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1. INTRODUCTION

Over the past decade, a large stream of research
focused on the problem of controlling the motion
of groups of autonomous vehicles communicating
through a wireless network. In particular, rather
than stabilizing each agent around a given tra-
jectory, efforts have been devoted to devising de-
centralized control schemes where the actions of
individual agents give rise to a global coordinated
behavior. This control problem is even more chal-
lenging when each agent exchanges information
just with few neighbors, a feature that is desirable
for coping with the limited transmission power
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of small vehicles. In modern engineering, the in-
terest in control of networked agents has been
fostered by advances in electronics and mechan-
ics that allow to construct small mobile entities
(like robots and air or underwater vehicles) hav-
ing on-board computing capabilities. Moreover,
models of self-coordination play also a key role
in other fields like biology (Flierl et al., 1999),
physics (Vicsek et al., 1995) and computer graph-
ics (Reynolds, 1987).

In the context of networked autonomous vehicles,
the control action has to be designed in order to
achieve various goal. In this paper we focus on
the following three “flocking rules” inspired (but



not identical) to the ones introduced by Reynolds
(1987):

Alignment: all the vehicles asymptotically move
with the same velocity.

Collision avoidance: at each time instant, the
distance between two linked vehicles does not
fall below a safety threshold.

Cohesion: the distance between pairs of linked
vehicles asymptotically converges to a given
setpoint.

In the Part I of this paper (Ferrari-Trecate et
al., 2005) we considered Laplacian control, where
at each time instant the agent input depends lin-
early on the state of its neighbors. Linear control
laws, although appealing for their simplicity do
not guarantee, beside alignment, collision avoid-
ance and cohesion. These goals called for the de-
velopment of nonlinear feedback schemes, where
collision avoidance is usually achieved through
the use of potential functions. A typical example
is provided by the control scheme considered in
(Tanner et al., 2003a) and inspired by the pio-
neering work of Reynolds (1987). Several other
results on potential field based control schemes
are now available in the literature, (Gazi and
Passino, 2003), (Tanner et al., 2003b), (Saber and
Murray, 2003), (Saber, 2003).

In all the aforementioned works, the approach
adopted is to (i) model the communication links
through a graph, (ii) model the collective dynam-
ics as a single nonlinear system, (ii) use graph
theory and classic control tools for proving vari-
ous properties of the resulting system. In particu-
lar, the equations describing the collective motion
combine together the graph structure and the
individual agents dynamics.

The main purpose of this paper is to adopt a
new modeling framework for the analysis of multi-
agent systems. Our approach exploits the for-
malism of Partial difference Equations (PdEs)
over graphs proposed by Bensoussan and Menaldi
(2004) and summarized in Section 2. In order to
account for the temporal agent dynamics, we gen-
eralize the models of (Bensoussan and Menaldi,
2004) to continuous-time PdEs. We argue that
the advantage of using PdE models is threefold:
(i) many mathematical tools for analyzing PdEs
are completely analogous to the ones available
for PDEs, (ii) PdEs provide models where spa-
tial interactions and temporal evolution are kept
separated, (iii) the PdEs framework leads to equa-
tions that may be reminiscent of PDEs arising in
physics and this can be of great help for conjectur-
ing sensible properties of the collective dynamics.

The paper is structured as follows. In Section 2
we introduce the class of potential field based
control laws considered. They are similar to the
ones proposed in (Tanner et al., 2004), the only

difference being that nonzero safety distances be-
tween pairs of communicating agents are allowed.
Section 3 is devoted to a generalization of the
LaSalle invariance principle for investigating con-
vergence of solutions to PdEs on suitable sub-
spaces. This constitutes the main technical tool
used in Sections 4 and 5 for proving properties
of the collective motion. Section 4 focuses on the
analysis of leaderless models with agent dynamics
perturbed by errors. As shown in Lemma 2, the
collective dynamics can be modeled through non-
linear PdEs highlighting that the control action
does not influence the average velocity of the
group. Roughly speaking, this means that align-
ment and collision avoidance can be proved by
considering only the zero-average components of
velocities and errors (see Theorem 3). Finally, in
Section 5, leader-follower models are considered.
We first model the collective motion as a PdE
with boundary conditions and then apply almost
the same rationale adopted in the leaderless case
for showing alignment to the leader velocity and
collision avoidance.

