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Similarity-Based Supervisory Control of

Discrete Event Systems

Yongzhi Cao and Mingsheng Ying

Abstract

Due to the appearance of uncontrollable events in discrete event systems, one may wish to replace

the behavior leading to the uncontrollability of pre-specified language by some quite similar one. To

capture this similarity, we introduce metric to traditional supervisory control theory and generalize the

concept of original controllability toλ-controllability, whereλ indicates the similarity degree of two

languages. A necessary and sufficient condition for a language to beλ-controllable is provided. We

then examine some properties ofλ-controllable languages and present an approach to optimizing a

realization.

Index Terms

Discrete event systems, supervisory control, controllability, metric space, Pareto optimality.

I. INTRODUCTION

Supervisory control theory (SCT) initiated by Ramadge and Wonham [16] and subsequently

extended by other researchers (see, for example, [2], [17] and the bibliographies therein) provides

a systematic approach to controlling discrete event systems (DES). The behavior of a DES is

represented by a language over the set of events, and in the paradigm of standard SCT, Ramadge

and Wonham [16] have formulated supervisory control problem by two languages that correspond

to minimal acceptable behavior and legal behavior, respectively. In this formulation, both general

and nonblocking solutions are well discussed.
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Because of some practical requirements of control engineering, the standard SCT has been

extended from the aspect of control objective. It has been observed by Lafortune and Chen [7] that

the control objective of requiring nonblocking solutions is too conservative in some cases, and

thus they have developed the supervisory control problem with blocking in [3], [7]. Subsequently,

Lafortune and Lin [8], [9] formulated and solved a more general supervisory control problem

whose control objective is given by “desired” behavior and “tolerated” behavior. The motivation

behind this is that one can achieve more desired behavior by tolerating some behavior that

will exceed the ideal desired one. Using probability to precisely specify what is tolerable was

first presented by Lin in [11]. This work was further developed in probabilistic DES [10]. The

research mentioned above shows that to achieve more desiredbehavior, sometimes it is worth

tolerating undesirable behavior especially in some systems whose constraints are not rigid.

Tolerable behavior, which depends on different practical systems, gives rise to different su-

pervisory control problems. In this paper, we are interested in the supervisory control problem

in which one can accept some behavior quite similar to desired one. This is motivated by the

fact that some similar behavior often occurs in some DES and one may wish to tolerate similar

behavior when the ideal desired one is not feasible. For example, assume that in a common

computer system, the jobs completed by CPU (central processing unit) will request access to

peripheral devices consisting of one printer and one disk. It seems reasonable to expect that if

the default device is busy or wrong, the jobs will give accessto the other device.

In order to capture the similarity of behavior, we first suppose that the event set of a DES

is equipped with a metricd. This hypothesis is not too constrained since any nonempty set can

be endowed with at least the discrete metric. The metricd indicates the similarity of events.

Based upon this metric, we then construct a distance function d̃ for all pairs of event strings

by using so-called Baire metric. Finally, the Hausdorff metric d̃H induced byd̃ can serve as a

similarity measure on the set of languages. The less the value of d̃H , the more similar the two

languages. With this similarity measure, we propose the concept of λ-controllability, whereλ

stands for similarity index. More explicitly, we say that a languageK is λ-controllable if there

exists a controllable languagẽK satisfying thatd̃H(K̃,K) ≤ λ. Such aK̃ is called arealization

of K. Clearly, each controllable language in the sense of SCT isλ-controllable, and moreover,

0-controllability coincides with original controllability. Hence, the notion ofλ-controllability is

a generalization of the original controllability in SCT. Insome applications, the specifications
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offered by users may be relaxed. If a specification is not controllable and some dissimilarities

between events can be tolerated, then we can turn our attention to finding a similar one by using

λ-controllability, which increases the intelligence of standard supervisory control.

In our setting, we still use the traditional supervisor to control the system; the control objective

which is different from the aforementioned ones is, however, to find a realization of the pre-

specified desired language. In other words, the control objective here is to achieve certain

behavior similar to the desired one. Taking similarity of elements into account and using metric

to describe the similarity are widely recognized in some fields of Computer Science such as

metric semantics, process calculus, and pattern recognition (see, for example, [4], [21], [20]).

In the earlier work [15], a distance function defined in [5] isalso used to characterize the

infinite or sequential behavior of DES, and moreover, a generalized notion of controllability

for ω-languages is introduced. Such a notion essentially depends on the prefix ofω-language

under consideration, and thus it cannot serve our purpose ofsimilarity-based supervisory control.

Recently, a signed real measure for sublanguages of regularlanguages has been formulated and

studied in [18], [19]. The measure which is different from our similarity measure only serves

as an evaluation of supervisors. Perhaps there is a deep connection between them, and this is

an interesting problem for the future study. Related to the metric for events, in Petri nets the

synchronic distance between transitions has been introduced by Petri [14] to describe the degree

of mutual dependence between events in a condition/event system (see [13] and the bibliographies

therein for further information on synchronic distances).

The purpose of this paper is to introduce the idea of similarity-based supervisory control, and

we only concentrate on some basic aspects ofλ-controllability. We first examine some algebraic

properties ofλ-controllable languages, and then present a necessary and sufficient condition for

a language to beλ-controllable. An algorithm for determining whether or nota finite language is

λ-controllable is also provided. Further, we show that the supremalλ-controllable sublanguage

of a given language exists, and discuss some of its properties. Finally, for a givenλ-controllable

languageK, we turn our attention to finding a Pareto optimal realization K̃ in the sense that it

is impossible to enlarge the common behaviorK̃ ∩K and simultaneously reduce the different

behaviorK̃\K.

The rest of the paper is organized as follows. In Section II, we review some basics of SCT

and metric space. In Section III, we introduce the concept ofλ-controllability, discuss some
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properties ofλ-controllable languages, and present a necessary and sufficient condition for a

language to beλ-controllable. The supremalλ-controllable sublanguage is addressed in this

section as well. Section IV is devoted to deriving a Pareto optimal realization from an arbitrary

realization. We provide an illustrative example in SectionV and conclude the paper in Section

VI.

