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Further Constructions of Control-Lyapunov Functions
and Stabilizing Feedbacks for Systems Satisfying
the Jurdjevic-Quinn Conditions

Frederic Mazenc and Michael Malisoff

Abstract

For a broad class of nonlinear systems, we construct smamttrad-Lyapunov functions whose
derivatives along the trajectories of the systems can beemadative definite by smooth control laws
that are arbitrarily small in norm. We assume our systemisfgatppropriate generalizations of the
Jurdjevic-Quinn conditions. We also design state feedbadkarbitrarily small norm that render our

systems integral-input-to-state stable to actuator srror
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. INTRODUCTION

Lyapunov stability is of paramount importance in nonlineantrol theory. In many important
applications, it is very beneficial to have a continuousKedentiable Lyapunov function whose
derivative along the trajectories of the system can be madative definite by an appropriate
choice of feedback. Observe in particular that:

e Recent advances in the stabilization of nonlinear delatesys (e.g., [7], [13], [21]) are based
on knowledge of continuously differentiable Lyapunov ftiogs.

e Lyapunov functions are very efficient tools for robustnesalgsis. For example, many proofs
of nonlinear disturbance-to-state’ stability properties rely on Lyapunov functions; see [6,
Chapter 13] and [3], [10], [15]. Moreover, control-Lyapwndéunction (CLF) based control
designs guarantee robustness to different types of detestioi[5] and stochastic disturbances,

and to unmodeled dynamics [16], [17].
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e When a CLF satisfying themall control propertyas defined below) is available, the universal
formula in [19] provides an explicit expression for a stedilg feedback that is also an optimal
control for a suitable optimization problem whose valuection is the CLF; see [19].

¢ Backstepping and forwarding require Lyapunov functionslaésC' for the subsystems [17].

The converse Lyapunov theorem (see [9]) ensures that, fosystem that is globally asymp-
totically stabilizable byC"! feedback, a CLF exists. Unfortunately, for nonlinear coingystems,
determiningexplicit expressionfor CLFs is in general difficult. Fortunately, for large ctas of
systems, one can determine functions whose derivativesy dlte trajectories can be rendered
negative semidefinite. If the systems satisfy the so-called weak Jurdji®uinn conditions
(defined below), which generalize those given in [8], theobglly asymptotically stabilizing
feedbacks can be constructed. However, in this case, éfplimulas for CLFs are not generally
available. This motivates the following fundamental giestWhen the Jurdjevic-Quinn method
applies, is it possible to design explicit CLFs?

In [4], where this issue was addressed for the first time, datetvas presented for designing
explicit CLFs for affine homogeneous systems that satiséyJilrdjevic-Quinn conditions. Our
objective in the present note is to extend the main resulplby constructing CLFs for systems
satisfying appropriate generalizations of the Jurdj&@ighn conditions, but not necessarily
having the homogeneity property, including cases wheresyis¢em may not be control-affine.
Our work also complements [14] where strong Lyapunov fumdiare constructed for a large
family of systems satisfying either an appropriate Lie blg& condition or which can be shown
to be stable using the LaSalle invariance principle. Thenrddference between the present work
and [14] is that in [14], only systems without input are colesed whereas here we consider
systems with input.

We end this introduction by recalling some basic facts onJimejevic-Quinn method. We

say (see for example [4] for the relevant definitions) thabalimear control-affine system

& = flx) +9(@)u, g(x) = (g(2), ..., gm(x)) 1)

satisfies thgweak) Jurdjevic-Quinn conditiongrovided there exists a functioi : R* — R
satisfying the following three propertie$: is positive definite and radially unbounded; for all

z € R, L;V(z) <0; and there exists an integésuch that the set

W(V) = {x ER™:Vk € {1,....m} and i € {0,.. .1}, L;V(2) = Logi (g)V () = }
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equals{0}. Here and in the sequel, we assume all functions are suffigismooth. If [1)
satisfies the weak Jurdjevic-Quinn conditions, then it isbglly asymptotically stabilized by
any feedback: = —¢(z)L,V (x)" where¢ is any positive function of clas€™. The proof of
this result relies on the LaSalle Invariance Principle.

