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Generalized Performance of Concatenated
Quantum Codes
— a dynamical systems approach

Jesse Fern, Julia Kempe, Slobodan N. Simi€¢, Shankar Sastry

Abstract—We apply a dynamical systems approach to con- the family of CSS-codes, which is the encoding predomiyantl
catenation of quantum error correcting codes, extending ad proposed for fault-tolerant quantum computing. We sinyplif
generalizing the results of Rahn et al. [1] to both diagonal ad our bounds in the case of CSS codes and analyzfhe 3]]

non-diagonal channels. Our point of view is global: insteadof L .
focusing on particular types of noise channels, we study the code, the smallest member of the CSS family, in great detail.

geometry of the coding map as a discrete-time dynamical syemn a) Structure of the paperiVe first introduce the dynam-
on the entire space of noise channels. ical systems approach in Sectibh Il and establish the motati
In the case of diagonal channels, we show that any code with 3nq some basics. In Sectid@l Il we extend this approach

distance at least three corrects (in the infinite concatenatn limit) : . : . -
an open set of errors. For Calderbank-Shor-Steane (CSS) ced, to diagonal channels, including an analysis of regions of

we give a more precise characterization of that set. We showow ~CONVErgence. Sectidn]V deals with faulty gates. In _Se_(mbn
to incorporate noise in the gates, thus completing the frameork. ~ we establish several results and examples for non-diagiomal
We derive some general bounds for noise channels, which alls general) noise channels and in Secfioh VI, we discuss a way to

us to analyze several codes in detail. improve channels. Our approach allows to drastically reduc
Index Terms— Quantum error correction, quantum channels, the number of parameters, lending Quantum error correcting
quantum fault tolerance codes to an elegant analysis. This however comes at some

price, and in Sectiop Ml we outline some of the shortcomings

| INTRODUCTION of this approach, before concluding with some open question

In this paper we analyze quantum codes in essence, ab-
stracting their details as codes and extracting their fault Il. NOTATION AND FRAMEWORK
tolerance properties using a dynamical systems approdih. T

framework has been initiated by Rahn et al. [1]. They ShO}/(\é 'T‘e th‘:ﬁesﬁ]cat{'lr(])r:‘e\éveltsf(:‘:(r)nmuI?;_T thﬁcﬁﬁ"g :;ag:vgg:; ?tg?j
how to incorporate diagonal noise on the qubit intee#fective f V'th i : ¢ u tat » Wh t lé by thei u i
channelon thelogical qubits. or details. Quantum states are represented by their gensi

We broaden this viewpoint and extend their approach in Ser\r)_altrlces.

eral ways. We look at the effective channel from a dynamical TE@e error erectlgg proggss gf OES'S:]S of th_ree p&;ﬂfl::jd-
systems point of view, using tools and methods from this fiel"d ,tn0|seh ' a; eclo INg7. talf' pgrt |s_tmo f? af
In particular we characterize the region of correctablersrr aqguantum channghamely, a map taking density matrices fo

using tools from the analysis of fixed points and show how H)ensny matrlges. Qudantum lchalnnels are rehquwed th hl|)er]£|nea
incorporate perturbations of the coding map. trace-preserving, and completely positive, hence of thefo

Our second chain of results extends the results of [1] to the .
realistic model of faulty gates and general channels. Rahh e P Z A-ij;’ with Z A;A-j =L (@
only analyzed the depolarizing channel on the physicaltgubi ! ’
as the single source of noise. We show that incorporatimghereAj are linear operators anflis the identity (cf. [2]).

noisy gates gives rise togerturbedeffective channel. We also |n addition, we will assume that the channels are time-
analyze general noise on the qubits and give several bouistfependent in order to simplify the study of their con-

for the convergence of non-diagonal channels to diagong&rgence. In the subsequent sections, we will often denote
channels. Our results are supported by several examplesdaantum channels by.
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describes the effective dynamics of the encoded informatia. Its stabilizerS is an abelian subgroup o#,, with n — k
resulting from the physical dynamics of” and is called the generatorsy;. The 2¥ dimensional codespace is defined as
effective channel

We consider noise models’ on n qubits consisting of Cs = {[¢) € (C?)®" so thatg|s) = [¢) for all g € S}.

uncorrelated noise? () on each single physical qubit, so o )
The subset of#,, that commutes withS is the centralizer,

and it includes encoded operations we can perform on the
N = Ve. orh, codespace. We measure each generatoand lets; = 0 if
we project into thet1 eigenspace, and; = 1 if we project
into the —1 eigenspace. We then have an error syndrgnee
F3~% and we correct with a recovery operai@g € 2.

It was shown in [1] that ifC is a stabilizer code, then

n times

Given ann qubit quantum error correcting cod€ with
encoding operatiors’ and decoding operatioy, the map
taking the single qubit noisey (V) to the effective channel

g, ¢ takes diagonal channels to diagonal channels. In fact, if
OC .y L g0 (W(l))®n 0& 2 Si---,5m are the generators @, then
is called thecoding mapof C. Oz, 2] = [OX (2,9, 2), Q7 (2, 2), Q% (2,9, 2)] ,

The density matrix of one qubit can be expanded in the
standard Pauli basis? = {I, X,Y, Z} for density matrices Where
and represented as a four-dimensional real vector. A noise

channel.# () can then be represented ad a 4 matrix %z, y, 2 ka 20X (Sk0) gy (Sk0) ywz (SkT)

1 0 0 0
NX] NXX NXY NXZ
Ny] NYX NYY NYZ

N, N, N, N,
21 7x 7y 7z andn(o,0’) = 1, if 00’ = +0'0, foro,0’ € {I,X,Y, Z}.
Zeroes in the first row are due to trace preservation. Fpere, w, denotes thes-weight, & is the encodedr, and

) 3) fro = zj:n(Sk,Rj)n(Rjﬁ)’ (6)

an arbitraryn qubit codeC, the entries of the matri% = the R; denote recovery operators corresponding to the error
Q° (M) can be calculated to be syndromes. For later purposes, we extenés the natural
homomorphism to the negative of the Pauli matrices by
Door = ZZ Car HNW @) n(=0,0") =n(o,~0") = —n(0,0") = n(~0,~0").
Therefore, the components 6 [z, y, z] are polynomials
whereu = (11, 7%) = (1,...,v,) runover®®n and Of degreen in z,y,z. Observe, however, that in genefal

, 39 are the coefficients in the expansmns for the encoduh?la map from a higher dimensional space of non-diagonal
and decoding operations relative #8%". See [1] for details. channels to itself. Non-diagonal channels of particuléeriest