2. THE COLLECTIVE DYNAMICS

We start modeling the communication network
between agents in form of a graph. Let G be an
undirected graph defined by a nonempty set N of
N nodes and a set E ⊂ N×N of edges. In our case,
each node represents an agent and without loss
of generality we assume that N = {1, 2, . . . , N}.
Two nodes x and y are neighbors if (x, y) ∈ E .
This means that the agent x and y share the
information about their position and velocity. We
use the notation x ∼ y for neighboring nodes
and assume that x ∼ x always holds. Two nodes
x and y are connected by a path if there is a
finite sequence x0 = x, x1, . . . , xn = y such that
xi−1 ∼ xi. The graph G is connected when each
pair of nodes (x, y) ∈ G × G is connected by a
path.

Next, we recap basic tools introduced by Bensous-
san and Menaldi (2004) and recalled in Part I for
functions on graphs f : N → R

q. We define partial
derivatives and integrals, respectively as

∂yf(x)
.
= f(y)−f(x) ∀x, y ∈ G ,

∫

G

f
.
=

∑

x∈N

f(x).

In the same manner, second order differential op-
erator can be defined on graphs. We are interested
in the Laplace operator

4f(x)
.
= −

∑

y∼x

∂2
yf(x) = +

∑

y∼x

∂yf(x).

We denote by L2(G|Rq) the Hilbert space of
functions f : G → R

q endowed with the norm
‖f‖2

L2

.
=

∫

G
‖f‖2. Now, we are in a position to

introduce the agent dynamics. Let r(x, t) be the



position of the agent x at time t, where r(·, t) ∈
L2(G|Rq). Similarly, the agent velocity, input and
errors are denoted with v(x, t), u(x, t), e(x, t). By
assuming that each agent obeys to a point-mass
dynamics the collective model can be written as

ṙ(x, t) = v(x, t) (1a)

v̇(x, t) = u(x, t) + βe(x, t), β 6= 0 (1b)

ė(x, t) = −αe(x, t), α > 0 (1c)

equipped with the initial conditions r(·, 0) = r̃ ∈
L2, v(·, 0) = ṽ ∈ L2 and e(·, 0) = ẽ ∈ L2.

The control law u(x, t) we consider has been
inspired by the work of Reynolds (1987) and is
similar to those studied in (Tanner et al., 2003a),
(Tanner et al., 2003b), (Tanner et al., 2004),
(Saber, 2003) and (Saber and Murray, 2003).
It order to introduce it, we need to set a few
notation.

Definition 1. For x ∼ y, the potential
V (x, y, ‖∂yr(x, t)‖2) is a differentiable, nonnega-
tive, radially unbounded function of the squared
distance ‖∂yr(x, t)‖2 such that:

(1) V (x, y, ‖∂yr(x, t)‖2) = V (y, x, ‖∂xr(y, t)‖2)
(2) V (x, y, ‖∂yr(x, t)‖2) → ∞ as ‖∂yr(x, t)‖2 →

r̄2
xy where r̄xy ≥ 0 represent given safety

distances;
(3) for all x, y ∈ N , V (x, y, ·) attains its unique

minimum when ‖∂yr(x, t)‖2 = r̃2
xy, where

r̃xy > r̄xy are given desired distances.

We set

Ṽ (x, {∂yr}y∈G)
.
=

∑

y∼x

V (x, y, ‖∂yr(x, t)‖2) (2)

U(r(·, t))(x)
.
=∇r(x,t)Ṽ (x, {∂yr}y∼x). (3)

The control u(x, t) is then chosen as

u(x, t)
.
= 4v − U(r(·, t)) (4)

and it will be termed “elastic control”. Roughly
speaking, elastic control mimic nonlinear elastic-
ity phenomena among agents, where “large defor-
mations” correspond to pairs of agents too close or
too far away and produce repulsive and attractive
forces, respectively. Intuitively, the divergence at
infinity of V , as ‖∂yr(x, t)‖ → r̄xy, prevents the
distance between neighboring agents from falling
below r̄xy.