II. PRELIMINARIES

Let E denote the finite set of events, andE∗ denote the set of all finite sequences of events,

or stings, inE, including the empty stringǫ. The length of a stringω is denoted byl(ω), and

the prefix closure of a languageL is denoted byL.

The DES to be controlled is modelled by a deterministic automaton:G = (Q,E, δ, q0), where

Q is a set of states with the initial stateq0, E is a set of events, andδ : Q×E → Q is a (partial)

transition function. The functionδ is extended toδ : Q × E∗ → Q in the obvious way. The

behavior of a DES is modelled as a prefix closed languageL(G) = {s ∈ E∗ : δ(q0, s) is defined}.

The supervisory control theory partitions the event set into two disjoint sets of controllable and

uncontrollable events,Ec andEuc, respectively. A supervisor is a mapS : L(G)→ 2E such that

S(s) ⊇ Euc for any strings ∈ L(G). The language generated by the controlled system is denoted

by L(S/G). Following [16], a languageK ⊆ L(G) is said to becontrollable (with respect to

L(G) andEuc) if KEuc∩L(G) ⊆ K. It has been shown in [16] that a given nonempty language

K ⊆ L(G) is controllable if and only if there exists a supervisorS such thatL(S/G) = K.

For any languageK, there exist the supremal controllable sublanguage [16] and the infimal

prefix closed and controllable superlanguage [7] ofK, denoted byK↑ andK↓, respectively. For

more details about the theory of DES, we refer the reader to, for example, [2].

Let us collect some basic notions on metric space.

Definition 1: A (1-bounded) metric spaceis a pair (X, d) consisting of a nonempty setX

and a functiond : X ×X −→ [0, 1] which satisfies the following conditions:

(M1) d(x, y) = 0 if and only if x = y,

(M2) d(x, y) = d(y, x) for all x, y ∈ X, and

(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The distanced(x, y) measures the similarity betweenx andy. The less the distance, the more

similar the two elements. To simplify notation, sometimes we writeX instead of(X, d). Recall
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that if (X, d) is a metric space andM ⊆ X, then (M, d|M×M) is also a metric space, where

d|M×M is the restriction ofd to M .

Let (X, d) be a metric space,x0 ∈ X, andλ ∈ [0, 1]. The setB(x0, λ) = {x ∈ X : d(x0, x) ≤

λ} is called theλ-ball aboutx0; for a subsetA of X, by theλ-ball aboutA we mean that the

setB(A, λ) = ∪x∈AB(x, λ). We extendd to a pairx,A, wherex ∈ X andA ⊆ X, by defining

d(x,A) = inf
a∈A

d(x, a) if A 6= ∅, andd(x,A) = 1 otherwise. Further, we defineHausdorff metric

for a pairA,B ⊆ X as follows:

dH(A,B) =





0, if A = B = ∅

max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)}, otherwise.

The Hausdorff metric is one of the common ways of measuring resemblance between two sets

in a metric space; it satisfies the conditions (M2) and (M3) inDefinition 1, but it does not satisfy

the condition (M1) in general.

III. M ETRIC CONTROLLABILITY

Let us begin with the (finite) event setE of a DESG and a metricd on E which makesE

into a metric space. We now endowE∗ with the Baire metric induced byd, which measures

the distance between strings and pays more attention to the events occurring antecedently. Let

s = s1s2 · · · sl(s) and t = t1t2 · · · tl(t) be two strings inE∗, and l(s, t) = max{l(s), l(t)}. If

l(s) 6= l(t), say l(s) < l(t), we takesi = ǫ for eachi > l(s). We then define

d̃(s, t) =

l(s,t)∑

i=1

1

2i
d(si, ti),

where we setd(ǫ, ǫ) = 0, and d(a, ǫ) = d(ǫ, a) = 1 for any a ∈ E. It is easy to verify thatd̃

does give rise to a metric onE∗. For later need, we make a useful observation.

Lemma 1:Let L ⊆ L(G) and s ∈ L(G). Then inf
t∈L

d̃(s, t) = min
t∈L

d̃(s, t), namely,d̃(s, L) =

min
t∈L

d̃(s, t).

Proof: SetW = {w ∈ L : l(w) ≤ l(s)}. It is a finite set since the event setE is finite. For

eachw ∈ W , we choose a stringw′ satisfying the following:

• w′ = wv′ ∈ L, wherev′ ∈ E∗; and

• if wv′′ ∈ L for somev′′ ∈ E∗, then l(v′′) ≥ l(v′).
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CAO AND YING: SIMILARITY-BASED SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 6

It follows from the definition ofW that such aw′ does exist, but it may not be unique. It

does not matter since we need only one representative of them. Let W ′ be the set consisting

of all suchw′. Then the cardinality ofW ′ is less than or equal to that ofW . Further, set

L′ = {w ∈ L : l(w) < l(s)} ∪W ′. Clearly,L′ is a finite set, somin
w∈L′

d̃(s, w) exists.

For anyt ∈ L, we claim thatd̃(s, t) ≥ min
w∈L′

d̃(s, w). In fact, for the case thatl(t) ≤ l(s), we

have thatt ∈ L′. Henced̃(s, t) ≥ min
w∈L′

d̃(s, w). In the other case thatl(t) > l(s), we can write

t aswtvt satisfying thatl(wt) = l(s). If wtvt ∈ W ′, then it is clear that̃d(s, t) ≥ min
w∈L′

d̃(s, w);

otherwise, by the definition ofW ′ there existsv′t ∈ E∗ with l(v′t) ≤ l(vt) such thatwtv
′
t ∈ W ′.

We thus get by the definition of Baire metric that

d̃(s, t) = d̃(s, wtvt) ≥ d̃(s, wtv
′
t) ≥ min

w∈L′
d̃(s, w).

Therefore the claim holds. Note thatL′ ⊆ L, hencemin
t∈L

d̃(s, t) = min
w∈L′

d̃(s, w), and thus

inf
t∈L

d̃(s, t) = min
t∈L

d̃(s, t), as desired.

As mentioned earlier, Hausdorff metric does not give rise toa metric space in general.