If the matrix [3) is diagonal,# () is called adiagonal !0 Us areunital channelsa channel’ is unital if 7 (I)=1.
channel In that case, we writee = Nxx, ¥y = Nyy, and An important result from [1] is that concatenation of codes
2 = Ny and denote the channel iy, , z]. It was shown in translates into composition of coding maps. In other woifds,
[3] that complete positivity of such channels implies thze t C1 andC> are codes and’; o C> denotes their concatenation,

point (x,y, z) must be in the tetrahedrah defined by then
—r+y+z<1 Q¢ = Q% 002,
r—y+z<1 ) Given a noise model¥ () and codeC, we are interested in
r+y—2<1 what this noise looks like under repeated concatenatioheof t
—r—y—2<1. codeC with itself. Then the question is, does
It is easily checked that aingle-bit Pauli channelwith QCOk(JV(l)) I, ask - co?

exclusive probabilitied < px,py,pz <1,
If this is the case( corrects the error given by (1.
Rahn et al. [1] focus mostly on the symmetric depolarizing
has the following representation in the above notation: channel given in the above notation ay %, e~ ¢~ and
derive threshold estimates for various codes. We take aaglob
(1 =20y +p2),1=20px +p2),1 = 2(px +py)] point of view, where instead of looking at noise channelsipoi
In fact, any diagonal channel can be realized as a single-byt point, we consider the behavior of the coding map as a
Pauli channel, so the parametrizations/fvia [z,y, z] and discrete-time dynamical system and study the setliohoise
via (px,py,pz) are equivalent. channels attracted to the identity channel under iteraifdhe
Then dimensional Pauli group is?,, = {£1,+i} ® 22®". coding map. This approach enables us to use methods from
Suppose we have a stabilizer code that encddegsbits into the theory of dynamical systems.

p—=(1—px —py —pz)p+pxXpX +pyYpY +pzZpZ,



IIl. OPEN SET OF CORRECTABLE DIAGONAL ERRORS

asn — oo. ]

We will first focus on diagonal noise channels, i.e., thosE"e largest such séf is called thebasin of attractionof the
given by a diagonal matrix, as discussed in the previofi¥ed pointp, denoted byZ(p). Let B(z,r) denote theopen
section. The standing assumption of this section is thezefd@ll of radiusr centered at:. _
that all noise channels are diagonal. We saw that we carl-émma 3.2:Assumef is C?, the hypotheses of the previ-

characterize the asymptotic properties of the coding sehe
involving the concatenation of a fixed codé with itself by
studying the long-term behavior of the dynamical system

0% A = A

We now review some necessary basics from the theory

dynamical systems. Good introductory references are [d] an

[5].

A. Dynamical systems preliminaries

A (discrete-time)dynamical systenis a mapf : M —
M, where M is a space with a certain additional structur
(topological, metric, differentiable, etc.). In our cagesuffices
to assume thad/ is some Euclidean spa®"® or a subset of
it, and thatf is a differentiable map. We denote Byf(p) the
derivative of f at a pointp and think of it as a linear operator
on R*. We will denote by||Df(p)|| the norm of Df(p) as
such on operator; that is,

IDf(p)ll = max{[[Df(p)ovl : [[o] <1}.

(The norm onR* is arbitrary but fixed.) IfDf(p) depends
differentiably onp, we define the second derivative ¢fin
the usual way aP?f = D(Df); recall thatD?f(p) can be
thought of a bilinear maiR* x R* — R* and|D2f(p)|| then
denotes its norm. Continuing recursively, we say tfias of
classC" (or simply C") if D" f(p) exists and is a continuous
function of p.

Forp € M, the set{f"(p) : n=10,1,2,...}, where f™* =
fo---of (ntimes), is called theorbit or trajectory of f.

A fundamental question in the theory of dynamical systems

is: what is the long term behavior of trajectorizsThat is,
where doesf”(p) end up eventually, a8 — co? The set of
accumulation points of the orbit gf is called thew-limit set
of p. An example of such a set iffiaed pointof f, i.e., a point
p such thatf(p) = p. A fixed pointp is locally attractingif
there exists a neighborhodd of p in M such that for every
x eV, f*(x) — p, asn — oo. A basic criterion for a fixed
point to be locally attracting is the following.

Lemma 3.1:Supposel/ C R* is open,f : U — RF is a
C' map,p € U is a fixed point off, and\o = [|Df(p)|| < 1.
Thenyp is locally attracting.

Proof: Let \g < A < 1. SinceD f(z) depends continu-
ously onz and ||Df(p)| < 1, there exists a neighborhodd
of p in U such that|Df(z)|| < A, for all x € V. Then, by
the Mean Value Theorem,

[f(z) = f@)I < Az —pll,
for all x € V. Therefore,
If"(x) —pll = lf"(=) = f"®I
<Az —pll
— 0,

Qs lemma are satisfied, afiiD?f(z)|| < K, for all z € U.
ThenB(p, (1 — Xo)/K)NU C B(p).

Proof: The proof goes along similar lines as the previous
one. Let\g < A < 1 be arbitrary and) < r < (A — X))/ K.
For an arbitrary point in the closed balB[p,r]NU, we have

of |Df(2)| IDf(z) — Df(p)| + |Df(@)|
Kr + /\0
Av

IN A CIA

that is, f is a contraction orB[z, v] N U. Furthermore, for all
x € Blp,r]NU,

€ 1f(z) - pl

1f () = f D)l
Allz = p

<
<,

which implies thatB[p, r]NU is f-invariant. Therefore, under
iteration of f, every point inB[p,r] N U converges t®, so
Blp, 7] NU C %(p). Taking the union over alk € (X, 1)
proves the claim. ]
Now take f = Q¢ and observe thafl, 1,1] is always an
isolated fixed point of2¢, though not necessarily attracting.
For instance|1, 1, 1] is a saddle for the coding map®! of
the bit-flip code. However, it”' is the Shor or five-bit code,
thenDQY[1,1,1] = 0, so[1,1,1] is locally attracting. The
following result shows that this is not a coincidence.

Proposition 3.3:Under the assumptions above, (f is a
guantum error correcting code of distanees, then

DQC[1,1,1] = 0.
Proof: It suffices to show thaDQ® sends three linearly
independent vectors to zero.
Since the distance of the code is at least tht@esorrects
all errors of weight one. In particular, it corrects all dizpit
Pauli channel errors

p— (L—¢)p+eopo,

for o € {X,Y,Z} and0 < ¢ < 1. Such errors correspond
to noise channel§l, 1 — 2¢,1 — 2¢], [1 — 2¢,1,1 — 2¢], and
[1—2¢,1-2¢,1],foro = X, Y, Z, respectively. Let us consider
o = X. To say thatC' correctsX-errors means that

Q°[1,1 = 26,1 —2¢] = [1,1 — O(?),1 — O(?)).