We conclude this Section by justifying the er-
ror model (1c). Consider the following uncertain
agent model

ṙ(x, t) = v(x, t) (5a)

v̇(x, t) = εv(x, t) + u(x, t) + ũ(x, t) (5b)

where ε ∈ R\{0} represents an unknown per-
turbation coefficient and ũ(x, t), is an internal
feedback action, i.e. ũ depends on r(x, t) and
v(x, t) only. In Part I, we showed that if u is
the Laplacian control and ũ = 0, alignment to

a nonzero velocity cannot be achieved. Similarly,
in Remark 1 we show that alignment is compro-
mised even when elastic control is adopted and
ũ = 0. Then, analogously to the case of Laplacian
control, an internal feedback must be designed to
compensate for perturbations. As recalled in Part
I and detailed in (Ferrari-Trecate et al., 2004),
model (1) results from (5) for suitable choices of
ũ.

3. LASALLE INVARIANCE PRINCIPLE

Let z(x, t) : N × R
+ 7→ R

q be a function of two
variables and consider the initial value problem

ż(x, t) = F (z(·, t)) (6a)

z(x, 0) = z̃(x) (6b)

where F : L2(G|Rq) 7→ L2(G|Rq) is a continuous
operator. We call the equality (6a) a continuous-
time PdE with initial conditions (6b) and refer to
z(x, t) as the state of the PdE. For the existence
and uniqueness of solutions to (6) we defer the
reader to Part I.

Next, we consider the problem of characterizing
the convergence of solutions to (6). In particular,
we are interested in the effect of perturbations
on the projection of z(x, t) on suitable subspaces.
Consider a subspace V ⊂ L2(G|Rq) and denote
with fV = PVf the projection of f ∈ L2(G|Rq) on
V.

Definition 2. A set Ω ⊂ V is positively V-
invariant with respect to (6a) if z̃V ∈ Ω ⇒
zV(·, t) ∈ Ω, ∀t ≥ 0

Now, we are in a position to introduce the LaSalle
invariance principle on subspaces.

Theorem 1. Assume that there exists a unique
solution to (6), ∀t ≥ 0 and that PVF = FPV .
Let Ω ⊂ V be a positively V-invariant compact
set in L2 and let W : V 7→ R be a continuously
differentiable functional verifying Ẇ (zV(x, t)) ≤
0. Consider the set E = {v ∈ V : Ẇ (v) = 0}.
Then, for every initial condition verifying z̃V ∈ Ω,
the projected solution zV(x, t) approaches E, i.e.

lim
t→∞

inf
p∈E

‖zV(·, t) − p‖L2 = 0.

The proof of Theorem 1 can be found in (Ferrari-
Trecate et al., 2004). The main difference between
Theorem 1 and the standard LaSalle principle is
the additional assumption that the projection on
V and the operator F commute. As detailed in
(Ferrari-Trecate et al., 2004), this allows to give
a meaningful definition of invariance for the limit
set associated to a solution to the PdE. Note also
that the condition PVF = FPV , implies that V is
positively invariant with respect to (6).



4. COORDINATION IN LEADERLESS
MODELS

As in Part I, we introduce now the “Sobolev”
space H1(G|Rq) composed by all functions in
L2(G|Rq) with zero average. We denote by H1

⊥

the orthogonal supplement (with respect to the L2

scalar product) of H1, i.e. the space of constant
functions over the graph G. We recall Theorem 1
of Part I.

Theorem 2. The operator 4 : H1 7→ H1 has
(N − 1)q strictly negative eigenfunctions and the
corresponding eigenvectors form a basis for H1.

The next Lemma, proved in (Ferrari-Trecate et
al., 2004), shows that both 4 and U do not affect
the average velocity of the formation.

Lemma 1. For all r(·, t), v(·, t) ∈ L2, the func-
tions U(r(·, t)) and 4v(·, t) belong to H1.

Note that the previous statement means exactly
that:

∫

G

(4v)T c =

∫

G

U(r(x, t))T c ≡ 0 ∀ c ∈ H1
⊥.