However, if we consider the powersetP(E∗) of E∗ with the Hausdorff metric induced by

d̃, then we can get a metric space.

Proposition 1: Let d̃H be the Hausdorff metric induced by the metric̃d introduced above.

Then (P(E∗), d̃H) is a metric space.

Proof: As mentioned earlier, any Hausdorff metric satisfies the conditions (M2) and (M3)

in Definition 1, so we only need to check the condition (M1). Suppose thatd̃H(A,B) = 0,

whereA,B ⊆ E∗. Seeking a contradiction, assume thatA 6= B; without loss of generality, we

may assume that there existss ∈ A\B. By the definition of Hausdorff metric, we know from

d̃H(A,B) = 0 that d̃(s, B) = 0. This means thatB 6= ∅, and moreover,min
t∈B

d̃(s, t) = 0 by

Lemma 1. Sincẽd is a metric onE∗, the latter forces thats ∈ B, a contradiction. We thus get

thatA = B. Conversely, ifA = B, then it is obvious that̃dH(A,B) = 0. So d̃H is a metric on

P(E∗), thus finishing the proof.

The Hausdorff metric defined above measures the similarity of two languages. For convenience

of notation, we will writed for the metricsd̃ and d̃H induced byd in what follows; it will be

always clear from the context which metric is being considered. As a subset ofE∗, L(G) is a

metric space with restricted metric. From now on, we will work in L(G) instead ofE∗, unless
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otherwise specified. We can now introduce the key notion.

Definition 2: Givenλ ∈ [0, 1], a languageK ⊆ L(G) is said to beλ-controllable(with respect

to L(G) andEuc) if there exists a languagẽK ⊆ L(G) satisfying the following conditions:

1) d(K̃,K) ≤ λ;

2) K̃ is controllable with respect toL(G) andEuc.

If such aK̃ exists, we call it arealizationof K.

Intuitively, a languageK is λ-controllable if there is a controllable language that is similar to

K. Observe that each controllable language isλ-controllable. The following example, however,

shows that the converse is not true in general.

Example 1:Let L(G) = {ǫ, a, ab, ag, af, abc, age}, Euc = {c, g, f}, andK = {ǫ, a, ab, af}.

It is easy to see thatK is not controllable. Let us now define a metricd on E as follows:

d(x, y) =





0, if x = y

0.01, if (x, y) = (b, g) or (g, b)

1, otherwise.

Based on this metric, we can obtain the induced metrics onL(G) andP(L(G)), respectively.

For example,d(ab, ag) = 0.0025 andd(K, {ǫ, a, ag, af}) = 0.0025. Observe that{ǫ, a, ag, af}

is controllable and it can serve as a realization ofK wheneverλ ≥ 0.0025. Therefore, according

to our definition,K is λ-controllable for anyλ ≥ 0.0025.

Let us give some remarks on the concept ofλ-controllability.

Remark 1:

1) A languageK is 0-controllable if and only ifK is controllable. Note also that one can

endow any event setE with discrete metric and educe further Hausdorff metric onP(E∗).

Thus in view of this, the concept ofλ-controllability is also a generalization of the ordinary

controllability in the framework of Ramadge-Wonham.

2) If K is λ1-controllable andλ1 ≤ λ2, thenK is alsoλ2-controllable. In particular, each

controllable language isλ-controllable, for anyλ ∈ [0, 1].

3) If K is λ-controllable, then so isK. But the converse does not hold in general.

Proof of 3): Let K̃ be a realization ofK. We want to show that̃K is a realization ofK. Since

K̃ is controllable by definition, it suffices to verify thatd(K̃,K) ≤ λ, namely,sup
s∈K

d(s, K̃) ≤ λ

and sup
s∈K̃

d(s,K) ≤ λ. By definition and Lemma 1, the former is equivalent tomin
t∈K̃

d(s, t) ≤ λ
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for any s ∈ K, while the latter is equivalent tomin
t∈K

d(s, t) ≤ λ for any s ∈ K̃. We only

prove the former; the latter can be proved in a similar way. Let s be an arbitrary string inK.

Then there existss′ ∈ E∗ satisfying thatss′ ∈ K. As K̃ is a realization ofK, we have that

sup
w∈K

d(w, K̃) ≤ λ, that is,min
v∈K̃

d(w, v) ≤ λ for any w ∈ K. In particular, settingw = ss′, we

have at least onev ∈ K̃ such thatd(ss′, v) ≤ λ. If l(v) ≥ l(s), then taket to be the prefix of

v with length l(s); otherwise, taket = v. Clearly, such a selection oft satisfies thatt ∈ K̃ and

yields thatd(s, t) ≤ d(ss′, v) ≤ λ by the definition of Baire metric. Therefore,min
t∈K̃

d(s, t) ≤ λ.

As s ∈ K was arbitrary, this completes the proof of the first part.

For the second part, consider the following example: LetL(G) = {ǫ, a, c, ab}, Euc = {c},

K = {ab}, andd be a metric defined onE = {a, b, c} as follows:

d(x, y) =





0, if x = y

0.02, if (x, y) = (a, c) or (c, a)

1, otherwise.

Setλ = 0.01. ThenK = {ǫ, a, ab} is 0.01-controllable sinceL(G) can serve as its realization.

Nevertheless, there is noK ′ ⊆ L(G) satisfying thatK ′ is both controllable andd(K ′, K) ≤ 0.01.

SoK is not 0.01-controllable. �

The following are some useful properties ofλ-controllable languages.

Proposition 2:

1) If K1 andK2 areλ-controllable, then so isK1 ∪K2.

2) If K1 andK2 areλ-controllable, thenK1 ∩K2 need not beλ-controllable.

3) If K̃1 andK̃2 are two realizations ofK, then so isK̃1∪K̃2. But K̃1∩K̃2 is not necessarily

a realization ofK.

Proof:

1) Suppose that̃Ki, i = 1, 2, is a realization ofKi. It is easy to verify thatK̃1 ∪ K̃2 is a

realization ofK1 ∪K2.