This implies that the directional derivative

d
DQC[1,1,1Jux = —| QY([1,1,1] + evx) =0,
de|._o
where vx = (0,—1,—1)T. Similarly, we can show that

DQC[1,1,1jvy = DQCY[1,1,1Jvzy = 0, where vy
(-1,0,—-1)" andvy = (-1,—1,0)T. Sincevx,vy,vz are
linearly independent, it follows thddQ“[1,1,1] = 0. [ |
Corollary 3.4: For every code” of distance at least three,
[1,1,1] is an attracting fixed point of the coding m&y~ :



A — A. If B¢ denotes its basin of attraction afi?Q“|| < This error model is rather generic. It has the additional
K on A, then advantage that noise from sequential gateadditive if we

1 combine two faulty operations as in E@l (8), we obtain
B([l,l,l],E) NAC %Be. (7) -

Proof: Observe thaf2¢ can be extended to the whole GeoGrip — Go ((1 —e1)GipGL + NI)
spaceR?, has[1, 1, 1] as a fixed point, and, by Propositibnl3.3, = (1—e)(1 —£1)GaGrpGiGH
Ao = DQYI1,1,1] = 0. Therefore][1, 1, 1] is locally attracting £1 &9 e
for Q¢ as a mafR® — R3. By Lemma3R,B([1,1,1],1/K) + A-e)pl+ 5l
is contained in the basin of attraction fif, 1, 1], again as a ~ (1—e1 — £2)GaGrp(GaGh)
fixed point of Q¢ : R? — R3. However, we know thai\ is 1+ o
an invariant setfor Q°, i.e., Q“(A) c A, and it contains + N b 9)

[1,1,1]. Therefore, points inB([1,1,1],1/K) N A are both _
attracted td1, 1, 1] and stay in A under iteration of2¢. This i-e. a faulty process witlk = ¢, + ¢;. As we have seen,
proves [T). m the effective dynamics of one level of concatenation is §imp

Proposition 3.5: Suppos&” is a CSS code. It will be shown €ncoding, noise and decoding, i.e.
in Theoren &) that
. G=DoNoE&.
Q [‘Ta Y, Z] = [f(iC), 9(1'7 Y, 2), f(z)]a

for some polynomials’, g. Let a be the largest fixed point of Let us also assume here that the noise on the qubits is unital,

£in (0,1). Then i.e. N(I) = I. We now show that faulty gates in this model
e have the same effect as noise; hence we can effectively treat
PBo={lr,y,z] €Az >a, z>a}. noise from faulty gates and other types of noise on the qubits

Proof: It follows from Proposition[313 thatl is an in the same way.

attracting fixed point off. Let («, 3) be its basin of attraction. Tpe encoding operation can be written concisely¥ §s) =
Itis well known that its boundarye, £} is f-invariant. Since p,pt where B = 0)(0| 4 |1)(1]| (or, for codes that encode
a € [a,.l) and [a, 1) is f-invariant, _it follows thata is @ more than one qubitB = >, |i)(i]). This encoding is
fixed point of f. Therefore = a. This means that for every performed by applying a sequence of gates, possibly faulty,
€ (a,1), f*(z) = 1, ask — oo. as in Eq. [B). The operation corresponding B can be
Now suppos€z,y,z] € A, x > a,z > a. Then implemented with unitary gates in a larger space by appgndin
c\k _ sk k some ancillary qubits, for instance &5; : [i)|0) — |4). If
() [, 21 = 17 (@), g, SR errors occur according to EQl(8), the res|ul>t|in>g 0pe|ra>ti<i1h w
We know thatf*(z), f*(2) — 1. Lety. be an accumulation peg,, : p — (1—ep)UppUf, + ] = (1—ep)E(p) + 1,
point of the sequencéyy). kSince[l,y*, 1] € A, it follows \where& denotes the error-free encoding ang is the noise
thaty, = 1. Therefore,(Q°)" [z,y,2] — [1,1,1], ask — oo, accumulated from gates during encoding. In an analogous way
which implies{[z,y,z] € A:z >a, z > a} C Bc. it can be seen that a decoding nfapimplemented with faulty
To show the opposite inclusion, assume the contrary, i.gates, can be written @3, : p — (1—ep)D(p)+ 21, where
that there exists a point = [z,y,2] € #c such thatp ¢ we have used thab : -1 — 11. Putting this together under
{[r,y,2] € A:x>a, 2> a}. Thenz < aorz <a. Inthe the simplifying assumption that/(7) = I (unital channels),
former case,f*(z) does not converge to 1, and in the latterand using additivity of error from faulty gates, we get
f¥(z) 4 1, contrary to our assumption thatis in the basin -
of attraction of[1, 1, 1]. [ | p— (1—¢e)G(p) + 5[,

IV. FAULTY GATES wherees = e+ andg is the effective channel with perfect
We want to extend the analysis in [1] to include faulty gatgates. In other words, faulty gates only contract the ieztat
operations both in the error correction and in the companatimap by(1 —¢). As a result, the coding ma@® (see Eq.[[R))
circuits. Gate errors are a common form of noise in quantucthanges tcﬂ?, the coding map with faulty gates, as
information processing. We show how to incorporate faulty
gates into the current framework and how they change tkﬁ}g N — (1—e)DoNo& + 511 =(1-e)Qc+ 611'
effective channel and the coding map. Note that fault toleea 2

for our noise model has been shown, but that there is SOmge entries of the matrig for the coding map change as
dispute about the validity of that model and whether quantum

fault-tolerance is possible [6]. Gl , = (1 —¢€)Goor + s 18011 (10)
oo go 2 g [ea )
A. A simple noise model where we have used the fact that the coding map whose only
Our first approach is to start with a very simple error modelon-zero entry i€71, represents a mapping pfto the identity
for faulty unitary gatess: matrix. In other words, the incorporation of faulty gatesin

; 1 our analysis results in an affine mapping of the coding map:
G:p— (1-¢)GpG" + vl (8) @ is contracted by1 — ¢) and the elements;; is added.



B. More general noise Therefore, by the Brouwer fixed point theoregnhas a fixed

It is not difficult to extend this analysis to more generd?®int, sayg, in Blp,r]. Since
noise in the gates and general noise on the qubits. Let us lg—pl = |glq) —p|
assume that instead of the restricted noise model of [Hq. (8)

. . . . . < — —
we are dealing with generic noise of rateWe can write < |9(CI3\| f(ql)l +1f(q) — pl
< e+ Ag—pl
G:p— (1—¢)GpGT +eNg(p),
r ( )Gp c(p) we obtain|qg — p| < e/(1 = \).
where N¢ is some general noise operation. To show thaly is an attracting fixed point fag, let us show

The analysis of the previous SectionIV-A goes through lingat | Dg(q)|| < 1. Observe first thaliD f(q)|| < Mr + A <
by line. The noise process is additive (wifiN in Eq. (3) 1—¢. Therefore||Dg(q)|| < [|Dg(q) —Df(q)||+|Df(q)|| <

replaced bye, Gy Ng, (p)GL + £2Ng, (p)). The encoding and 1. [}
decoding operations can then be written as It is clear from [ID) that the coding mafp? of a code with
_ + | EE faulty gates is aC'' small perturbation of the coding may”
€p + p—= (1—ep)UppUp + 1 with perfect gates.
= (1-¢g)€(p) +ceNE(p)
D., p— (1—ep)D(p) +epNp(p), V. ANALYSIS OF CHANNELS

. . , In this section we will give several technical results about
whereNp andNp are the noise resulting from encoding resgynannel maps, which we will subsequently use to analyze vari
decoding. Concatenating yields ous diagonal and non-diagonal channels and to give examples

p— (1—¢)G(p) +eNpg In particular we will study in detail how non-diagonal elem

of a noise channel affect its convergence and threshold.
with ¢ = e + ep and the cumulative noise can be written to

first order as A. The two-point theorem
eNpg =g DN (Ng(p))) + epNp(N(E(p)) We look at bounds for a general channel, resulting in Thm.

