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Complexity of Control on Finite Automata

Jean-Charles Delvenne and Vincent D. Blondel

Abstract—We consider control questions for finite automata
viewed as input/output systems. In particular, we find estimates of
the minimal number of states of an automaton able to control a
given automaton. We prove that, on average, feedback closed-loop
control automata do not have fewer states than open-loop control
automata when the control objective is to steer the controlled
automaton to a target state. We compare our approach to other
ways of formalizing of formalizing analogous control objectives.

Index Terms—Complexity, feedback, finite automata, open loop,
random instance.

I. INTRODUCTION

N CONTROL theory, feedback is used to obtain a desired

behavior from a system. A variety of arguments have been
developed to explain why feedback is useful. Most arguments
rely on the notions of uncertainty and lack of information: feed-
back is particularly useful when the system we want to control
is not perfectly known, or when the signals between the system
and its environment suffer from noise. In this paper, we study an-
other possible interest of feedback, namely, that feedback may
result in a reduction of the controller size or complexity.

We assume that the system we wish to control is perfectly
known, and that we would like to steer it from a given initial
state to a target state in the simplest possible way. Does the avail-
ability of feedback lead to smaller, less complex controllers?
And how can complexity be measured?

The following motivating example is adapted from an ex-
ample appearing in Egerstedt and Brockett [1]. Imagine that
one must guide a driver from one particular crossroad to another
crossroad in a city. One possible sequence of instructions may
be: Turn right onto Regent St, Turn left onto Oxford St, Turn
right after 3.3 km.

Another possible description would be to enumerate what
direction to follow at every crossroad encountered: Straight,
Straight, Right, Straight, Straight, Left, Straight, Straight,
Straight, Straight, Straight, Right.

What is the difference between these two descriptions of
the same path? The first description needs observations on the
environment to be effective: street names, milestones. On the
other hand, the second description needs more (but simpler)
instructions.
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We may see a city as a graph whose vertices are crossroads
and edges are streets. We start from an initial vertex and at every
step we follow the edge whose input label corresponds to the
given input, and we read the output label attached to the edge.
In the above example, the edge input labels are Straight, Left
or Right, while the output label could for instance be the names
of the streets. Such a graph is a particular example of an (input/
output) automaton. An (input/output) automaton is a discrete-
time system with a finite state space and finite input and output
alphabets. At every time step an input letter is read, the state
is changed accordingly, and an output letter is produced. These
automata may be viewed as approximations of continuous state
space systems, where space, inputs and outputs are quantized
by finitely many values.

In the context of this paper, we will consider the objective of
driving an automaton from an initial to a target state, and the
complexity of an automaton will be identified with its number
of states. An automaton can be controlled by another automaton,
either in open-loop or in feedback. In order to steer an automaton
from an initial to a target state, feedback control automata can
in some cases be much less complex than open-loop control
automata. In the main result of this paper, we prove that, even
though this may be the case for particular automata, it is not true
on average. More precisely, we prove in our main result that the
average number of states needed to drive an n-state automaton
from one state to another is

* in the order of Inn for an open-loop control automaton;

* between the order of Inn/InInn and the order of Inn for

a feedback control automaton.

Thus we see that although it is not proved that open-loop
and feedback have the same order of complexity, little room is
left for improvement. Measuring the output is of little use on
a system with a random structure. However it is easy to find
examples with particular structures on which feedback leads to
controllers of very low complexity. We suggest that it could also
be the case for classes of automata, such as quantized linear sys-
tems for example.

Our results are in contrast with those presented by Egerstedt
and Brockett [1], who also compare the complexity of open-loop
versus feedback controllers, and reach the opposite conclusion.
The reason for these apparently contradictory results is that the
model used in [1] is very different from ours: it uses a powerful
variant of automata as controllers, while we consider the sim-
plest kind of finite automata. Moreover, their results hold under
some assumptions on the structure of the automaton to be con-
trolled, while we study random, unstructured automata.

More specifically, the results presented in [1] apply to a so-
phisticated variant of automata called free-running feedback au-
tomata. Essentially, these are automata that do not read an input
letter at every time step, and for which an input letter contains
a complete description of the feedback law to be applied to the
system automaton. Thus the input alphabet may be quite large.
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The complexity of control is the length of the input word re-
alizing the objective, multiplied by the logarithm of the input
alphabet cardinality. Then, for such devices, with hypotheses
on the structure of the system automaton, a strategy based on a
mixture of open-loop and feedback is proved to be less complex
than pure open-loop.