The remainder of this paper is organized as follows. In 8all, we present our main result.
SectionTIl is devoted to a discussion of our main result ti®adiVl to its proof, and SectiohlvV
to an illustrating example. Secti@n]VI constructs feedisaitk our systems that have arbitrarily
small norm and that in addition achieve integral-inpustate stability relative to actuator errors.

Concluding remarks in Sectidn_ VIl end our work.

II. MAIN RESULT

Recall (cf. [2]) that aC" positive definite functiori/(-) on R" is called acontrol-Lyapunov
function (CLF)for a systemy = ¢1(x) + w2(x)u with input « provided it is radially unbounded
and satisfiesL,,V(y) >0 = [x=0 or L,V(x)#0]. We useV(z,u) to denote the
derivative V(z,u) = L,V (x) + L,,V(z)u of V along trajectories of the system. We often
suppress the arguments Bfto simplify the notation. We say that a CLF(-) for the system
X = v1(x) + ¢2(x)u satisfies thesmall control property{19] provided for eacke > 0, there
existsd(e) > 0 such that if0 < |x| < d(¢), then there exists (possibly depending or) such
that |u| < e and L, V(x) + L,V (x)u < 0.

We next provide our main CLF and stabilizing feedback carsions for the fully nonlinear
system

&= F(x,u) (2)

wherez € R", v € R™ is the control,F'(0,0) = 0, and the functionF" is assumed to bé'. We
further assume that — F(z,u) is C? (i.e., the second order partial derivatives, with respect t
the components ofi, of each component of' are continuous), so the functions

f(@) = F(.0), gx) = O (2,0) ©

are at least”!. Finally, we assume:
Assumption 1:A smooth functionV'(x) that is radially unbounded and positive definite and
such that
L;V(z) <0 VzxeR" 4)
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is known.

Assumption 2:A vector field G(x) such that if L,V (z) = 0 andz # 0, then we either have
LiLsV(z) <0or LV (x) <0, is known.

We are ready to state our main result.

Theorem 1:Assume the datdl(3) satisfy Assumptidmhsl 1-2. Then one canrdiete a positive

definite smooth function : [0, c0) — [0,00) and a functior2 : [0, 00) — [0, c0) such that
V(x)
Vir) = V(:c)+/ Q(s)ds + 6(V(x))LaV (x) (5)
0

is a CLF for [2) that satisfies the small control property.dntf for each real-value@' positive
function£(+), one can determine a functiég), and aC' function¢ : [0, c0) — (0, 0o) satisfying
£(s) < &(s) for all s > 0, such that[(p) is a CLF for]2) satisfying the small contrabgerty
whose derivative along the trajectories bf (2) in closenplavith the feedback

u = —€£(V(@)LyV(2)" (6)

is negative definite.

1. DISCUSSION OFTHEOREM[I

1. Assumption§ll arld 2 are similar to the assumptions of the meault of [4]. In particular, for
the special case whel€ is control-affine, [4] provides an explicit expression fovector field
G(x) such that Assumptioll 2 holds whenever the so-called “weattjekic-Quinn conditions”
(see the introduction) are satisfied. This vector field is gwitinuous at the origin but it turns
out that there exists an integat > 1 such that the vector fiel&y (z) = V(z)VG(x) is of class
C* for V satisfying our assumptions. The equalityLq, V (z) = NV ()N 'LV (z) LoV (z)+
V(z)NL;LeV (z) then implies that ifG(x) satisfies Assumptioll 2, and if Assumptibh 1 also
holds, thenG y(x) satisfies Assumptiol 2 as well. Consequently, one can takenéabe of the
formula in [4] to determine &' vector field for which Assumptiofl 2 is satisfied.