2) Consider the following counter example: KeepL(G), Euc, andd in Example 1. LetK1 =

{ǫ, a, ab, af}, K2 = {ǫ, a, ag, af}, and λ = 0.0025. ThenK2 is controllable, and moreover,

d(K1, K2) = 0.0025. Hence bothK1 andK2 are0.0025-controllable. But, by a simple compu-

tation, one can find thatK1 ∩K2 = {ǫ, a, af} is not 0.0025-controllable.
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3) The first part follows immediately from the definition ofλ-controllability. For the second

part, one can easily give a counter example. In fact, there isone at the end of Section V, where

the intersection of two Pareto optimal realizations ofK fails to be a realization.

The following theorem presents a necessary and sufficient condition for a languageK ⊆ L(G)

to beλ-controllable via itsλ-ball in L(G).

Theorem 1:A languageK ⊆ L(G) is λ-controllable if and only ifd(B(K, λ)↑, K) ≤ λ.

Proof: The sufficiency follows immediately from the definition, so we only need to

prove the necessity. Suppose thatK is λ-controllable. By definition, there exists a controllable

languageK̃ ⊆ L(G) with d(K̃,K) ≤ λ. It follows that d(x,K) ≤ λ for any x ∈ K̃, that

is, min
y∈K

d(x, y) ≤ λ by Lemma 1. Therefore there existsyx ∈ K such thatd(x, yx) ≤ λ, and

thus we get thatx ∈ B(yx, λ) ⊆ B(K, λ) for any x ∈ K̃. It means thatK̃ ⊆ B(K, λ),

and furthermore,K̃ ⊆ B(K, λ)↑, which implies thatd(s, B(K, λ)↑) ≤ λ for any s ∈ K.

Consequently,sup
s∈K

d(s, B(K, λ)↑) ≤ λ. On the other hand, sinceB(K, λ)↑ ⊆ B(K, λ), we

have thatd(t,K) ≤ λ for any t ∈ B(K, λ)↑, which yields that sup
t∈B(K,λ)↑

d(t,K) ≤ λ. Hence, we

obtain thatd(B(K, λ)↑, K) ≤ λ. The proof is completed.

We would like to develop an algorithm for determining whether a finite language isλ-

controllable. For this purpose, we need an algorithm for computingλ-ball about a string.

Let G = (Q,E, δ, q0) be a deterministic automaton ands = s1s2 · · · sn be a fixed string in

L(G). Let d be the metric onL(G) defined as before. For eachq ∈ Q, defineE(q) = {e ∈ E :

δ(q, e) is defined}. Recall thatB(s, λ) = {r ∈ L(G) : d(r, s) ≤ λ}.

Algorithm forB(s, λ):

B(s, λ)← ∅;

r ← ǫ;

i← 1;

n← l(s);

F (λ, r, i);

end Algorithm for B(s, λ).

Here the procedure F (λ, r, i) is defined recursively as follows:

ProcedureF (λ, r, i):

if i = n + 1 then

June 10, 2018 DRAFT



CAO AND YING: SIMILARITY-BASED SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 10

if λ ≥ 1
2n

then

B(s, λ)← B(s, λ) ∪ {rr′ ∈ L(G) : r′ ∈ E∗};

else

k ← ⌊− log2(1− 2nλ)⌋;

B(s, λ)← B(s, λ) ∪ {rr′ ∈ L(G) : l(r′) ≤ k};

end if

return;

end if

if λ ≥ 1
2i
+ · · ·+ 1

2n
then

B(s, λ)← B(s, λ) ∪ {r};

end if

for each e ∈ E(δ(q0, r))

if λ ≥ d(si,e)
2i

then

r′ ← re;

λ′ ← λ− d(si,e)
2i

;

i′ ← i+ 1;

F (λ′, r′, i′);

end if

end for

end Procedure F (λ, r, i). �

The correctness of the above algorithm follows directly from the definition of Baire metric.

The worst-case complexity of calculatingB(s, λ) is O(|E|l(s)).

Based on the above algorithm and Theorem 1, we are now ready toprovide an algorithm for

determining whether a finite language isλ-controllable. Notice thatB(K, λ)↑ ⊆ B(K, λ), so by

definition we have that the conditiond(B(K, λ)↑, K) ≤ λ in Theorem 1 holds if and only if

sup
s∈K

d(s, B(K, λ)↑) ≤ λ. By Lemma 1, the latter is equivalent to thatmin
b∈B(K,λ)↑

d(s, b) ≤ λ for

any s ∈ K. Further, this is equivalent to thatB(s, λ) ∩B(K, λ)↑ 6= ∅ for any s ∈ K. Note that

B(K, λ) = ∪s∈KB(s, λ) and one can computeB(K, λ)↑ by using standard algorithm for the

operation “↑” developed in [22], [1], [7]. Summarily, we have the following result.

Theorem 2:To decide whether or not a finite languageK is λ-controllable, we can follow

the steps below:

June 10, 2018 DRAFT
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1) For all s ∈ K, computeB(s, λ) by usingAlgorithm forB(s, λ).

2) ComputeB(K, λ)↑ by using standard algorithm for the operation “↑”.

3) Decide whether or not eachs ∈ K satisfies thatB(s, λ) ∩B(K, λ)↑ 6= ∅.

If there existss ∈ K such thatB(s, λ)∩B(K, λ)↑ = ∅, thenK is notλ-controllable; otherwise,

K is λ-controllable.

From 3) of Proposition 2, we see that the union of two realizations of aλ-controllable language

K is still a realization. This can be easily generalized to infinite unions and gives rise to the

supremal realization ofK. The next observation shows us the relationship between thesupremal

realization ofK and theλ-ball aboutK.

Proposition 3: Let K be aλ-controllable language and̃Ki, i ∈ I, be all realizations ofK.

Then∪i∈IK̃i = B(K, λ)↑.

Proof: We know by Theorem 1 thatB(K, λ)↑ is a realization ofK, soB(K, λ)↑ ⊆ ∪i∈IK̃i.