The work presented here is also in the spirit of [2]-[4] (and
many others) where systems have a continuous state space, but
discrete time, discrete inputs and discrete outputs. Those articles
study the amount of information needed to control the system;
their motivation is typically remote control, where the informa-
tion has to travel across a communication channel with finite ca-
pacity. We pursue similar goals but with quite different methods.

Before we can control a system, we must sometimes iden-
tify it. In 1956, Moore [5] proposed algorithms to identify a
black-box automaton, on which we can test inputs and observe
the corresponding outputs. Then Trakhtenbrot, Barzdin and Ko-
rshunov developed a probabilistic point of view and showed that
automata are much easier to identify on average than in the worst
case. They also designed efficient algorithms able to identify
“most” automata; see [6]. We follow a similar framework, but
explore one step beyond: supposing that the automaton is cor-
rectly identified, how can we control it in the least complex way?

A formalism of control on finite automata has been initiated
in the *80s by Ramadge and Wonham [7]-[9], under the name
of supervisory control of discrete event systems. Although our
formalism does not fit into theirs, we briefly describe it for the
sake of comparison.

The automaton to be controlled, called the plant, is ruled by
a partial transition function. Every transition is labeled by one
symbol from an alphabet .. This symbol can be seen as both the
input and the output symbol of the transition (while we allow
two different symbols for input and output in our model). This
automaton is viewed as generating a language, which is the set
of all sequences of symbols output by all possible sequences
of transitions from the initial state. This language is non-trivial
because the transition function is not defined everywhere.

The controller, called supervisor, takes as input a symbol of
the alphabet X (output by the last transition of the plant), then
undergoes a partially defined transition, and outputs an enabling
rule, which is a subset of symbols allowed for the next transi-
tion of the plant. The plant then chooses nondeterministically
one of those allowed symbols and performs the corresponding
transition, if defined.

A typical goal of supervisory control is, given a plant and a
language over the alphabet of the plant, to design a supervisor
that forces the plant to generate exactly the given language. Con-
ditions for such a supervisor to exist and algorithms to construct
it can be devised.

The difference with our formalism lies both in the precise
nature of the objects considered and the goal we are pursuing.
The objects we consider are automata with both an input and
an output alphabet, and the controller is an object of the very
same nature as the system to be controlled. Our goal is to make
the automaton reach a certain state, not to generate a certain
language.

The theory of supervisory control has been extended to other
kinds of discrete event systems (e.g., Petri nets); see [10] for
more detail.
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Fig. 1. Example of automaton. The vertices are the states, and the edges have
labels of the form x/y, where x is an input symbol and y an output symbol. The
initial state is go. Upon the input of the word 011010010, the automaton passes
through the successive states o, 42, 41, 41, 9o, Y1, do, 42, 41, go and outputs
the word 000111001.

Our main theorem is stated in Section II, along with prelim-
inary definitions. The theorem is proved in Sections III, IV, V
and VI. Conclusions and ideas for future work are presented in
the last section.

II. FORMULATION AND RESULTS

In this section, we give precise definitions of automaton, con-
trol, and complexity of control. Then we describe our main re-
sult.

Definition: An automaton is a sextuple (Q,q, X,Y,6,v),
where

¢ () is afinite set, the elements of which are called the states;

e X is a finite set, called the input alphabet;

* g € Q is the initial state;

* Y is a finite set, called the output alphabet,

o § € QX is the transition function;

o v € YOXX is the output function.

Such automata are also called transducers or Mealy ma-
chines. We set

0(q,zox1 ... x) = 6(6(...6(8(q,x0),21),---), k)
for any zoz; ...z in X*. (Recall that X* denotes the set of
finite words on the alphabet X.)

An automaton can be seen as an input/output dynamical
system. Given an input word zoz . ..x,, the automaton starts
from the initial state g, moves to state ¢ = 6(q, zo) and emits
the output letter yo = (g, o). Then it reads the input letter
x1, moves to state ¢ = 6(¢’,z1) and emits the output letter
y1 = 6(¢’,x1), etc. Finally, the output word corresponding to
ToTq - .. Ty, 18 given by yoy1 - . . ¥y, (see Fig. 1 for an example).