2. No restriction on the size of the functigt-) in @) is imposed. Therefore, the family of
feedbackd{6) contains elements that are arbitrarily simétlup) norm. In fact, for any continuous
positive functiore : [0, 00) — (0, 00), we can design our stabilizing feedbacko that it satisfies
lu(z)| < e(|z]) for all x € R™.
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3. An important class of dynamics covered by Theofém 1 isrdest by the so-calle@uler-
Lagrange equations

i (Gred) - S = ™
for the motion of mechanical systems, in whighrepresents the generalized configuration
coordinates,. = K — P is the difference between the kinetic enerffyand potential energy
P, andr is the control [22]. In standard cases|q, ¢) = %qTM(q)q where the inertia matrix
M(q) is C' and everywhere symmetric and positive definite. Then thegdined moment%g

are given byp = M(q)q, so in terms of the state = (¢, p), the equationd{7) become [22]

. oH T _ -1 ._ OH T
1= (¢,p) =M "(q)p, p= 9 (¢,p)" +T, (8)

where H (¢,p) = ip" M~*(q)p+ P(q) is the total energy of the system. We make the following
additional assumptions: (d)(q) is positive definite and radially unbounded and Yhy(¢) # 0
wheneverg # 0. (These two assumptions are not too restrictive since oneoftean modify H
and T to get a new system that satisfies these assumptions. Gon@#) can be weakened by
assuming there is a constansuch that; — P(q)+c is radially unbounded and positive definite
in which case we simply addto the functionl” in what follows.) ThenH is positive definite and
radially unbounded, s& = H satisfies Assumptiofl 1. The radial unboundedness folloars fr
the continuity of the (positive) eigenvalues of the positilefinite matrix)/—!(q) as functions of

q [20, Appendix A4], which implies that each compact Satf ¢ values admits a constarg > 0
such thatp" M~1(q)p > cs|p|? for all ¢ € S and allp. In our general notation withr = (¢, p),
we getL;V(z) = 0 and L,V (z) = H,(z) = p" M~'(q). ChoosingG(z) = [0 VP(q)" |"
gives LgV (z) = H,(z)VP(q)". Therefore, ifL,V(z) = p"M~*(¢) = 0 andzx # 0, thenp =0
and therefore alsd ;Lo V (x) = =V P(q)M~*(q)VP(q)" andq # 0. Since M~ is everywhere
positive definite, Assumptidd 2 therefore reduces to ounragsion (b) and therefore is satisfied
as well. We study a special case bf (8) in Secfidn V below, wivee explicitly compute the

corresponding CLF and stabilizing feedback.

V. PROOF OFTHEOREMI[I]
A. Control Affine Case
We fix a positive functiort : [0, 0c) — (0, 00), and functiond” andG satisfying Assumptions

2. We begin by proving Theoreh 1 for the case whEle (2) igrobaffine, i.e., of the form
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@). In this control affine case, the conclusions of our teeowill hold with Q = 0 and¢ = €.
In Section[IV-B, we will modify our constructions to handleet fully nonlinear systeni12).

First step.We exhibit a family of functiong(-) for which the function
Ulz) = V(z) +0(V(2)) LoV (x) (9)

is positive definite and radially unbounded. One can detemi(-) of classK., such that
ar(lz]) < V(z) < as(|z]) and |LgV ()| < as(|z]) for all x € R™. It follows that

U) = oa(lz]) = 6(V(@)as(jz]) = en(ay'(V(2))) — 6(V(2))as(ar (V(x))  (10)

for all z € R". We can use standard results to find'afunction§ : [0, 00) — [0, 00) such that

R CG)
ov) < 1+ 2as(a;(v))

With such a function(-), the inequalityl (z) > (a3 ' (V(2))) for all € R follows from

Yo > 0. (11)

(@T). SinceV () is positive definite and radially unbounded aha; (a;'(-)) is of classK..,
this implies thatU(x) is positive definite and radially unbounded as well. In thetrsteps, we
impose further restrictions oft
Second stepAlong the trajectories:(¢) of our system[{ll) in closed-loop with the feedback
u=—E(V(x))L,V(x)", the derivativell of U(z) from (@) reads
U = [LiV(x) = &V(@)|LyV ()] [L +8'(V(2)) LaV (2)]
+0(V(@))LyLaV (2) — E(V(2))d(V(2))LyLaV (2)LyV () . (12)
We restrict our attention to functionssuch that
5 (V(2))LeV () > —i Vr € R™. (13)