Conversely, sinced(K̃i, K) ≤ λ for eachi ∈ I, it follows thatd(x,K) ≤ λ for anyx ∈ K̃i, that

is, min
y∈K

d(x, y) ≤ λ by Lemma 1. Therefore there existsyx ∈ K such thatd(x, yx) ≤ λ, and thus

we have thatx ∈ B(yx, λ) ⊆ B(K, λ) for anyx ∈ K̃i. It means thatK̃i ⊆ B(K, λ), and we get

that∪i∈IK̃i ⊆ B(K, λ). Note that∪i∈IK̃i is controllable, hence we have that∪i∈IK̃i ⊆ B(K, λ)↑,

finishing the proof of the proposition.

We end this section with a discussion on supremalλ-controllable sublanguage. To this end,

let us define the class ofλ-controllable sublanguages ofK as follows:

Cλ(K) = {M ⊆ K : M is λ-controllable}.

Observe that∅ ∈ Cλ(K), so the class is not empty. DefineK⇑ = ∪M∈Cλ(K)M . Note that 1)

of Proposition 2 can be easily generalized to infinite unions, henceK⇑ gives rise to the largest

λ-controllable sublanguage ofK, where “largest” is in terms of set inclusion. We callK⇑ the

supremalλ-controllable sublanguageof K and refer to “⇑” as the operation of obtaining the

supremalλ-controllable sublanguage. Clearly,K↑ ⊆ K⇑. If K is λ-controllable, thenK⇑ = K.

In the “worst” case,K⇑ = ∅.

Several useful properties of the operation are presented inthe following proposition.

Proposition 4:

1) If K is prefix closed, then so isK⇑.

2) If K1 ⊆ K2, thenK⇑
1 ⊆ K⇑

2 . In other words, the operation⇑ is monotone.
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3) (K1 ∩K2)
⇑ ⊆ K⇑

1 ∩K⇑
2 ; this inclusion can be strict.

4) K⇑
1 ∪K⇑

2 ⊆ (K1 ∪K2)
⇑; this inclusion can be strict.

Proof:

1) SinceK⇑ is λ-controllable,K⇑ is alsoλ-controllable by 3) of Remark 1. Therefore, we

get thatK⇑ ⊆ K⇑. The converse inclusion is always true, soK⇑ is prefix closed.

2) It follows immediately from the definition of the operation ⇑.

3) The first part follows directly from 2). The example presented in the proof of 2) of

Proposition 2 shows us that this inclusion can be strict.

4) It follows from 2) that the first part holds. For the second part, let us see the following

example: KeepL(G), Euc, andd in Example 1. LetK1 = {ǫ, a, af}, K2 = {ǫ, a, ag}, andλ =

0.0025. Then by definition we have thatK⇑
1 ∪K

⇑
2 = {ǫ}. However,(K1∪K2)

⇑ = {ǫ, a, ag, af},

so the inclusion may be strict.

Recall that Proposition 3 tells us thatB(K, λ)↑ is the supremal realization ofλ-controllable

languageK. In fact, this result can be generalized to the case thatK is not necessarilyλ-

controllable.

Theorem 3:Let K be a language. ThenB(K, λ)↑ is the supremal realization ofK⇑.

Proof: By Proposition 3, we know thatB(K⇑, λ)↑ is the supremal realization ofK⇑, so

it is sufficient to show thatB(K, λ)↑ = B(K⇑, λ)↑. Note thatK⇑ ⊆ K and the operation

↑ is monotone, therefore we have thatB(K⇑, λ) ⊆ B(K, λ), and furthermore,B(K⇑, λ)↑ ⊆

B(K, λ)↑. For the converse inclusion, setK ′ = {t ∈ K : ∃s ∈ B(K, λ)↑ such thatd(s, t) ≤ λ},

and then observe thatd(B(K, λ)↑, K ′) ≤ λ. Therefore,K ′ is λ-controllable, andB(K, λ)↑ is a

realization ofK ′. SinceB(K ′, λ)↑ is the supremal realization ofK ′ by Proposition 3, we have

thatB(K, λ)↑ ⊆ B(K ′, λ)↑. By the previous arguments, we know thatK ′ ∈ Cλ(K). This means

that K ′ ⊆ K⇑, and moreover,B(K ′, λ)↑ ⊆ B(K⇑, λ)↑. Consequently,B(K, λ)↑ ⊆ B(K⇑, λ)↑,

as desired.

From the proof of the above theorem, we can easily get the following:

Corollary 1: B(K, λ)↑ = B(K⇑, λ)↑ = ∪M∈Cλ(K)B(M,λ)↑.
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IV. OPTIMALITY OF REALIZATIONS

By introducing metric to the set of languages, we have definedthe realization of a language

K as the controllable language that is similar toK. Though there is an indexλ reflecting the

similarity, the elements of two similar languages may be quite different from each other. It is

comprehensible since the similarity characterized by a metric yields that two elements are not

identical unless the distance between them is0.

In view of supervisory control, we are interested in finding arealization ofK that has common

elements withK as many as possible on the one hand and has different elementswith K as

few as possible on the other hand. To this end, let us considerthe following problem.

Optimal Control Problem (OCP):Givenλ ∈ [0, 1] and a nonempty languageK ⊆ L(G), find

a supervisorS such that:

1) d(L(S/G), K) ≤ λ.

2) L(S/G) is Pareto optimalwith respect to the following two sets which serve as measure

of performance:

• The common element measureof S, CEM(S), defined asCEM(S) = L(S/G)∩K.

• The different element measureof S, DEM(S), defined asDEM(S) = L(S/G)\K.

Pareto optimalitymeans that any possible improvement ofCEM(S) by enlarging this set is

necessarily accompanied by an enlargement ofDEM(S). Similarly, any possible improvement

of DEM(S) by reducing this set is necessarily accompanied by a reduction of CEM(S).

For simplicity, we suppose that the languageK is prefix closed in this section. Let us first

describe two extreme solutions to OCP.

Theorem 4:

1) OCP has a solution satisfyingCEM(S) = K if and only if K↓ ⊆ B(K, λ).

2) OCP has a solution satisfyingDEM(S) = ∅ if and only if d(K↑, K) ≤ λ.

