. In our
Hermite stability criterion on the closed-loop characteristic experiments we seh to some small positive constant
polynomial, in the spirit of [8]. value;



« Minimizing the trace of the moment matrix: as noticed in07?, 21.092, 15.397 and 4.6680. We consider that both/;
[12] for such problems, in order to improve convergencand M, have rank one so that the global optimum is reached.
of the hierarchy of LMI relaxations, it is recommendedractorizingM; yields the stabilizing feedback matrix
to minimize the trace of the moment matrix/y(y).
Existence of a scalay > 0 such that K =] -11037-10"7 —0.15120 —79.536 ].

trace My (y) <~ One obtains the global optimum at a relaxation that involves
moments of order up ta only.

3) ExampleHEL A model of the longitudinal motion of a
helicopter, withn = 4 statesyn = 2 inputs andp = 1 output.
) ) Solving the first LMI relaxation (6 variables, LMI size
E. Numerical experiments 2+2+3) returns a moment matrix/; whose 3 singular values

In this section we report numerical experiments showirgye 1.0076, 2.6562 - 1072, 2.1971 - 10~° so matrix M; has
that the methodology developed in section Il can indeed promamerical rank two.
useful for solving non-trivial SOF problems formulated in Solving the second LMI relaxation (15 variables, LMI size
this polynomial setting. The problems are extracted from ti8*6+6) returns a moment matrix/; with singular values
publicly available benchmark collection COMiBI[22]. These 1.0085, 6.4009 - 102, 6.9224 - 10~'° and a moment matrix
problems are formulated in continuous-time (reginis the M, whose 4 largest singular values dre128, 8.0720-1072,
left half-plane,a = ¢ = 0, b = 1). LMI problems were 1.7875 - 1072, 8.0773 - 10~1°. So matrix M; has numerical
built with the YALMIP Matlab interface [23] and solved rank two, whereas matrid/, has numerical rank three, and
with SeDuMi [29] with default tunings. When testing ranksve cannot conclude.
of moment matrices, we use a relative gap threshold ofSolving the third LMI relaxation (28 variables, LMI size
10~* between successive singular values. Numerical data aer12+10) we obtain a moment matrik/; with singular
rounded to 5 digits. values 1.1404, 9.8176 - 10719, 4.5344 - 10—, a moment

1) ExampleAC8 A model of a modern transport airplanematrix M, with 4 largest singular values1583, 1.1052-10~°,
with n = 9 states,n = 1 input andp = 5 outputs. The state- 8.0379-10~!!, 6.0171-10~1, and a moment matrix/s with
space BMI formulation of Section IlI-B would introducts 4 largest singular values1605, 1.1716-10~?, 3.8334-1010,
scalar Lyapunov variables in addition to thefeedback gain 7.2405.10~!'. All these moment matrices have numerical rank
entries. Scalarization as in Section [I-A would result in a sehe, so the global optimum is reached. Factorizidg yields
of 9 scalar polynomial constraints of degree up to 18 in the stabilizing feedback matrix
variables. Therefore, the first LMI relaxation in the hierarchy
(7) would involve (%) = 33649 variables. K =[ —0.11972 0.35500 | .

By keeping the matrix structure, solving the first LMI
relaxation (24 moment variables, LMI size 5+4+6) returns @ne obtains the global optimum at a relaxation that involves
moment matrix\/; whose 4 largest singular values are000, moments of order up t6 only. The global optimum, together
5.6595-107°, 2.3851-10~7 and?2.2305- 10~ 7. So matrix)7;  With the non-convex set of stabilizing SOF gains, are repre-
has numerical rank one, the global optimum is reached, ag@hted in Figure 2.
factorizing M, yields the stabilizing feedback matrix

K = [3.6275-1076  —3.8577-10"*

ensures boundedness of all the momepts and thus,
feasibility of the relaxations.