Recalling [#) and[{12) therefore gives the inequality

U < §[LeV(2) =&V (@) LV (@)P] + 0(V(2))LsLeV (x)

_ (14)
+E(V (2))6(V(2))| Ly LV ()||LgV (z)].
¢From [(4), we deduce that
U < % [LyV(2) = E(V(2))| LV (2)]*] +6(V (2))LyLaV (2)
+E(V(2))0*(V(2)) | Ly LV (@) - (15)

Third step.The remaining part of the proof relies extensively on théofeing:
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Lemma 2: Assume that the systernl (1) satisfies Assumptidis 1-2. Therg exist continuous
positive definite functiong” and N satisfying the following: If| L,V (z)| < I'(|z|), then either
LgV(z) < =N(|z|) or Ly LV (x) < —N([x).

Proof: We first show that the continuous function
S(z) = min{0, LyLeV (x)} +min{0, LV (z)} — |L,V (2)] (16)

is negative definite. Observe first th&t0) = 0 and S(x) < 0 for all . AssumeS(x) = 0.
Each term ofS(x) is nonpositive, sanin{0, L;LsV ()} = min{0, L;V(z)} = |L,V (x)| = 0.
By Assumption[R,z = 0, which gives the negative definiteness. Therefetg(z) is positive
definite, so we can determine a continuous positive defirgd-wvalued functiorp such that
p(lz|) < =S(z) (€.9.,p(s) = min{—S(r) : [r| = s}). We prove thatL,V (z)| < 3p(|z|) implies
that eitherL LoV (z) < —1p(|z|) or L;V(z) < —1p(|z]). To this end, consider such that
L,V (2)] < Lp(a]). Thenp(|z]) < —min{0, L; LV (2)} — min{0, LV (2)} + Lp(la]), by our
choices ofp and S. We deduce thamin{0, L;LsV ()} + min{0, L;V (z)} < —3p(|z]). It
follows that eithermin{0, L;LsV (z)} < —1p(|z|) or min{0, L;V (z)} < —1p(|z|). Therefore,
L,V (z)| < p(|z]) implies LyLaV (z) < —1p(|z|) or LV (z) < —1p(]z|), so we can take
[(s) = Lp(s) and N(s) = p(s). .
Fourth step.We prove that the right hand side df15) is negative definiteennvthe smooth
positive definite functior(-) is suitably chosen. By the preceding lemma, there are thasesc
First Case|L,V (z)| < I'(|z|) and L;V (z) < —N(|z|). Then the inequality{{15) implies that

U < —3N(z) +0(V(2))LyLaV(2) + E(V(2))8(V(2))|LeLaV (@) . (A7)

Choosingd(-) such that

0(V(x)LyLaV(x) < oN(lz[),  §(V(2)0*(V(2))|LgLeV () < cN(Jzl)  (18)

| —
| —

for all z € R™. Therefore, [1I7) gives§ < —1N(|z]) < 0 for all = # 0.
Second CaseL,V(z)| <I'(|z|) andL;LsV (x) < —N(|z|). Then the inequalitiedl4) anf{15)
imply U < —6(V (2))N(|z|) + £V (2))6*(V (x))| Ly LV (x)|>. Choosingd(-) such that

SV ENEV @)L, LV (@) < SN (Ja]) (19)
we obtainl < —15(V(z))N(|z|) < 0 for all x # 0.
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Third Case.|L,V(x)| > I'(|«|). Then the inequalityl{15) implies that
U < =3V (@)2(|z]) + 6(V(2)LiLaV(x) + &V (2)8*(V(2))|LyLaV ()] .
Arguing as above providey-) such that
SV LeLaV () < SPDEWV @), PV LaV@)P < T(al),  (20)

so we obtain < —1&(V(x))T'2(|z|) < 0 for all z # 0.