Remark 1. Lemma 1 can be used for showing that
if the velocity dynamics is affected by a persistent
perturbation, as in (5b) for ũ(x, t) = 0, alignment
with nonzero velocity cannot be achieved. In fact,
equation (5b) can be recast into the PdE

v̇ = (ε + 4)v − U(r(·, t)). (7)

Assume, by contradiction, that the alignment con-
dition holds, i.e. there exists v̄ ∈ H1

⊥, v̄ 6= 0,
verifying

0 = (ε + 4)v̄ − U(r(·, t)). (8)

Since 4v̄ = 0, equation (8) reduces to εv̄ =
U(r(·, t)). However, in view of Lemma 1, we have
that U(r(·, t)) ∈ H1 and the last identity can not
hold.

The next aim is to show that u(x, t) guarantees
alignment and collision avoidance. We introduce
the safety set

R
.
=

{

r ∈ L2 : ‖∂yr(x)‖ > r̄xy,∀(x, y) ∈ E
}

. (9)

Collision avoidance is ensured as soon as R is an
invariant set for the formation dynamics.

As in Part I, we consider the decompositions
v = v1 + v̄, e = e1 + ē, with v1 , e1 ∈ H1, and
v̄ , ē ∈ H1

⊥. The collective dynamics (1-4) can be
split according to the following Lemma.

Lemma 2. The dynamics (1-4) are equivalent to

∂y ṙ = ∂yv = ∂yv1 ∀y ∈ G (10a)

v̇ = 4v − U(r(·, t)) + βe (10b)

ė = −αe. (10c)

and also to

Σ1,R :







∂y ṙ = ∂yv1 ∀ y ∈ G

v̇1 = 4v1 − U(r(·, t)) + βe1

ė1 = −αe1

Σ̄R :

{

˙̄v = βē

˙̄e = −αē

(11)

equipped with the initial conditions ∂yr = ∂y r̃,
v1(·, 0) = PH1 ṽ, e1(·, 0) = PH1 ẽ, v̄(0) = PH1

⊥

ṽ

and ē(0) = PH1

⊥

ẽ.

Proof: The dynamics of ∂yr(·, t) is obtained di-
rectly from (1a), realizing that ∂y v̄ ≡ 0 ∀ y ∈ G.
The splitting (11) is a consequence of Lemma 1
(see (Ferrari-Trecate et al., 2004) for a detailed
proof). �

The PdE Σ̄R shows that elastic control does
not influence the average velocity of the group.
Moreover, v̄ converges to a value that depends
only on the errors and initial conditions. Similarly
to the case of Laplacian control (discussed in
Part I), it follows that the problem of checking
alignment is reduced to the problem of checking
the convergence of v1 to zero, as t → +∞.

For proving alignment and collision avoidance we
consider the subspace

VR
.
=

{

[

∂1r
T. . . ∂NrT vT

1 eT
1

]T
∈L2(G|Rq(N+2))

with v1 ∈ H1, e1 ∈ H1
}

. (12)

along with the energy WR : VR 7→ R,

WR({∂ir}
N
i=1, v1, e1) =

1

2

∫

G

Ṽ (x, {∂yr}y∈G)

+
1

2
‖v1‖

2
L2 +

γ

2
‖e1‖

2
L2 (13)

where γ > 0 is a parameter and Ṽ has been
defined in (2). The next Theorem, inspired by the
results of (Tanner et al., 2003a) and (Tanner et al.,
2004), exploits the LaSalle invariance principle,
stated in Theorem 1, on the subspace VR.

Theorem 3. Assume that the initial positions sat-
isfy the collision avoidance condition r(·, 0) ∈ R.
Then,

(1) r(·, t) ∈ R, ∀t ≥ 0 (collision avoidance at all
times).

(2) v1 → 0 as t → ∞ (alignment).

Proof: Let δ = WR

(

{

d̃i

}N

i=1
, PH1 ṽ, PH1 ẽ

)

and

consider the set

Ωδ = {ξ ∈ VR : WR(ξ) ≤ δ}. (14)

Applying exactly the same argument used in the
proof of (Tanner et al., 2004, Theorem 1), one can



show that Ωδ is a compact set. Now, we need to
compute ẆR and prove that ẆR ≤ 0. We exploit
the identity:

1

2

d

dt

∫

G

Ṽ (x, {∂yr}y∈G) =

∫

G

vT U(r(·, t)). (15)

and Lemma 1 to obtain:

ẆR =

∫

G

vT
1 (4v1 + βe1) − αγ

∫

G

‖e1‖
2.