If X has only one symbol then we say that the automaton is
inputless, because the input contains no information.

Note that we only consider deterministic automata. This im-
plies that the dynamics of the system is perfectly known, as well
as the initial state and the output function. We emphasize that
our aim is to compare feedback and open-loop in terms of com-
plexity, not in terms of robustness with respect to noise or un-
certainty. We leave the case when noise, lack of information or
nondeterminism is present for future research.
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Fig. 2. We want to drive the system automaton A from ¢ to ¢;. (Top) Open-
loop strategy. Note that no input has been drawn towards O, since only one
input word is possible, up to the length. (Bottom) Feedback strategy. The control
automaton F" is supposed “to play first”: the first value of 2o € X must be given
as input to A, leading to an output yo € Y, leading to a new output z; of F',
etc.

Suppose we have an automaton and we would like to drive it
from one state to another state, by feeding the automaton with an
appropriate word. This is what we call the reachability problem.

Definition 2: The reachability problem is as follows.

¢ Instance: An automaton A (called the system automaton)
and a state of A (the target state).

¢ Problem: Find a word (the control word) of X* that makes
A go from the initial state through the target state at least
once.

The control word can be chosen to be the output of another
automaton. We compare two kinds of strategies in order to solve
a reachability problem: open-loop and feedback.

* The open-loop strategy: An inputless automaton O (the
control automaton) is connected to the input of the target
automaton, as indicated on the top of Fig. 2.

* The feedback strategy: An automaton F' (the control au-
tomaton) is connected in feedback (bottom of Fig. 2). We
can see it as a game played between the control automaton
and the system automaton; the goal of the former is to
force the latter to enter the target state. The game-theoretic
interpretation is explored, in a larger context, in Chapter
IT of [6]. Let us mention a detail: for the process to be
completely specified, the first input feeding the system au-
tomaton must be specified, too.

Thus, an open-loop solution for an instance of the reacha-
bility problem is an inputless automaton that makes the system
automaton evolve and reach the target state, when connected in
open-loop as described above. A feedback solution is composed
of a control automaton and a symbol of its output alphabet, that
makes the system automaton reach the target state when the

control automaton is connected in feedback with the system au-
tomaton and gives the specified symbol as first output.

Our goal is to find for both strategies an estimate of the
number of states of the control automaton needed to steer a
given system automaton A. We would like also to know whether
open-loop control is more complex than feedback control. In
other words, we ask the following question: does the possibility
of measurement on the system lead to less complex controllers?

For the sake of simplicity, we will focus on automata with
binary input and binary output alphabets. However our results
have immediate extension to alphabets of arbitrary fixed cardi-
nality.

Given a solvable instance of the reachability problem, we de-
fine the open-loop complexity of the instance as the number of
states of the smallest open-loop solution. The feedback com-
plexity of the instance is the number of states of the smallest
feedback solution.

Why to define complexity as the number of states? Since the
input and output alphabets have fixed sizes, the number of states
is enough to determine how complex an automaton is. More-
over, the number of states is shown later in this section to be
approximately equal to the number of bits needed to give a full
description of the automaton.

This “complexity” is not to be confused with computational
complexity, which is the least amount of time or memory needed
by a computer to answer a problem. Here checking solvability
of a given instance of the reachability problem can be done in
polynomial time, since it is enough to check the existence of
a path from the initial state to the target state. Let us consider
the problem to check whether the open-loop (or feedback) com-
plexity of a given instance of the reachability problem is smaller
than a given integer p. This problem is in the class N P, since
checking that a given control automaton of less than p states is
an open-loop (or feedback) solution can be done in polynomial
time. We do not know how much time is needed to compute the
open-loop (or feedback) complexity of a given instance of the
reachability problem. A brute force approach, trying all possible
controllers of increasing complexity to find one that solves the
problem, takes a more than exponential time in the worst case.
Indeed, the complexity of an n-state instance is at most n, and
there are more than exponentially many automata of size n, as
shown below.