Fifth step.To conclude the proof for the control affine case, one has twepthat one can
determine aC' and positive definite functiod(-) simultaneously satisfying the requirements
(@), (I3), [OI8),[[IP),[{20). This can be done as follows. \&k first find aC* positive definite
function ¢ satisfying the requirement§_{11], (18], 19),1(20) thatrisréasing ono0, 1], non-
increasing on[1,c0) and bounded byl. We denote this initial choice of by J,. Next, we
minorize 1/(1 + 4|LsV (x)|) by a positive function of the formx — P(V(x)) (using, e.g.,
P(s) =inf{1/(1 +4|LsV(x)|) : x € R",V(z) = s}). One can easily determine an everywhere
positive, non-increasing'’* functionw(-) such thatu(s) < 1 min {P(s), P(2s), 1} for all s > 0.

Now consider the function

$ 04(1)da (20w (1)
= dl . 21
o) / 1+ 41 1)
It is positive definite, of clas§?, and (sinced, is bounded byl) satisfies, for alls > 0,
/ a(S)0q(28)w(s 5(1%350,3140%3
§(s)| = |Pellalyels)  4RGIRORGY) < () + Lw(ls) <P(s) . (22)

¢From this inequality, one can deduce thatefined in [ZIL) satisfie§d {IL3). On the other hand,
sincew is smaller thanl, the inequalityd(s) < :'/2 8a(1)04(20)/(1 + 41%)dl is satisfied for all

s > 0. Now, we distinguish between two caséstst case: If s € [0,1], then, since), is a
nonnegative function smaller thanand increasing ofD, 1], we getd(s) < f;'/z do(D)dl < 94(s).
Second cases > 1, then, sincéj, is a nonnegative function smaller tharand nonincreasing

on [1, +o00), we get

S 5,(20) s
&ﬁséJ+§ﬂs%LM%Mﬁs%m. (23)

Hence, the functiod defined in [2ll) satisfies the requiremeris (1) (13), (18),((20).
Remark 3: The proof of Lemmdl2 provides explicit formulae for the fuops I' and N
required for our constructions. On the other hand, the fancd in (H) can be obtained by

simply verifying the requirements in the fifth step of our gto
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B. Fully Nonlinear Case

We now extend the construction to our original fully nonlinesystem[{2). We can write

F(z,u) = f(x) + g(x)u+ h(z,u)u, where h(z,u) = /o {g]; (x, \u) — a—F(x 0)| dX. (24)

du

Along the trajectories of{?2), it follows that = LV (z)+ L,V (z)u+VV (x)h(z, u)u. SinceF
is C% in u, we can find a continuous functidi : [0, o0) x [0, 00) — (0, c0) that is nondecreasing
in both variables such thét(x, v)u| < H(V (z), |u])|u]? for all z andu. One can findv, € Ko,
such that VV (z)| < ay(|z|) for all z. Takingu to be a feedback of the forrl(6) gives

Vo< LiV(x) = E(V(2))|LgV (@) + Ho(V (@), [€(V(2)) LgV (@) "EX(V (2))| Ly V ()

with H.,(r,s) = ay(a;*(r))H(r, s). We now restrict our attention to the sgf¢] of all feedbacks

@) such that(s) < &(s) for all s > 0, where we assume the positive functigns such that

1

H.(V(@),§ V(@)L V(2)DE(V () < 5 Vo eR™ (25)

Condition [2%) can be satisfied by minoriziigas necessary without relabelling. (The proof that
¢ can be chosen to satisfiz{25) is similar to the constructibthe functions in the first part

of the proof.) Fixing a feedback from this famil§[¢], we get
: 1
V < LyV(x) = 56V (@) [ LyV ()] (26)

along the closed loop trajectories @l (2). Applying the damgion from the first part of the
proof to the control affine systerfil (1) with= ¢ provides a functiord and a CLFU of the form
@) such thatV (z) := — {L;U(x) — L,U(2)¢(V(z))L,V (z) "} is positive definite. Therefore,
U along the trajectories ofX2) in closed-loop with the feerko), with ¢ satisfyings(s) < £(s)
for all s > 0, readsl/ = —W (z) — VU (z)h(x, —£(V (2)) L,V () T)E(V (2)) L,V (x)T. Therefore,
since H is non-decreasing in its second argument it follows from choices of¢ and H that
U< W)+ {|VU()|H(V(z),&(V (2))|L,V (z 2))} €(V(2)) | L,V (2)]* for all z. One
can construct a positive nondecreasing functiosuch that, along the closed loop trajectories,