4 .

Th di ith faul is th i 'I
io bgf:riv-v coding map with faulty gates is then very similar ) o4 5 1:For any non-identity Pauli matrix,

N2y + N2y + N2, < (1= |Nyg|)? (11)
QF : N — (1—¢)DoNoE+eN =(1-¢)2 Nrw. oX oY oZ =
b (1—e)DoNoE+eNpg(p) = (1-¢)Qc+eNpE (NX[:ENXU)2 + (NYIiNYg)2 (12)
In other words, faulty gates introduce a perturbation to the +(Nz1 £ Nzp)2 < 1.

original coding map studied in the previous section. Thay ca
be treated in the same way as noise on the qubits. In fact 4 elements of the channel are real.
see that the occurrence of faulty gates is the same as a proces Proof: .4 preserves hermiticity, and is positive (sends
with increased noise on the gates and perfect gates. Howed@n-negativep to non-negativep) [7]. The first condition
if the noise on gates is small compared to the noise on qubifgplies that the elements are real. Then the adjoint channel
we can treat it as a perturbation to the original coding map. Which has the map#fp = 3>, Al pAy, is also positive. A
will show how to incorporate such perturbations in the asialy Simple calculation shows that a matfix= ¢/ [ +cx X +¢ey Y+
with the following Lemma. Here||h||c: denotes the>! norm ¢z Z is non-negative if and only it; > \/c% +c3 + c7.
of a smooth magh on its domain, that is, the maximum of Letc= /N2y + N2, + N7, and apply
the suprema ofh| and || DA||. _ N (el £ (NyxX + NoyY + N,z 2)),
Lemma 4.1:SupposelV C R™ is an open setf : U — R”
is smooth (at leas€?), f(p) = p and X = |[Df(p)|| < 1. which givesc; = ¢, andc, = c¢Nos + ¢2, so the non-negative
Then for small enough > 0 and every smooth map: U —  condition gives|cN,; & ¢?| < ¢, from which we getc? <
R™, if ||g — fllcr < e, theng has a fixed point such that (1 —[Noz|)?, which gives equatiof11.
IDg(q)|| <1 and|q—p| <e/(1—N). Let byor = NxoNxor + NyoNyor + NzoNzo. NOw let
In other words, if a map has an attracting fixed point = Vb1 + boo £ 2b1,. Then, apply.# to
then any s_ufficienFIy sm_alCl_ perturbation of _it_also has an .; _ (Nx1X +Ny1Y + N1 Z)£(Nxo X+ NyoY +Nyo Z),
attracting fixed point which is close to the original one.
This is a standard fact from the theory of dynamical systemghich givesc; = ¢ — byr = b, andc, = —bs £ boo, SO
for completeness, we supply a proof here. Proof: Let ¢ — brr 4 bio > |=br, £ byo|, Which givesc > by + byo +
M be an upper bound dfD2f| on some relatively compact 2b1ro = ¢, soc < 1, which gives equation12.
neighborhood of p. Since\ < 1, there exists- > 0 such This proof extends naturally to multi-qubit channels.

that f maps the closed baB|[p, r] into itself andBp,r] C V. n
Without loss, we can take so small thatr < (1 — \)/M. Corollary 5.2: Each row of a quantum channet” in the
Assume0 < & < min((1 — A\)r,1 — X — Mr). Then it is Pauli basis has norm at most

not difficult to show that for every € Blp,7], |g(z) — p| < Proof: Since|N,;| < 1, we havel —NZ; > (1-|Ny1|)?,

e+ Ar < r, which means thay takes B[p,r] into itself. and so the result follows from Ed.{11). u



Corollary 5.3: Let A = N%; + N, + NZ; be the non- c) Specific codesWe can now obtain sharper results
unital portion of the channel. Then we have that any othéosr the error threshold of concatenated bit flip and phase flip
column of the channel in the Pauli basis Hasnorm squared codes, extending [1].

N%, + N, +NZ <1-A. The often discussed[[9,1,3]] Shor code has the
Proof: Follows immediately from Eq[{12). B coding map: Q"T[z,y,2] = QPQM[r gy 2] =

Theorem 5.4 (Two-point theoremlf two of Nxx, Nyy, [f3(z),h (z,y,z2), f3(2®)]. We define d[25, 1, 5]] code to be
Nzz arel, then the channel is the identity channel. 025 = QpP/sbfs | and a[[15, 1, 3]] code to beN!® = QP/s bl

Proof: Let oy, 02, 03 be some permutation of the Pauli The [[25,1, 5]] code has critical values af. = 0.916208,
matrices such thal,,,, = N,,,, = 1. From Corollary[5R, andz. = 0.645611. The[[15, 1, 3]] code has critical values of
Ny, o, andN,,,, are the only non-zero elements in their rowse, = 0.794438 and z. = 0.850432. If z = z, the [[15, 1, 3]]
From Corollary[5B, the non-unital part must beand N,,,,,  code performs much better than th®5, 1, 5]], even though it
andN,,,, are the only non-zero elements in their columns. I§ less redundant.
then follows that the channel is diagonal. From the cond#io

on diagonal channels giVen in Em (5), it eaSily follows tiiat C. Convergence of non_diagona| channels

two terms are equal to, the 3¢ term must equal, and so . . . .
) . In this section we will establish some general results for
we have the identity channel. . . -
non-diagonal channels in the case of stabilizer codes [8].
Non-diagonal channels are in general much harder to analyze
B. Example: Generalized Shor codes than their diagonal counterparts, as the parameters span a
In this section we give give a first application of ouglimensional manifold. However, we will show that in certain

formalism and the general bounds we obtained. We stu§ses these channels converge to diagonal channels, and wil
generalized Shor codes, which are bit flip and phase flip codti§cuss when these converge to the identity channel.
concatenated with each other. We will assume a diagonalVe can decompose the single qubit noise operators
channel[a_c,y,;] in what follows. Note that Thnl 5.4 is easy N =L +eM, (13)

to prove in this case; it follows immediately from Efl (5).

b) Bit flip, phase flip: The n qubit bit flip code is a Where L is the diagonal part, and is chosen such that/
classical code om qubits that corrects all bit flip errors onhas no term with absolute value more thgnt contains the
less thanZ qubits and none of the errors on greater tha@ff-diagonal terms. We show thatdfis sufficiently small and
Z qubits; if n is even it also corrects half of the errorgl > 3, then repeated application of the coding map yields
on exactly 2 qubits. The coding map i€/ [z, y, 2] = a diagonal matrix. This will allow to restrict our analysis t

[2™, hn(2,y, ), fn(2)]. To see this note that the code does nétiagonal channels, at least in certain regimes.