Simple algebraic manipulations show that ẆR ≤ 0
if the parameter γ is chosen big enough (see
(Ferrari-Trecate et al., 2004) for further details).
As a consequence, the set Ωδ is positively V-
invariant. The implication

[

∂1r
T · · · ∂NrT vT

1 eT
1

]T
∈ Ωδ, ∀t ≥ 0

⇒ r(·, t) ∈ R, ∀t ≥ 0,
(16)

can be easily checked by contradiction.

The VR-invariance of Ωδ implies also that v1 is
bounded, ∀t ≥ 0. Then, the solution to the PdE
(10) is uniquely defined, ∀t ≥ 0. Indeed, looking
at (11), it is apparent that only v1 could have a
finite escape time but this cannot happen because
v1 stays bounded.

Now, we apply Theorem 1 to conclude. To this
purpose, we verify that PVR

F = FPVR
. The

operator F corresponding to the PdE (11) is given
by

F (z)
.
=

[

∂1v
T · · · ∂NvT (4v − U + βe)T −αeT

]T

(17)
and the equality PVR

F = FPVR
is an easy con-

sequence of Lemma 2. The set E considered in
Theorem 1 is given by

E =
{

[

∂1r
T · · · ∂NrT vT

1 eT
1

]T
∈ L2(G|Rq(N+2)) :

v1 = 0 and e1 = 0} . (18)

and the fact that that v1 → 0 and e1 → 0, as
t → ∞, follows. �

Theorem 3 agrees with the results of (Tanner et
al., 2004) and (Tanner et al., 2003a) where align-
ment and collision avoidance for elastic control
with zero safety distances have been proved in
absence of errors. Note that elastic control does
not guarantee cohesion, i.e. that

lim
t→∞

‖∂yr(x, t)‖2 = r̃xy, ∀(x, y) ∈ E . (19)

In fact, since the desired distances r̃xy are arbi-
trary, a necessary condition for cohesion is that
there exists a function r ∈ L2 fulfilling the condi-
tions

‖∂yr(x)‖2 = r̃xy, ∀(x, y) ∈ E . (20)

In (Tanner et al., 2004) it has been proved that, in
the errorless case, if the graph has a tree structure,
then equation (20) can be always solved and
it implies cohesion. The study of the solvability
of (20) for general connected graphs, and the

conjecture that (20) is sufficient for achieving
cohesion, are still open issues.

5. COORDINATION IN
LEADER-FOLLOWER MODELS

In this Section we use PdEs for analyzing the
collective motion of the agents in presence of a
leader. By leader, we mean a vehicle that moves
with a prescribed constant velocity, independently
of the motion of all other vehicles. However,
followers connected to the leader use information
on the leader state in order to compute their
control inputs.

Let S be a subgraph of the connected graph G and
let the boundary of S be defined by: ∂S

.
= {y ∈ G\

S : ∃x ∈ S : x ∼ y}. The leader and the
follower are indexed by the nodes of ∂S and S

respectively. Since we assume that the leader is
unique, we have ∂S = {xL}. The closure of S is
given by S̄

.
= S ∪ ∂S = G.

As in (Bensoussan and Menaldi, 2004), define the
space H1

0 (S)
.
= {u ∈ L2(S̄) : u|∂S = 0}, equipped

with the norm

‖f‖2
H1

0

=
∑

x∈N

∑

y∼x

‖∂yf(x)‖2. (21)

The next Theorem, proved in (Bensoussan and
Menaldi, 2004), summarizes the key property of
the Laplacian on H1

0 (S).

Theorem 4. Let G be a connected graph. Then,
the operator 4 : H1

0 (S|Rq) 7→ L2(S̄|Rq) has |S|q
strictly negative eigenvalues where |S| denotes the
number of nodes of S. Moreover, the correspond-
ing eigenfunctions form a basis for H1

0 (S|Rq).