U < —W(z)+ AV (2)E(V(2)) LV (). (27)

Now consider the functior{5) with the above choicejadind Q(s) = 4A(s), which is positive

definite and radially unbounded. Then, according to our Assgtion[1, [Z6), and[{37), we get
Vi < W (x) — AV (2)E(V (2)| L,V (x)]> Vo € R®
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10

The right-hand-side of this inequality is negative defing#e we can satisfy the requirements of
the theorem usin@(s) = 4A(s) and the CLFV*. This concludes our proof.

V. EXAMPLE

We illustrate Theorerll1 by applying it to the two-link mangor (see [1]). This system is
a fully actuated system described by the Euler-Lagrangeateans

(mrz—i-M%)é—i—QMWé =7, mi—mré® = F, (28)

where M is the mass of the arnt; is its length;m is the mass of the gripper;andé denote the
angle of the link and the position of the gripper, respetyivend~ andF’ are forces acting on the
system. It is well-known thaf{28) can be stabilized by bathdontrol laws. On the other hand,
this system is globally feedback linearizable so a quad@tiF can be determined. The novelty
is that we determine a CLF whose derivative along the trajgas made negative definite by
an appropriate choice dioundedfeedback. Without loss of generality, we take= M = 1
and L = /3. With z, := 0, 2, := é,xg = r, x4 := 1, the system[{28) becomes

S s 2x3T2T4 T s s 2
Ty =T, Tp= Tty T3 T T4, Ty = T3Tp o+ F. (29)

We construct a globally stabilizing feedback, bounded immby 1, and an associated CLF for
29). We set(p) = 1/(24/1 + p?) for all p € R throughout the sequel.
Consider the function

V(x):% (x§+1)x§+xi+\/1+x%+\/1+x§—2] : (30)
This function is composed of the kinetic energy of the systeith additional terms. It is
positive definite and radially unbounded and its derivatieng trajectories of[{29) satisfies
V(:c) = xoT + 24 F + x1{x1 )29 + 23(x3)24. Therefore the change of feedback

T=—x1(x1) + 70, F=—13(x3) + F} (31)

yields V(z) = 2,7, + 24 F,. On the other hand, after the change of feedbBck (31), thatiens
of the system take the control affine forin= f(z) + g(x)u with

[ 2 | 0 0]
—2x3z0w4—21 (T1) 1 0 .
f(z) = c gl = L u=
,Z'4 0 0 Fb
| 23w — wa(xs) | | 0 1
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Next consider the vector field'(z) = (0, 7,0, x3)". Simple calculations yield

oV ov
pe —(x)z1 + 87($)x3 = (23 + 1)aow; + 1473 (32)
o 4

SinceV(LgV () = (w222 + 1), 21 (232 + 1), 24 + 2212273, 23), We get

LoV (x) =

LiLeV(z) = x3(225+ 1) + 27 — 23 (x1) — 23 (x3). (33)
We now check that Assumptiolis 1 did 2 are satisfied. Sing&xz) = 0 and L,V (x) = [y 4]
everywhere, Assumptidd 1 is satisfied.[fV (z) = 0, thenz, = x4 = 0, in which case we get
LiLGV () = —a2(x1) — x3(x3). It follows that if z # 0 and L,V (z) = 0, thenL;LsV (z) < 0.
Therefore Assumptiohl 2 is satisfied. Hence, Thedrém 1 applensider the function
Vix) = 402 + 2V (2)]® + LeV () — 40(2°%) . (34)
Simple multiplications shovg0[2 + 2V (2)]® > V¥(z) > 3 (22 + 2% + 22 + 22) for all z, so V*
is positive definite and radially unbounded. Moreover, we &t along the trajectories df {29)
after the change of feedbadk131),
Viz) = 480[24 2V (2)]°(wom + 24 F) + 22(223 + 1) + 22 — 22 () — 23 (x5)