correct phase flipsy{ or Z errors), and so if = py +pz, the We wish to analyze the absolute values of the difference that
p-component of the coding map must be a function of onfjie non-diagonal terms make on the channel after we apply
p. Sincex = 1 — 2(py + pz) = 1 — 2p, it follows that the the coding map. Define the difference matrix

x-component of the coding map must be a function of only I =Q%r) - Q°(L)
x. The only such element of th¥ equivalence class gives us '
™ Let us assume that the code is [&m k, d]] stabilizer code [8]

To see that the.-component depends ononly, note that (it encodesk qubits inton qubits, and has distaneg which
the code can correct bit flipsX( or Y errors), sending them to is the minimal weight of an undetected error). Letbe the
I or Z errors, respectively, and sojif = px + py, by similar minimal weight of a non-identity stabilizer element.
reasoning as above we observe thatptheomponent depends Theorem 5.5:The non-diagonal terms of the difference
only onp’ and hence that the-component is a function of matrixI" have absolute value at mast=". The diagonal terms
only z. Now, assume onlyX errors. Thenz = 1 — 2px, and of I' are at mosk,,™ in absolute value. These coefficients
fn(2) =1 —2g(152), whereg(p) is the failure probability as are bounded above by

2
max(cq, cm) < 2N | Dyrgn| <A™, (14)

a function of anX error rate ofp. We can obtairy(p) from
the properties of the classical bit flip code.

Since the functiorh.,(x,y, z) does not affect the: and z Proof: We can rewrite Ea/_lu4) as
components of the channel, from Thi.]5.4, we may ignore it
for the purposes of convergence to the identity channel. Goot = DoN&y, (15)
Some values off,, are where &, is the o column of & and similarly for D. The
Fi(@) = folz) = " (non-zero) entries o&; are the_ stabilizer eIgr_nents, and the
Falz) = falz) = 34 1.3 non-zero elements of, area times the stabilizer elements,
Fo(2) = fola) = L z §x32+ 3.5 whereg is the encoded. We note thats,, is non-zero only
7 8 4 8 if o/ andz are in the same equivalence clasgtfS) modulo
For the phase flip code we get similarpr/[z,y,z] = S, whereS is the stabilizer group, an@'(S) is its centralizer
[fn(x), bl (x,y,2),2"] by exchanging the roles af and z. (see [8] for more detailed definitions).
These codes will have two critical values, and z.. If Now the non-diagonal elements &f depend on the non-

x> . thenz — 1, and similarly forz. zero elements of,, and&,, with o # ¢/, which correspond to



the o ando’ equivalence classes 6f(.5), which differ on at The stabilizer elements i§(X) are used to correct against
leastd qubits. Then from Eq[j4) resp. EQ{15), it follows thatZ errors, and the stabilizer elements §fZ) are used to
the non-diagonal terms involve at leashon-diagonal terms correct againstX errors, and so we can write the set of
of A and are hencé(s%) from Eq. [IB). The difference of recovery operators a®(cx,Z) and R(cz, X), where e,
the diagonal elements corresponds to elements of the saame the components of the syndromes obtained by measuring
é,, which differ on at leastn qubits, sincen is the minimal stabilizer generators frori(A), and eachR(s, A) € As.
weight of different elements in the same equivalence classThe Pauli operators are encoded as
(non-zero elements of the sarg). Hence they ar@(c™).

From Eq. [Ib) it is easy to see that the coefficientand X = X9 ¢ Xg 17)

¢m are bounded above by 7 gen o

Z | Door gmor| < Z Do | Z | Egrigr| < 4™F, Y =iXZ = (—1)%713/@” €Ys.

1" ,G’”l ol

where we used that each coefficient is at mbs absolute 1o gbtain a convenient representation of the decoding ¢pera
Note that in certain cases we have explicit expressions for

> o |%s0|, which can come from calculations with a diag- 1

onal noise channel and can give us tighter boundsoand Rav = W Z R;,

¢m than the generig™—*, to

d) Convergence to the identityBuppose we concatenate

the above coding maptimes. Then the absolute values of thé/here theR; are the recovery operators (see Sek. ). Let

off-diagonal terms are bounded above by wherea, = ¢, € M2 2+ be the the diagonal matrix given by

anda, 1 = cqal. Then, from Thm[Gl5,
Z;;}) g £ g

a; = ¢ € 50(60) ,

[ea

Iye = n(Rav, o) (18)

Wherer is the linear homomorphism defined in SEg. Il Eq.
wheregy = d*\l/g is defined ford > 1. Since these affect thed. In particular note that i commutes with all recovery
diagonal terms by at most,c™, we can bound the correctionoperatorsR;, then ., = 1, and if ¢ anti-commutes with all
for the diagonal terms as of the recovery operators the#t,, = —1. Then, from [1] we
i—2 . , obtain for the decoding matrix
b = cmal’; = cmczzjzo & gmd Tt cmsgl(i)mdhl. J

€0
(16) 92 =E'7. (19)
Now we assume that the non-diagonal terms g@,tevhich
means that < ¢(, and soa; andb; both go monotonically

. ony
to Ohirggnn\'ll':rmeﬂsitlg,v\\z/ti iﬁg? ff;eo;[rt'ﬁ;'if dtgsti?ﬁrﬁéﬁix 2hen Lemma 5.6:The non-zero elements afy must be con-
Cme P % ¢ hd ' tained in Xg, and similarly for Z, although usually not for
so doex® (4 ®™). However, we can get a tighter bound tha@/
this. N o :
Let Ly = [z0, 0, 20] be the diagonal part of the channel!}ln part(ljcularlthlsn;\r?phe; that]\']f’ =X ((1);\70 - ?hthe?%f’_d’d
We definel; = Q°(L;_1) — b;I. We can think of ther, @€PENAS only oMV,r, Nox, Noy, and Noz. Then 1o fin

as a lower bound on the diagonal part of the channel. Thé&fnvergence of th& andZ rows, we can look at these rows

the channel goes tfl, 1, 1], if L, — [1,1,1]. These coding SEParately.
maps aré)’ (L) = Q°(L;_1) — b1, andQS (L) = Q° (L) — Proof: SinceZ; = I, the non identity stabilizer elements
cme™I. The channel converges to identity if must commute with half of the recovery operators. Only the
o c non-zero elements o, don't commute with exactly half
.0y o QYL =1,1,1]. of the recovery operators. This implies that each non-itlent

element ofS(X') commutes with half of the elements Bz =
D. CSS codes on qubit with a generalized noise channel R(cx,7), and similarly forS(Z) and Rx = R(cz, X). If
In this section we tighten our result in the case of CSS cod@slf of either Rx or Rz commute with some element ¢f,
[9], [10], [11]. then half of all of the the recovery operators commute with
Let our code be &n, 1, d]] CSS code. From the constructiorit. Now, pick some non-zero elemeat= X®"sxsz of &x,
of CSS codes from classical codesnust be odd. Its stabilizer wheres; € S(i). If ¢ ¢ Ax thensz # I. Then, if an element
group is generated by — 1 generators, half of which dependr € Ax, it follows that(r,c) = n(r,sz), and so, half of
only on tensor products afs andX's, and the other half are Rx commutes withc. Then,c must commute with half of
the same, except they ha#s replacing theX's. We can write the recovery elements, and so must be zer&in Then the
the stabilizer groupS as the span ofS(X),S(Z)}, where non-zero elements a¥x are in Ax. ]
S(A) € Ag, and Ag is the n-dimensional Pauli Matrices Theorem 5.7:There exists functionsf;(a,b,c¢,d) and
Z, which only depend on tensor products éfand A. fa2(a,b,c,d) such that the following are is true fa¢ =



Qe(pem), Notice that this no longer depends ¢n
B . Lemma 5.10:For CSS codes, we haveax(cq,cp) <
Yxr=  filNxr, NSxx, iy, Nxz) 23(n=k) for ¢, andc,, as defined in Thn_Bl5.