Proof:

1) Suppose that OCP has a solution satisfyingCEM(S) = K. Then by the definition of

CEM(S) we see thatK ⊆ L(S/G), which means thatK↓ ⊆ L(S/G). Note thatL(S/G) is a

realization ofK, soL(S/G) ⊆ B(K, λ)↑ ⊆ B(K, λ) by Proposition 3. Hence,K↓ ⊆ B(K, λ).

Conversely, suppose thatK↓ ⊆ B(K, λ). Then there exists a supervisorS0 such thatL(S0/G) =

K↓ ⊆ B(K, λ) sinceK↓ is controllable. Therefore,d(L(S0/G), K) ≤ λ, and moreover,CEM(S0)
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= L(S0/G) ∩ K = K and DEM(S0) = L(S0/G)\K = K↓\K. Clearly, L(S0/G) is Pareto

optimal.

2) The proof is similar to that of 1). Suppose that OCP has a solution satisfyingDEM(S) = ∅.

Then by the definition ofDEM(S) we have thatL(S/G) ⊆ K. We thus get thatL(S/G) ⊆ K↑.

Sinced(L(S/G), K) ≤ λ, it is obvious thatd(K↑, K) ≤ λ.

Conversely, suppose thatd(K↑, K) ≤ λ. SinceK↑ is controllable, there is a supervisorS ′ such

thatL(S ′/G) = K↑ ⊆ K. Thus we obtain thatd(L(S ′/G), K) ≤ λ, CEM(S ′) = L(S ′/G)∩K =

K↑, andDEM(S ′) = L(S ′/G)\K = ∅. Clearly,L(S ′/G) is necessarily Pareto optimal.

The next theorem shows us that OCP has a solution wheneverK is λ-controllable. It implies

that we can obtain a Pareto optimal realization from any realization (in particular, the supremal

realization). The resultant realization will significantly improve the original one.

Theorem 5:OCP has a solution if and only ifK is λ-controllable.

The necessity of the above theorem is obvious. For the proof of the sufficiency, we need

several lemmas. In fact, the process of proving the sufficiency is just the process of finding a

Pareto optimal realization from a given realization.

Suppose that̃K is a realization ofK, whereK̃ is prefix closed, but not necessarily Pareto

optimal. We take two steps to find a Pareto optimal realization from K̃: 1). Find a realization

K̃s by improving K̃ such thatK̃s ∩ K ⊇ K̃ ∩ K and K̃s ∩ K is as large as possible, which

helps us find more common elements; 2). Find a realizationNm by improving K̃s such that

K̃s ∩ K ⊆ Nm ⊆ K̃s and Nm is as small as possible, which helps us reduce the different

elements.

For the Step 1), defineM = {M : M ⊆ K\K̃ andM↓ ⊆ K ∪ K̃}. Observe that∅ ∈ M ,

so the class is not empty. Moreover,M is closed under arbitrary unions, hence it contains a

unique supremal element, denotedMs, with respect to set inclusion. Clearly,Ms = ∪M∈MM .

The following lemma which is analogous to Lemma 5.1 in [3] provides some characterizations

of Ms.

Lemma 2:

1) Ms = M↓
s ∩ (K\K̃) = (K ∪ K̃)↑ ∩ (K\K̃).

2) K̃ ∪M↓
s = K̃ ∪Ms.

Proof:
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1) We first prove the first equality. Obviously,Ms ⊆ M↓
s ∩ (K\K̃). Conversely, writeN for

M↓
s ∩ (K\K̃). ThenN ⊆ M↓

s andN ⊆ K\K̃. The former means thatN↓ ⊆ M↓
s ⊆ K ∪ K̃.

Consequently,N ∈M , and thusN ⊆ Ms. SoMs = M↓
s ∩ (K\K̃). The second equality can be

verified in a similar may, so we omit the proof.

2) Using 1), we get that

K̃ ∪Ms = K̃ ∪ (M↓
s ∩ (K\K̃))

= (K̃ ∪M↓
s ) ∩ (K̃ ∪ (K\K̃))

= (K̃ ∪M↓
s ) ∩ (K ∪ K̃)

= K̃ ∪M↓
s ,

that is,K̃ ∪M↓
s = K̃ ∪Ms.

The next proposition shows that by addingMs to K̃, we can get a better realization in the

sense that the common elements may be improved without worsening the different elements.

Proposition 5: Let K̃s = K̃ ∪ Ms. Then K̃s is a realization ofK; moreover,K̃s = K̃s,

K̃s ∩K ⊇ K̃ ∩K and K̃s\K = K̃\K.

Proof: From 2) of Lemma 2, we see that̃Ks is controllable. It is clear thatd(K̃s, K) ≤ λ

sinced(K̃,K) ≤ λ andMs ⊆ K. Therefore,K̃s is a realization ofK. The remainder of this

proposition follows readily from Lemma 2.

For Step 2), we require the following fact.

Lemma 3:Let s ∈ E∗, and suppose that there is a chain of prefix closed languages over E:

X1 ⊇ X2 ⊇ · · · ⊇ Xi ⊇ · · ·

satisfying thatd(s,Xi) ≤ λ for all i. Thend(s,∩iXi) ≤ λ.

Proof: If the length of the chain is finite, then the lemma holds evidently. We now prove the

case that the length of the chain is infinite. SetBi = Xi ∩B(s, λ) for all i. Sinced(s,Xi) ≤ λ,

we know by Lemma 1 thatmin
xi∈Xi

d(s, xi) ≤ λ. So there isxi ∈ Xi with d(s, xi) ≤ λ. ThusBi is

not empty and there is a chain:

B1 ⊇ B2 ⊇ · · · ⊇ Bi ⊇ · · · .

By contradiction, assume thatd(s,∩iXi) > λ. Then again by Lemma 1 there is nox in ∩iXi

such thatd(s, x) ≤ λ. This means that for anyxi ∈ Bi, there existsj > i such thatxi 6∈ Xj, that
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is, xi 6∈ Bj. In particular, we now takeb1 ∈ B1 with the minimal length (i.e.,l(b′1) ≥ l(b1) for any

b′1 ∈ B1). Then there existsj1 > 1 such thatb1 6∈ Bj1. Next, note thatBj1 6= ∅, and takeb2 ∈ Bj1

with the minimal length. Clearly,l(b2) ≥ l(b1) sinceBj1 ⊆ B1. By the same token, we have

br+1 ∈ Bjr , r = 1, 2, · · · , such thatl(br+1) ≥ l(br) and l(br+1) is the minimal length of strings

in Bjr . Because the set{b ∈ E∗ : l(b) ≤ l(s)} is finite, there isr0 such thatl(br0+1) > l(s).