(35)
—|—$1Tb -+ JJng s
sinceV(x) = x9m, + x4 F},. Therefore, from the triangle inequality, we deduce that
Viz) < 1+ 22712 +480[2 + 2V (2)Pxymy, 4+ 22(223 + 1) (36)

+/ 1+ 23F? +480[2 + 2V (2)Pxs Fy + af — a3(x) — a3 (xs)
We demonstrate now thaf? is a CLF for [29) by showing that the right hand side [ofl (36) is

negative definite for the feedbacks
Ty = —x2(x9) , Fy, = —x4(xy4). (37)

To this end, notice that we have

Vi) < Ti(x)a3(zs) + Tz(gf)xi(xﬁ — 3 [z} (1) + 933@72) + x3(ws) + 23 (14)] (38)
where we define thé}'s by T1(z) = /1 + 22 — 480(2 + 2V (2))® + 2+/1 + 23(223 +
and Ty(z) = /1 + 22 — 480(2 + 2V( ))® +2¢/1+ 2% + ;. From the expression df’(:r), we
deduce thatZ} and 7, are nonpositive and therefore
. 1
Vi(z) < —5 (23 (1) + 25 (o) + a5 (ws) + 25 (x4)] (39)

The right hand side of this inequality is negative definitel #me feedbacks resulting frori{31)

and [3Y) are bounded in norm Ky This concludes the proof.
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VI. ROBUSTNESS TOACTUATOR ERRORS

Theorem[JL provided a stabilizing feedback= K;(z) such that = f(z) + g(x)K;(x) is
globally asymptotically stable (GAS) to = 0. Moreover, for eaclz > 0, we can choosés; to
satisfy | K1 (z)| < e for all x € R".

One natural and widely used generalization of the GAS candiis the so-called input-
to-state stable (ISS) property [18]. For a general nontirsstem: = F(x,d) evolving on
R™ x R™ (whered represents the disturbance), the ISS property is the mgeint that there
exist 5 € KL and~y € K., such that the following holds for all measurable essentiatlunded
functionsd : [0,00) — R™ and corresponding trajectoriest) for (t) = F(x(t),d(t)):

[z(1)] < B(lz(0)], 1) +v(|dlee) ¥ = 0. (1SS)

Here| - |, is the essential supremum norm. The ISS property reducef\®tG0 for systems
with no controls, in which case the overshoot teyfid|..) in the ISS decay condition i& see
also [11], [12] for the relationship between the ISS propartd asymptotic controllability. It is
therefore natural to look for a feedbaék(x) for (@) (which could in principle differ fromi)

for which

i = F(a,d) = f(2) + g(2)[K () + d] (40)

is ISS, and for which K (z)| < ¢ for all z € R, wheree is any prescribed positive constant.
In other words, we would want an arbitrarily small feedbdc¢khat renders[{1) GAS te = 0
and that has the additional property tHafl (40) is also IS® véspect to actuator errots
However, it is clear that this objective cannot be met, sitiee is noboundedfeedback
K (z) such that the one-dimensional systém= K (x) + d is ISS. On the other hand, if we add
Assumption 3:A positive nondecreasing smooth functidhsuch that (i)fO’LOO ﬁ ds = 400
and (ii) |[L,V (z)] < D(V(x)) for all x € R™ is known.
whereV satisfies our continuing Assumptidf§ll-2, then any feeddack —&(V(z))L,V (z)T,
obtained from Theorerl 1 for the control affine systéem f(x) + g(z)u and chosen such that
1E(V(x))L,V (x)| < e forall x € R", also renderd{40htegral-input-to-state stable (iISSfor a
general nonlinear systein= F'(z,d) evolving onR" x R™, the ilISS condition is the following:

There existd € KL anda,y € K., such that for all measurable locally essentially bounded
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functionsd : [0, c0) — R™ and corresponding trajectoriest) for @(t) = F(z(t),d(t)),

a([z(t)]) SB(I@“(O)IJH/O 7(ld(s)[)ds Vi = 0. (ilSS)

The iISS condition reflects the qualitative property of Imgvemall overshoots when the distur-
bances have finite energy. It provides a nonlinear analodimif¢ /72 norm” for linear systems,
and thus has obvious physical relevance and significan¢c¢3RJAssumption$133 hold for our
example in the previous section, since in that casgl ()| < 2(V(z) +2) for all x € R", so
we can takeD(s) = 2(s + 2). In fact, our assumptions hold for a broader class of Hamigto
systems as well; see Remdik 5 below.