Yxx = fo(Nxx,iNxy, Nxz, Nx1) Proof: We use the bound of Thni_%.5 for the non-
Yxy = i"foliMNxy, Nxz, Nxx, VxI) diagonal terms. In the case of a CSS code, we havd fer X
Yxz = fo(Nxz, Nax,iNxy, Nx1) orA = Zthat2, C Ag, and so the non-zero entries arsﬁgiven
Dor = (Nt N iNoy, Noz) by S(A)A®". Therefore the sum in Eq{l14) has ordyz

21 WAL SZX I T8 entries, giving an overall coefficient @f ("—*), n
Yox = oA Nox,iNgy, Noz, N71) 1) Doubly-even CSS code®oubly even CSS codes are
Gy = 1" foiNgy, N2z, Nzx, Nz1) CSS codes that have weight divisible bjor S(X) andS(2).
Gy = foNgz, Nax,iNgy, Nar). For these codes we can strengthen Thid. 5.9. Define functions

) g1 and g» that are the same as tlfg and f> defined in Thm.
Furthermore these function(a, b, ¢, d) and fa2(a, b, ¢, d) are B2, without the factors of.

symmetric. under permutations bf ¢, andd. Theorem 5.11:A doubly even CSS code takes a
Proof: The permutationX’ — Y — Z — X, sends channel 4 to the identity channel if an only if both
¢1 = S to itself, and sends (Nx1 N x N5z, Nxy])  and [Nz, Nzz2, NVzx, Nzy]
Ex — "G — &y — Ex. converge t0d0, 1, 0, 0] under the map
Then, from lemm&3516, and the fact thét« Z sendsZx « [a,b,c,d] —
_@Z, fl and f2 must exist as stated. [91 (a7 ba C, d)vQQ(bv ¢, da a)792(cv d7 a, b)792(d7 a, b7 C)]
As for the symmetries¥x; depends onZx and &7. By Proof: The stabilizer group is formed by generatas

permutingX, Y, and Z, we preserve the stabilizer elements{s, and generatorg Zg, each with weight divisible by 4.
which are the non-zero elements &f, and so¥x; is fixed Then X and Z together appear a number of times divisible
under permutations aVy x, iNxy, Nxz. ¥xx depends on by 4 in each stabilizer element (and similarly f¢rX,Y},
P, and &. By permutingl, Z, andiY, we preserve the {Y, Z}). Following similar reasoning to that of the proof of
non-zero elements ofy, which areX times the elements of lemmal&.B, we find that and ¢ together appear a divisible
& (see Eq.[(I7)), and s@x x is fixed under permutations of by 4 number of times in each term of; (j = 1,2). Then,
Nxr1, iNxy, and Nxz. The other cases follow similarlym fj(a,b,c,id) = f;(a,b,ic,d), and by definition

Lemma 5.8:Let o # ¢’ be single qubit Pauli matrices and ,
let o be a non-zero element &f,. Thens’ appears tensored 95(a;b,¢,d) = fj(a,b, ¢,id). (20)

an even number of times i’ Thesey; satisfy all the symmetries above and the convergence
Proof: In the case where = I, &, corresponds to the €Y Y X 9
stabilizer group. Sincé is generated by even weight eIementgelmlonS of Thm[S]9 (without the factors o "
1 v vV Y g 2) Example:[[7,1, 3]] CSS code:We use the example of

in Xg and even weight elements iig, in order for it to be
Abelian, it must have the above property. For generale _the [[7,1,3]] code, a doubl_y even QSS code commor_ﬂy used
have&, = 7S, and, usings is o on all qubits, the desired in fault tolerance calculations, to illustrate how to finceth

i ' ' ' functions defined in Thr{Z8.7 and use Thm.]5.9 to analyze

result follows. th fch | der thi d
Theorem 5.9:A CSS code takes a channel/ € convergencep channels under IS.CO e
a) Computation of the coding map: The

to the identity channel if and only if both vectors

. , tabilizer group of this code is generated by the
N1, Nxx, Nxz,iNxy] and [Ngp, Noz, Nox,iNz S
[coriillérgé(tXOfO f‘g’é] U%]er the rrEapZI N2z Nax iyl ements  TITXXXX.IXXITXX, XIXIXIX  and

1117777, 1ZZ11Z7Z,ZIZ1ZIZ. Using the notation from
section\=C, the non-zero elements &f are the stabilizer
[a,b,c,d] — group elements.

[fl(aa b7 (& d)? f2(b7 C, da a)7 f?(ca da a, b)a Z.f?(da a, ba C)]
o - Sr=Y s=(IIIIIIT+IIIXXXX)
In fact, it is sufficient that they converge 1, 1, x, *]. ses

Proof: ObViOUS'y, this is a necessary condition. From (IIIIIII+IXXIIXX)(IIIIIII—‘,—XIXIXIX)

Lemmal&aB, we see that each of the variallles, andd in TITIIIL - [IIZ 277
fi(a,b,¢c,d), and f2(a, b, ¢, d) must appear an even number of +( + )
times in each term. So we may ignore any sign in front of (LI +1ZZITZZ)IIIIII + Z1Z1Z17)
Yxy or Y7y . From the symmetries we have, it then follows

that the above map determines convergence onXttend Z \(/)Ve haV?X :h Xﬁ(XXXXX’ an?] 4 = 2222222
rows. The rest of the theorem follows from Thin.l5.4. ne notices that there afe terms that are some permuta-

Remark (Unital channels): In the case of unital channels, the'on of IITXXXX. Let py(IIIXXXX) denote the sum

above reduces to the condition that béthy x, Ax 7, i xy] over these permutationg;(IIIYYYY) andp,(I11ZZZZ)

and(Ao s N~ iNon] converae toll under the ma give us the corr_esponding permutations é6f/YYYY
[ ANzz, NaxsiMzy] ge a1, +, +] P and 1112222, Similarly, there are42 terms that are