Let b′ be the prefix ofbr0+1 with length l(s). Then we see by the definition of Baire metric that

d(s, b′) < d(s, br0+1) ≤ λ. SinceXjr0
is prefix closed, we get thatb′ ∈ Xjr0

, and thusb′ ∈ Bjr0
.

Becausel(br0+1) is the minimal length of strings inBjr0
, we have thatl(br0+1) ≤ l(b′), which

contradicts the previous argument thatl(br0+1) > l(s) = l(b′). This completes the proof of the

lemma.

Let us now define

N = {N : K̃s ∩K ⊆ N ⊆ K̃s, N = N, andN is a realization ofK}.

This class is not empty sincẽKs ∈ N by Proposition 5. Recall that the intersection of two

realizations of aλ-controllable language does not necessarily give a realization, so the classN

has no infimal element in general. Nevertheless, we have the following result.

Lemma 4:The classN has a minimal element with respect to set inclusion.

Proof: Clearly, (N ,⊇) is a partially ordered set. If each chain in(N ,⊇) has a lower

bound, then by Zorn’s Lemma there is a minimal element ofN . So it suffices to show that any

chain in (N ,⊇) has a lower bound. Let

N1 ⊇ N2 ⊇ · · · ⊇ Ni ⊇ · · ·

be a chain in(N ,⊇). Then we have that̃Ks ∩K ⊆ ∩iNi ⊆ K̃s and∩iNi = ∩iNi. By Lemma

3, we see thatd(s,∩iNi) ≤ λ for any s ∈ K. On the other hand,d(t,K) ≤ λ for any t ∈ ∩iNi

since∩iNi ⊆ K̃s andd(K̃s, K) ≤ λ. As a result,d(∩iNi, K) ≤ λ. Note that∩iNi is controllable,

so ∩iNi is a realization ofK. Thus∩iNi ∈ N and∩iNi is a lower bound of the chain. This

finishes the proof.

Based on the previous lemmas, we can now prove the main resultof this section.

Proof of Theorem 5:It remains to prove the sufficiency. Suppose thatK is λ-controllable and

K̃ is a realization ofK. SinceK has been assumed to be prefix closed, we know thatK̃ is a

realization ofK by the proof for 3) of Remark 1. For convenience of notation, we write K̃ for
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K̃. It follows from Lemma 4 thatN has a minimal element, say,Nm. We claim thatNm is a

solution to OCP.

By the definition ofN , we know thatNm is a realization ofK. That is, there exists a

supervisorSm such thatL(Sm/G) = Nm andd(L(Sm/G), K) ≤ λ. It remains to verify thatNm

is Pareto optimal. Seeking a contradiction, suppose that there is another realizationN ′, which

is prefix closed, ofK satisfying the following:

(1) N ′ ∩K ⊇ Nm ∩K;

(2) N ′\K ⊆ Nm\K; and

(3) at least one of the two inclusions above is strict.

Observe first thatN ′ ⊆ K ∪ K̃. Otherwise, there existss ∈ N ′, but s 6∈ K ∪ K̃. We thus

see thats 6∈ K, which means thats ∈ Nm by (2). But Nm ⊆ K̃s = K̃ ∪ Ms ⊆ K ∪ K̃

by Lemma 2. This contradicts withs 6∈ K ∪ K̃. Since K̃s ∩ K ⊆ Nm, we get by (1) that

K̃s ∩K ⊆ Nm ∩K ⊆ N ′ ∩K ⊆ N ′, namely,K̃s ∩K ⊆ N ′.

SetM ′ = N ′\K̃. FromN ′ ⊆ K ∪ K̃, we find thatM ′ ⊆ K\K̃ andM ′↓ ⊆ K ∪ K̃. Therefore

M ′ ∈ M , and thusM ′ ⊆ Ms. Notice thatMs ⊆ (K̃ ∪ Ms) ∩ K = K̃s ∩ K ⊆ Nm. Hence

M ′ ⊆ Nm and K ∩ K̃ ⊆ Nm. For anys ∈ N ′ ⊆ K ∪ K̃, if s 6∈ K, then by (2) we have

that s ∈ Nm; if s 6∈ K̃, then s ∈ M ′ and by the previous argumentM ′ ⊆ Nm we also have

that s ∈ Nm; if s ∈ K ∩ K̃, we still have thats ∈ Nm sinceK ∩ K̃ ⊆ Nm. Consequently,

N ′ ⊆ Nm ⊆ K̃s. This, together with the proven fact̃Ks ∩K ⊆ N ′, yields thatN ′ ∈ N . Then

we getN ′ = Nm sinceNm is a minimal element. It forces that neither of the inclusions in (1)

and (2) is strict, which contradicts with (3). Therefore,Nm is Pareto optimal, finishing the proof

of the theorem. �

We give a simple example to illustrate the process of finding aPareto optimal realization from

any given realization.

Example 2:Let E = {a, b, c, e, f, u} andEuc = {u}. The automatonG that generatesL(G)

is depicted in Figure 1. LetK = {ǫ, a, ab, ac} and λ = 1
16

. The metricd on E is defined as

follows:

d(x, y) =






0, if x = y

1
4
, if (x, y) ∈ {(b, e), (e, b), (c, f), (f, c), (b, f), (f, b)}

1
2
, otherwise.

June 10, 2018 DRAFT



CAO AND YING: SIMILARITY-BASED SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS 18

Fig. 1. Automaton of Example 2.