Suppose that the leader xL has a constant velocity
vL. Let, by abuse of notation vL(x) := vL for all
x ∈ S̄. Note that ∆vL = 0, because vL ∈ H1

⊥(S̄).
It turns out that the agents velocity v ∈ L2(S̄)
can be written as

v = v0 + vL, v0 ∈ H1
0 (S) (22)

and alignment (to the leader velocity) corresponds
to the condition v0 → 0 as t → ∞.

When the followers obeys to the elastic control,
the collective dynamics (1) can be directly recast
into the Dirichlet boundary value problem

∂y ṙ = ∂yv0 x ∈ S, y ∈ G (23a)

v̇0 = 4v0 − U(r(·, t)) + βe x ∈ S (23b)

ė = −αe x ∈ S (23c)

v0 = 0 x ∈ ∂S (23d)

with the initial conditions ∂yr(·, 0) = ∂y r̃ ∈ L2,
∀y ∈ G, v0(·, 0) = ṽ0 ∈ L2, e(·, 0) = ẽ ∈ L2. For a



given vL, equations (23) define a PdE with state
z ∈ VLR, where

VLR
.
= {

[

{∂ir
T }1≤i≤N vT

0 eT
]T

∈ L2(G|Rq(N+2)) :

v0 ∈ H1
0 (S)}. (24)

The fact that v0 → 0 as t → ∞ can be proved
by exploiting LaSalle invariance principle. To this
purpose we consider the energy WLR : VLR 7→ R

defined as

WLR

(

{∂ir}
N
i=1 , v0, e0

)

=
1

2

∫

S̄

Ṽ (x, {∂yr}y∈G)

+
1

2
‖v0‖

2
L2(S) +

γ

2
‖e‖2

L2(S).

(25)

Theorem 5. Assume that the initial positions ver-
ify the collision avoidance condition r(·, 0) ∈ R.
Then,

(1) r(·, t) ∈ R, ∀t ≥ 0 (collision avoidance at all
times);

(2) v0 → 0 as t → ∞ (alignment to the leader
velocity).

Proof: The proof is detailed in (Ferrari-Trecate et
al., 2004) and is similar to the one of Theorem 3,
by replacing v1 and e1 with v0 and e0, respectively.

�

6. DISCUSSION AND CONCLUSIONS

In this second part of the paper we exploited the
framework of continuous-time PdEs for analyz-
ing coordination phenomena in multi-agent sys-
tems using potential field based control laws. We
showed that elastic control guarantees collision
avoidance and alignment both in leaderless and
leader-follower models even when the agent dy-
namics is perturbed by exponentially decreasing
errors.

Generally speaking, we believe that PdEs pro-
vide a useful mathematical framework even when
dealing with (i) more complex agent models ac-
counting for the effects of various perturbations
(e.g. stochastic effect of wind on the motion
of aerial vehicles or communication delays) (ii)
more complex control laws guaranteeing also ob-
stacle avoidance (Saber and Murray, 2003) (iii)
time-varying communication links (Tanner et al.,
2003b), (Jadbabaie et al., 2003).

Moreover, the profound similarity between PdEs
and PDEs describing physical phenomena can be
inspiring for devising new decentralized control
schemes. As an example, linear and nonlinear
elasticity models might be inspiring for designing
distributed control laws regulating geometric fea-
tures of the formation.

7. REFERENCES

Bensoussan, A. and J.-L. Menaldi (2004). Differ-
ence equations on weighted graphs. Journal
of Convex Analysis. To appear.

Ferrari-Trecate, G., A. Buffa and M. Gati
(2004). Analysis of coordination in multi-
ple agents formations through Partial dif-
ference Equations. Technical Report 5-PV.
IMATI-CNR. http://www-rocq.inria.fr/

who/Giancarlo.Ferrari-Trecate/

publications.html.
Ferrari-Trecate, G., A. Buffa and M. Gati (2005).

Analysis of coordination in multi-agent sys-
tems through Partial difference Equations.
Part I: The Laplacian control. In: Proc. 16th

IFAC World Congress on Automatic Control.
Prague, Czech Republic.
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