[a,b,c] = [fa(a,b,ic,0), fa(b,ic,a,0),if2(ic, a,b,0)]. —IZZXXYY, up to some permutation, so we define a



functionp,e(—IZZX XYY') to sum over these. Then we canfogether, these give
write 7 3
Gyr =Ny — ~(N%; +TN% (Nyx + Ny
& = I +pip(—I1ZZXXYY) T

4y 2 A2 Ar2
o (IIIXXXX + IIIYYYY + [[12227), +Nxz) = R2Nx 1Ny x Ny N z)-

With &, — &7 we get A similar calculation shows that

7 3
Yxx = ZN)B(X - Z(N;(X + 7N%x(Nx;+ Ny

+N%y) —42NxxNx;NxzN%y)

Ex = XXXXXXX +pyo(—XYYIIZZ)
)
) 7 3
)
)

+pr(XXXIIIT+ XXXZZZ2Z + XXXYYYY
Ey = -YYYYYYY — pio(-YXXZZII
—pr(YYYZZZZ+YYYIIII +YYYXXXX
Eg=ZZZZZ77 + pao(—ZIIYY XX
+pr(ZZZYYYY + ZZZXXXX + ZZZIIII).

—Yxy = ZN§(Y - Z(Ngcy + 7N%y(Nx7 + Nxx

+Nxz) —42Nxy N3 N3 x N%7)
7 3
Yxz = ZN)3(Z - Z(N;(Z +TN% (N7 + Nyy
+N%x) —42NxzN% ;N2 N2 ).
The recovery operators which depend &nare X AT
For the functiong;, which are related tg; by Eq. [20), we
R(ez,X)={IIIIIII,XIITIII,IXIIIII, obtain
XTI INITXIIT ITIIX I IITTIIX T, ITIITIX }.
g(a7 ba c, d) =401 (a7 ba c, d) = 92(a7 ba c, d)
Combining these with the recovery operationgiif x, Z), we T3 37 21 5.4 4 4y, 63 950
S L =-a>—-a"——a>(b d*) + —ab*c*d”.
easily find all64 recovery operators. There atein the form 1T 1 BT+ d)+ g W °
ITII1I1, all 7 permutations of /111X, all 7 permutations ngte that
of IIIIITY, all 7 permutations of/[III1IZ, and all 42

permutations of /771X Z. Eq. [I9) now allows us to find the “xr = g(Nx1,Nxx,Nxy,Nxz)
elements 0@0. 8\/Ve calculateZx from &x. XX XXXXX Yvx = g(Nxx,Nxy, Nxz, Nxr)
commutes withe; recovery elementsX X X 1711 commutes @ B N New Nor N
with 22 recovery elements, anli XX ZZZZ, XX XYYYY, xy = —9(Nxv,Nxz, Nx1, Nxx)
and XYYIIZZ each commute with32 of the recovery Yxz = ¢g(Nxz,Nxr1,Nxx,Nxy).

elements. Then i i
b) Analysis: We consider the convergence of a row of

Ix = Lpi(XXXIIII) —§XXXXXXX the channel matrifa, b, ¢, d] as in Thm[&21l. We have from
* 4 Thm.[52 that

1
= LXXXIIIT - XIIXXII
4 *1 A+ +E+d2<1. (21)

1
1
T I XIXIXT +ZHXIXX If the channel is diagonal (or in general in the case where all

but one parameter, b, c or d are zero) we have a critical point
z. = 0.870807 such thaty(+z.,0,0,0) = £x..
i iXIHIXX —§XXXXXXX. .Let us now analyze the behavior of non-diagonal channels
with small off-diagonal elements.
Theorem 5.121f any of a, b, ¢, or d is within z. of 0, it
must go to0.

Proof: This can be proved in general by a rather lengthy
calculation. To convey the main idea we will here only give
the proof in the case where one of thevariables equal$
(for example, a unital channel). Then our functipibbecomes
g(a,b,c) = Ta®— 3a3(a* + 76" 4 7¢*). We want to show that
that if 0 < |a| < x., we have thata| > |g(a, b, ¢)|. Without
loss of generality, we may assume thas positive. Below the
critical valuez., we havea > a® — 247, so we only need to
see ifa < —g(a, b, ¢), which is maximized by = v/1 — a2,
¢ = 0. A simple calculation shows that there is no solution.
+p7(NxiNxiNxiNxxNxxNxxNxx Then it follows that|a| must monotonically go t@. [ |
+ Nx;Nx;Nx;NxyNxyNxy Nxy From Thm.[EIP and Eq[TP1) we easily see that the vector

a, b, c,d] must converge to a vector with at most one non-
+ NxiNxrNxiNxzNxzNxzNxz) [zero coifﬁcient. Now sguppose thats slightly abovez., and
+Pa2(=Nx1NxzNxz NxxNxx Nxy Nxy)). thatb, ¢, andd have absolute values of at most some small

1
+ FIXXIIX 4 IXTIXIX

A similar calculation shows tha®, = —%ZZZZZZZ +
1p7(ZZ ZII1I), but Zy doesn't follow this pattern.

Now we wish to compute4x;. First we look at how
the 1p7(XXXIIII) component ofZx contributes. From
Ni, = 61, it follows that only elements in; that are
identity on the lastt qubits contribute. This is justIIII11,
so we getpr (1 Nx Nx;Nx N NiiNiNip) = IN3,. For
the —%XXXXXXX component ofZx, everything inéy
contributes. This gives a contribution of

3
- Z(NXINXINXINXINXINXINXI
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We wish to see how much changes the critical convergencéA. CSS codes

value fora. Let ;= #4000, — 1.691859. Then, We now apply the above to CSS codes, and in particular
g(a,b,c,d) > gla,e,c,€) examine Fhe{[?, 1,3]] CSS_code. _ _
63 63 Proposition 6.3: For a given CSS code with a chanriglin
> 9(a,0,0,0) — ZG3€4 ~k(a—xc) + 7 — Ia?’éA- the canonical form of EG22, if at least 2 #f, ;] converge

to [0, 1] under the mada,b] — [fi(a,b,0,0), f2(b,a,0,0)],
where thef; are the functions from Thri. 8.7, then by applying
unitary gates before and after the changglwe can create a
new channel7’ that converges to the identity.

63 Proof: Suppose thdt;, \;] and[t}, \;] converge tdo, 1]

4 under the given map. We define a matrixe SO(4) such
Solving up to first order for our new critical value, we get thato; — o7, 0y = ox, 0; — 0z, and the diagonal matrix
B =[1,+1,1,+1]. By lemmal&lL, these are unitary channels.

Sinceb, ¢, andd becomeO(e?) = O(¢?) up to 4th order ot,
the vector converges {a, 0,0, 0] for k(a—z.)+z.—Z2a%et >
x., Which implies that

k(a —zc) > %a%‘l ~

et +3(a —x.)?) = %e%i.