Note that if we allow the sizes of the alphabets to vary with
n, then the conclusions might change as well. For instance, if
the output alphabet is the set of states of the system automaton
(Y = @), with the identity as output function (y(y) = vy),
then for any solvable instance of the reachability problem there
is a one-state feedback solution. Indeed, take a path linking the
initial state to the target state. The feedback automaton gives,
for any state on this path, the next input in order to remain on
the path. This example suggests the existence of a trade-off be-
tween the size of the output alphabet and the number of states
of the control automaton. Note nevertheless that if the sizes of
the alphabets are not fixed, a better measure of complexity of
the control automaton should take into account the sizes of the
alphabets as well as the number of states.

A possible motivation for considering only fixed size alpha-
bets, beyond simplicity, is the situation where the finite alpha-



980

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE 2006

Fig. 3. An example of automaton for which the feedback strategy is much less complex then open-loop. The initial state is ¢o, and we want to reach state ¢,, 1.
The word xo2:1 @2 . . . 2, —2 is not eventually periodic. In the open-loop strategy, an n. — 1-state control automaton is needed. In the feedback strategy, a zero-state

automaton is enough.

bets model the fact that data are transmitted through communi-
cation channels, imposing a finite flow of information, no matter
how complex the system and the controller are.

The following example shows that feedback can be much less
complex than open-loop.

Example 1: We want to solve the reachability problem for
the n-state automaton represented on Fig. 3 and the target state
Gn—1. We assume that the word oz . ..z, _2 is not eventually
periodic, except trivially. A word is eventually periodic if it is
of the form uv*, where v and v are subwords and k is a positive
integer. An inputless automaton producing this word as output
must therefore have at least n — 1 states. And the complexity of
the open-loop strategy for this instance is n — 1.

But the particular form of the output function allows a one-
state automaton put in feedback to solve the problem. Actually,
even a zero-state automaton suffices! It is enough to connect the
output of the automaton directly to the input.

As announced in the introduction, the gap of complexity be-
tween open-loop and feedback is quite small on average.

To make this statement precise, we must endow the set of
n-state automata with a probability measure.

Let us compute the number of different n-state automata with
input and output alphabets of cardinalities = and y respectively.
From every state z edges must be drawn and for each of these
there are n possible end states and y possible outputs. This leads
to (yn)®™ possible graphs. For any of them there is a choice of n
possible initial states, and so there are finally n(yn)*" different
automata. For simplicity, we suppose that the set of states is
always {0,1,...,n—1}. Note that giving a full description of an
automaton takes zn log, yn + log, n bits, which is in the order
of nlog, n when x and y fixed. So the number n of states is close
to the amount of information needed to describe an automaton.

Of course, many different automata are isomorphic, i.e., they
are identical up to a permutation of the states. And even more
automata define the same input/output function on words.

However, keeping the formalism of [6], we shall do averages
on the class of n(yn)*" different automata. For that purpose
we endow this set with uniform probability measure. A random
n-state instance of the reachability problem is composed of a
random n-state automaton and a random state chosen uniformly
among {0,1,...,n — 1}. From now we will also restrict our-
selves to the case x = y = 2, as already mentioned.

Why the uniform distribution? This distribution reflects the
fact that we have made no assumption on the origin or properties

of the system automaton. The choice of the uniform distribution
is consistent with the so-called “maximum entropy principle”,
stating that an a priori probability distribution on a family of
objects is best chosen as the less informative distribution, given
the constraints that we know to be satisfied. Here “less infor-
mative” is technically defined as “maximizing the Shannon en-
tropy” see [11]. As we have no a priori knowledge on the system
automaton, the uniform distribution is certainly the less infor-
mative. Choosing a simple distribution also makes the problem
tractable. The uniform distribution is the one considered in [6].

Of course, we might argue that “real-life” systems are not all
equally frequent or equally interesting, and most real-life situ-
ations would lead to a non-uniform distribution on system au-
tomata. For instance, the automaton might result from the quan-
tization of a linear system. Depending on the method of quanti-
zation and the distribution of probability chosen for linear sys-
tems, we are likely to get a non-uniform distribution on finite au-
tomata. More generally, the quantization of any continuous dis-
crete-time system should reflect the fact that “close” states have
“close” images for the same input. Here again we expect that
not all automata are equally represented. Similarly, if we quan-
tize a continuous-time system with a small step of time, then the
image of a state of the automaton is likely to be a “close” state.