—1.0121-107° 1.7389-10~% 2.0960 - 10~4] . - ]
Observe that one obtains the global optimum at a relaxati osf Stable 1
that involves moments of order up foonly. arf 1

2) ExampleREA3 A model of a nuclear reactor with = ash ]

12 statesym = 1 input andp = 3 outputs. The state-space BMI
formulation would introducé&’8 scalar Lyapunov variables in
addition to the5 feedback gain entries. Scalarization woul

051

0.4

result in a set of 12 scalar polynomial constraints of degr osf

up to 24 in 3 variables. Therefore, the first LMI relaxation i o2r 1

the hierarchy (7) would involve€2_37) = 2925 variables. o1l Urieizhie ]
Solving the first LMI relaxation (10 variables, LMI size ol ]

6+6+4) returns a moment matrix; whose 4 singular values

are 6326.0, 1.0000, 2.1075 - 107 and 1.3116 - 10~%. Matrix 2 -1 - Lo 0 08
M, has numerical rank two.
Solving the second LMI relaxation (35 variables, LMI sizq:. - ,
R .2. E leHEL Non- t of stabil SOF
24+24+10) returns a moment matrb{; with singular values a:]gd g|oba|nglt?mum (b|a%r|]( 3%?;’_6)( set o stabilizing gains (gray zone)
6327.0, 2.4620 - 1073, 1.9798 - 1073, 3.9060 - 10~° and a

moment matrix), whose 4 largest singular values dre025-



IV. CONCLUSION

We have proposed a methodology to solve, isystem-
atic way, non-convex polynomial matrix inequalities (PMI)
problems. Based on a moment interpretation of recent res
on sum-of-squares decompositions of positive polynomial ma-
trices, a hierarchy of convex linear matrix inequality (LMI
relaxations is built up, with a guarantee of convergence
the global optimum of the original non-convex PMI problem.
When finite convergence occurs (as observed in practice)m
results from the theory of moments allows detect global
optimality and extract global optimizerswith the help of [2]
existing numerical linear algebra algorithms. It is planned
to incorporate PMI constraints into the next release of the
GloptiPoly software [9]. (4]

The methodology is then applied to solve non-trivial static s
output feedback (SOF) problems formulated as PMI problems.
Since the number of variables as well as the number OE]
constraints both grow relatively fast when building up the
hierarchy of successive LMI relaxations, it is important to
reduce the number of variablés the SOF PMI problem as [7]
much as possible. Our approach for solving SOF problems
allows this by focusing on an algebraic, polynomial for-  [8]
mulationt namely, the Hermite stability criterion is applied
on the closed-loop characteristic polynomial, resulting in PMI [9]
SOF stabilizability conditions involving feedback matrix gain
entries only, without additional Lyapunov variables. (0]

One may argue that every PMI problem can be transforme(]:]
into an equivalenscalar polynomial optimization problem by
an application of Descartes’ rule of signs as in Section 1121
A. Therefore, theoretically, one may solve a PMI problem by
solving the hierarchy of LMI relaxations defined in [19], and
implemented in the software GloptiPoly [9]. However, notice
that at least one polynomial in the scalar representation of the)
PMI has high degree, which induces LMI relaxations of size
too large for the present status of SDP solvers, see Examplﬁzeq
REA3 and A8 of Section IlI-E. In contrast, the approach
developed in the present paper takes explicitly into account
the matrix structure of the PMI problems and the designet®!
has a better control on the size growth of the successive LMI
relaxations in the hierarchy. [16]

As far as control applications are concerned, the PMI
formulation must be extended to cope witH, or Ho, [17]
performance criteria. The key issue is to formulate these
criteria algebraically, without using state-space argumentE‘.8
Similarly as for the SOF design problem, all the instrumental
Lyapunov variables must be removed in order to derive a PM#9]
formulation directly in the controller parameters. [

Several numerical aspects of PMI problems deserve to be
studied in further detail. In our opinion, the field of numerical
analysis for polynomials (monovariate, multivariate, scalar o[r21]
matrix) is still mostly unexplored [28]. There is a crucial need22]
for reliable numerical software dealing with polynomials and
polynomial inequalities. Other potentially interesting research
topics include reducing the number of constraints in a PMI
(removing redundant semi-algebraic constraints), detectirig?!
convexity (some PMI SOF problems are convex) or exploiting
the structure of the LMI relaxations in interior point schemes.
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