63 3.4
a= Zf + 2, = 6.147265* + x,. Then,
This implies that the off-diagonal terms affect the thrddho
fourth order (as implied by Thnl._8.5); but here we improved 1 0 0 0
the prefactorc;. Note that Lemm& 510 would have given a . : N 0 0
prefactor of512. T =ATAB= | 0 5 o |
If we choose a larger number instead 6f14726, for 0 0 N\
example 7, then our vector converges tf,0,0,0] from !
lwo + ¢4 ¢, 2, 2] for ¢ as big ag).3 and the rest follows from Thni. 3.9
c IR ] o m
VI. SVD CANONICAL EORM Note that even if7’ was diagonal, the order of thg could

affect whether it converges to the identity channel.

In this section, we follow the method of [3], applying 1) Example: The[[7,1,3]] CSS code:For the [[7,1,3]]
unitary gates before and after our channel to create a N&WHe. the map i%([a b]’) _ [9(a,b), (b, a)] whereg((; b’) _
channel that has fewer parameters. This can be used to improv,.,’ ’ ’a ]’) This con’verges

: . ; (7 —3a* — 21b%). Let [an, by] = h°F([
the region of convergence to the identity channel. t0 [0, 1] if and only if b, — 1.

Lemma 6.1:Let o; be theignaonqdentw elements of the "oy we are interested in whicfu, b] converge to[0, 1].
Pauli groupTgZ. Then ifU = e ° b thenl the unitary channel Using thata® + b2 < 1, a numerical calculation shows that
P U.pU performs a rotation by in the_ 9302 plang. there is always convergence @ 1] for b > b. ~ 0.927334.
Expressmg__the_umtary gates as channels in the Pauli ba‘§ [a,b] = [sinf,cosd], this threshold is exact, and so
creates a bijection fronS?U(z)/(iI). to 19 SO(3). ese converge td0,1] for |6] < 6. = 0.383572. For a

The Singular Value decomposition (SVD) theorem [1 nital channela — 0, and so this converges to, 1] for
states that itd is a real matrix, then there exisis = 0J40; b>zx. =0 87’0807 Ir,1 either of these cases Wejjust need

Sl.ﬁh tlhat thgf ir% ortr:\_og]onal, a“a]zj Itsha d_|ag(inal rr|1atr|x ff:lt most one singular value of the channel to be less than or
with elements\; > 0, which are called the singular values Oequal to the given critical value.

_ I T )
A. ThenD = sgn/(det ’14)32‘4}21’ whereR; € S0(n). We can find an approximate solution for the region of
Theorem 6.2:f .#(!) is a channel on one qubit, then ther@onvergence tdo, 1] by solving b, > z.. Forn = 1, we

exists a channel have an approximation for the region af < fi(b) =
L %b‘* — 22z« As n increases, these approximate regions

3 2103 °
1 0 0 0 rapidly converge to the actual region of convergenci1a.
gt g, _ (=D SR | 0 The singular values of a unitary channel are alwayilote
T =Wy N th 0 £Xx 0 |’ (22) that if the unitary channel from lemnia™.1 is in its original
th 0 0 +Xs non canonical form, it converge to the identity channel for
10| < 6.

where %, € SU(2), and the + designates the sign of
det /D),
Proof: From Eq. [B, define the vectorr — VIl. CONCLUSION AND FURTHER QUESTIONS
(Nx1,Nyr,Nz;7), and letA be the3 x 3 matrix with the A. Drawbacks of our approach
other9 variable elements. From the SVD theorem, we have The approach of integrating the sequence of concatenated
encoding and noise as a rather simple map from channels
1 0 1 0 1 0 1 0 to channels is very powerful. By abstracting away from the
T = (O RT) (t A) (O Rl) = (t’ iD)’ details of the encoding and the noise process, it drasticall

2 reduces the number of parameters, and makes the coding pro-
wheret’ = Rgt = (t},t5,t%). The outer matrices are unitarycess amenable to a dynamical systems type analysis. Hawever
channels by lemmBgg.1. m this approach sometimes comes at a price. By ignoring the
Note that||t|| = ||t’||, so if the channel is unital’ = 0. details of the coding and correction process, we might get
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error thresholds above the actual thresholds if we accdunt. Open questions

for all these details. The following example illustratessth
introducing the notion of a recovery function.

Suppose we have gn, k, d]] stabilizer code. We define a
recovery or error correcting functioR(¢) [13] which maps
the collection of syndromes measured by the codes to so
n qubit Pauli operatorR : %5n—x — £2,. We also define a

We have initiated a dynamical systems approach to quantum
error correction, extending the result of Rahn et al. [1]isTh
only opens the road to further analysis and many questions
remain open. We list a few of them here.

M&n our analysis we have always assumed that an error
correction process is successful, if the associated cadiag

syndrome functiom : &, — F5n—x, Which maps Pauli errors oy es the noise channel to the identity channel. Howev, th
to some syndrome. With these definitions we must have thafy he too stringent a condition. Are there any other dite

B =e(R(p)), for any 5 € &,. Note that we can chosi(p)

up to elements of the stabilisér without any difference for
error correction. Hence our choices fB(3) differ from each
other by elements of the centraliz€(.S) are limited to the

for information retrieval, which are not equivalent to zero
(corrected) error?

Another question relates to the basin of correctable noise f
a code: If our noise channel lies outside the basin of attmact

4% elements of the Centralizer modulo the Stabilizer. They CAR 4 certain code. can we find another code that would “lift”
be written as an element @f(S) times some representative;s noise into the basin of attraction of the old code? More

element ofS. To study the choice of recovery function on th%pecifically
channel, define the matriX? € .#~ 4» to be the diagonal p '

matrix
1

= on-k'l

Then the matrix operato?, defined in Eq.[AB), isT =
>, TR We have¥ = Y, 9% = QY(.¢"), where the quasi-
channel (they don’t have to preserve trace)

gh = gt TRy &,

o

oo’ (U, UI).

is the contribution of a singl&k; on the channel map.
When we measure a syndromaeduring error-correction,

given a cod€’ (with d > 3) and a noise channel
€ A—%Bc, is there another codg’ such thalQC/(p) € Bc?
If the answer is positive, then the concatenation sch@five’
correctsp, ask — oo. It would be interesting to formalise
these ideas.

Yet another question concerns the shape of the region of
correctable noise. Is there a (non-trivial) bound for theesi
or shape of the domain of attraction? Can we characterize
regions of noise that are not correctable by any code? There
is a new and interesting bound on noise from which no circuit
can recover in [14]. However the methods used there are not
dynamical. Is it possible to make sharper statements?

we gain some information about the channel. Let the encoded

state be described by the density matpix= p;7 + px X +
pyY + pzZ. We can re-write our channél = Q¢ (.4 as a
sum over all syndromes

g = > 9"Pxp).

5€F2nfk

If we measure|3) and use the information, we collaps
to a syndromes with probability ps = tr(7%®)p) =
25 @ P, . and the resulting density matrix %%R(B)p.
In particular, if /") = %1;(6) = %Rz(ﬁ) = 0, thenpg =
2%5(5)p1 = %ﬁﬁ , which doesn’t depend op, and the
resultingp-independent channel is thepl?%R(ﬁ). If we throw
this information away we recover the coding nté&gfrom the
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