✲ 0 ✲1

✒
✶

③

❘

2

3

4

5

✰ a

b
c

e
f

u

G :

Observe thatK is not controllable with respect toL(G) and Euc, but it is 1
16

-controllable

with respect toL(G) and Euc. It is easily verified thatK̃ = {ǫ, a, ae, af} can serve as a

realization. Such a realization is not, however, Pareto optimal since we can enlargeCEM(S)

(without enlargement ofDEM(S)) by addingac to K̃, or reduceDEM(S) (without reduction

of CEM(S)) by removingae from K̃.

We are now ready to use the procedure in the proof of Theorem 5 to obtain a Pareto optimal

realization fromK̃.

Keep the previous notation of this section. By an easy calculation, we get that the supremal

element of

M = {M : M ⊆ K\K̃ andM↓ ⊆ K ∪ K̃}

is {ac}, and thusK̃s = K̃ ∪Ms = {ǫ, a, ac, ae, af}. Further, we have that

N = {N : K̃s ∩K ⊆ N ⊆ K̃s, N = N, andN is a realization ofK}

= {{ǫ, a, ac, ae}, {ǫ, a, ac, af}, {ǫ, a, ac, ae, af}}.

Observe thatN has two minimal elements:{ǫ, a, ac, ae} and {ǫ, a, ac, af}. They give rise to

two Pareto optimal realizations ofK.

V. ILLUSTRATIVE EXAMPLE

In this section, we apply the notion ofλ-controllability to a machine which is a modified

version of that studied in [6]. Then we further explain the necessity of optimal control and

illustrate the process of finding a Pareto optimal realization from an arbitrary realization.

The plantG, shown in Fig. 1, is a machine consisting of five states:Idle, Working, Broken,

Display,andRunning-in. The events of the plant model are listed in Table 1.
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Fig. 2. AutomatonG of Section V.

✲ Working ✲

Running-in

Display

❂

⑥

f

g
b

✛

h

h

c✲a
Idle Broken

❦

✯

✙

e

G

Table 1. Meaning of events.

Event Event description

a start (Controllable)

b stop (Controllable)

c fail (Uncontrollable)

e replace (Controllable)

f repair (Controllable)

g reject (Uncontrollable)

h approve (Uncontrollable)

We suppose that the machine needs a thorough inspection after a period of run, say three “start”

events for simplicity. Thus the specificationK is only concerned with strings that contain at most

threea’s. More explicitly,K is generated by the automatonH depicted in Fig. 2. Clearly,K is

not controllable. Nevertheless, we can image that certain events such as “repair” and “replace”

are similar, especially after some occurrences of “fail” and “reject”, since one would like to

replace a component in some circumstances rather than repair it again and again. Formally, we

define a metricd on E as follows:

d(x, y) =





0, if x = y

2−7, if (x, y) ∈ {(b, c), (c, b)}

2−10, if (x, y) ∈ {(e, f), (f, e)}

1, otherwise.

Setλ = 2−14, and we then find thatK is 2−14-controllable. In fact, it is not difficult to verify

that the languagẽK generated by the automatonH ′ depicted in Fig. 3 can serve as a realization.

(Of course, there exist other realizations, for example,B(K, λ)↑.) On the other hand, we may

still add some strings that belong toK and do not destroy the controllability of̃K to K̃, and may
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Fig. 3. AutomatonH of Section V.

✲ ✲ ✲ ✲✲ ✲✲

❂

✲

⑦

✠

❄

❄

❄

❄

❑
☛

❄

❄

❘

⑥
✲ ✲

✒

✕✗✻

a a a

✻✻

aa

b b b

b
b

c
c

c

c

e

f g

f

f

f

g

g

h h

h

h

h

f

H

Fig. 4. AutomatonH ′ of Section V.

✲ ✲ ✲ ✲✲ ✲✲

❂

✲

⑦

✠

❄

❄

❄

❄

❑
☛

❄

❄

❘

⑥
✲ ✲

✒

✲

✗✻

a a a

✻✻

aa

b b b

b
b

c
c

c

c

e

e g

f

e

f

g

g

h h

h

h

hf

✿

e

H ′

also remove some strings iñK but not inK and keepK̃ controllable. Clearly, such a process of

keepingK most possibly invariable is significative and necessary, and it can be accomplished

by seeking a Pareto optimal realization as follows.

Keep the previous notation of the last section. By an easy calculation, we get that the supremal

elementMs of M = {M : M ⊆ K\K̃ andM↓ ⊆ K ∪ K̃} is {abacfha, abacfhab, abacfhac},

and thusK̃s = K̃ ∪Ms. Further, we have that

N = {N : K̃s ∩K ⊆ N ⊆ K̃s, N = N, andN is a realization ofK}

= {K̃s\{abace, abaceh, abaceha, abacehab, abacehac},

K̃s\{abaceha, abacehab, abacehac}, K̃s\{abacehab}, K̃s}.

Observe thatN has one minimal element:̃Ks\{abace, abaceh, abaceha, abacehab, abacehac} ,
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which gives rise to a Pareto optimal realization ofK. It is worth noting that Baire metric plays

a role here: althoughf is similar toe, f is not allowed to be replaced bye if the machine first

breaks; in other words, any realization ofK cannot contain the stringace.

VI. CONCLUSION AND DISCUSSION

In this paper, we have introduced a similarity-based supervisory control methodology for

DES. By tolerating some similar behavior, we can realize some desired behavior which is

uncontrollable in traditional SCT. A generalized notion ofcontrollability, calledλ-controllability,

has been proposed. We have elaborated on some properties ofλ-controllable languages and their

realizations.

There are some limits and directions in which the present work can be extended. Note that

the algorithm forB(K, λ) developed in Section III only works for finite languages although all

the remainder results have been established for any languages. It is desirable to find a more

general algorithm. Metrics chosen here including Baire metric and Hausdorff metric pay more

attention to the events occurring antecedently. The distance between strings or languages that

is given by such metrics may not be meaningful in certain practical systems, and the selection

of these metrics is generally dependent on the particular problem considered. This means that

perhaps supervisory control problems based on some other metrics or similarity measure (for

example, Hamming distance in Information Theory) need to beconsidered. In addition, some

other issues in standard SCT such as observability [12] and nonblocking [16] remain yet to be

addressed in our framework.
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