To verify that the Theorer 1 feedback also renders (40) VgShegin by fixings > 0 andV
satisfying our Assumptiorid[1-3, and applying our theoreni te f(x) + g(xz)u. This provides
a CLF U for @) and a corresponding positive functigrthat satisfiesé (V' (z))L,V (x)| < ¢ for
all z € R™. The CLFU has the form[{9). By reducing andé’ from Sectior VA, and replacing
D(p) with p — D(2p) + 1 in Assumptior[B without relabelling, we can assume

|L,U(z)| < D(U(z)) Vo € R™ (41)
Then v
U(z) = /0 %, where U(z) = V(x)+6(V(z))LeV (2) (42)

is again a CLF for our dynamid](1), since our choicemfgives U(x) — +oo as|z| — oo
becausel is radially unbounded, and becauS&/(z) = VU (z)/D(U(z)) (which gives the
CLF decay condition). The smoothnessiofollows becausé/ andD are both smooth. Finally,

#1) gives
LU ()| = | LU (2)/D(U(x))| <1 Vo € R™. (43)

We next choose the smooth feedbdck(z) = —¢(V(x))L,V (z) ", where¢ is a smooth positive
function satisfying the above requirements,/Sprendersl{il) GAS ta: = 0, by TheorentIl. To
check thatK (z) := K;(z) also renders[{40) iISS, notice that our choiceraf and [4B) give

VU(@)F(z,d) = VU(@)[f(z) +g(2) K (2)] + LU (2)d
< —as(la]) + [LU()]|d] < —as(|a]) + |d

(44)

for all z andd and some continuous positive definite functien Inequality [44) says (see [3])
that the positive definite radially unbounded smooth furcl/ is an iISS-CLF for [4D). The
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fact that [40) is iISS now follows from the iISS Lyapunov cheterization [3, Theorem 1]. We
conclude as follows:

Corollary 4: Let the datal{]3) satisfy Assumptiofi$1l-3 for some vector fieldR™ — R"™ and
V :R" — R, and lete > 0 be given. Then there exist smooth functiof$ : [0, cc) — [0, 00)
such that (i) the systeni{#0) with the feedbagkz) := —¢&(V (z))L,V (z)" is iISS and has a
smooth iISS-CLF of the forn[{42) and (ij}<(x)| < e for all z € R".

Remark 5: Assume the Hamiltonian systeid (8) satisfies the conditiahgh) we introduced
in Sectiondl as well as the following additional conditioft) There exist\, A\ > 0 such that
spectrum{M~*(¢)} C [\, A] for all ¢. (Assumption (c) means there ap®sitive constantsc
and ¢ such thatc|p|? < p" M(q)p < ¢|p|? for all ¢ andp.) Then [B) satisfies our Assumptions
M3 and so is covered by the preceding corollary. In fact, e sn p.[b that (a)-(b) imply
that Assumption§l[}2 hold with" = H, and then Assumptiofll 3 follows from (c) because
LV (@) = [p" M~ (q)]> < N[p* < (N/A)p" M~ (q)p < 2(X*/A)V (2) for all z = (g, p). We
can chooseD(s) := 1/2(A2/)\)(s + 1).

VIlI. CONCLUSION

We showed how to construct control-Lyapunov functions tdlyfnonlinear systems satisfying
appropriate generalizations of the Jurdjevic-Quinn coois. We also constructed feedbacks of
arbitrarily small norm that render our systems integrghitito-state stable to actuator errors.
Our constructions apply to important families of nonlinegstems, and in particular to systems
described by Euler-Lagrange equations. Redesign andcefurbbustness analysis for our systems

via our construction of control-Lyapunov functions will Bebjects of future work.
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