When we say that a statement is true for “almost all n-state
automata”, we mean that it is true for “a proportion of n-state
automata that tends towards 1 as n increases”.

A solvable n-state instance of the reachability problem is
made of an n-state system automaton and a target state that
is reachable from the initial state. A random solvable instance
is picked up by choosing at random an n-state automaton, and
choosing at random a reachable state of the automaton. We now
state the main result of this paper.

Theorem 1: Consider the uniform probability measure on
n-state automata.

There are constants ¢y, c2 such that for any large enough n,
the expected number of states of the smallest open-loop control
automaton that solves a solvable n-state instance reachability
problem is between ¢ Inn and ¢ Inn.

There is a constant ¢ such that for any large enough =, the
expected number of states of the smallest feedback control
automaton that solves a solvable n-state instance reachability
problem is between ¢y lnn/Inlnn and ¢z Inn.

In other words, the expected complexity of open-loop is
in O(lnn), while the expected complexity of feedback is in
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Q(lnn/Inlnn) and O(lnn). Recall that f(n) = O(g(n)),
or g(n) = Q(f(n)), means that |f(n)| < c¢|g(n)| for some
¢ > 0 and all large enough n. If f(n) = O(g(n)) and
f(n) = Q(g(n)) then we write f(n) = O(g(n)).

Sections III, IV, V and VI are devoted to the proof of Theorem
1, and may be skipped in a first reading.

III. SOLVABLE INSTANCES OF THE REACHABILITY PROBLEM

It is clear that the expected complexity can be computed only
over solvable instances. The following proposition essentially
says that more than one third of the instances of the reachability
problem are solvable. Recall that we consider only automata
with binary input and output alphabets.

Proposition 1: For any a < 1/e = 0.36... and any large
enough n, a random n-state instance of the reachability problem
is solvable with probability at least «. More precisely, for almost
all n-state automata at least [an] states are reachable from the
initial state.

Proof: Let Q@ = {0,1,...,n — 1} the set of states of a
random automaton.

A subset R C @ is invariant if, starting from a state of R, it
is impossible to leave R. In other words, no edge leaves R.

We are going to prove that in almost all n-state automata,
there is no invariant subset of |an | states or less, for 0 < a <
1/e. As the set of states that are reachable from the initial state
is an invariant set, this is enough to prove the proposition.

The probability for any set R of r states to be invariant is
(r/n)?", since 2r edges start from R, and each of them arrive
in R with probability r/n.

For any R C @, consider the random variable Iy that is equal
to 1 if the set R is invariant and O otherwise. The expectation of
IR is the probability of the event Ir = 1, which is (r/n)?".
The probability that there is a invariant set of size at most an is
equal to

Pl X
RCQ
o< card(ry<an

Ir >0

whereP denotes the probability of an event.
For any non-negative integer-valued random variable X,
Markov’s inequality

P(X >0) <EX

holds, where E is the expectation. Indeed, EX =
YisoP(X =4) >3 (P(X =i) =P(X >0).

Here we take X = ), < card(R)<an IR. The probability that
there is an invariant set of size at most an is

P(X >0) <EX

>

o< card(R)<an

S (@)

Elgp

If we prove that this last quantity converges to 0 as n —
o0, then we conclude from Markov’s inequality that almost all
automata of size n have have no invariant set of states of size
at most an. This argument is an example of the so-called first
moment method.

It remains to prove that lim,, o Y3127 (") (r/n)?" = 0. For
every n and for every term of the series, the following relations
hold:

We used the inequalities (?) < (n"/r!) and (r"/r!) <
Yoiso /il = €, and the fact that < an.
Let us consider for every n the function

fnir— { (:) (%)ZT if0 <7 < an;
0 otherwise.
We want to prove that lim, . Y, fn(r) = 0. But the fol-
lowing properties are verified:
» The sequence (f,), converges pointwise to the constant
function 0, since f,,(r) < (e"r"/n").

* Every f,, is bounded by the function g : r» — (e«)”, and g

is summable: ) - (ea)” = (1/(1 — eq)).

From Lebesgue’s dominated convergence theorem, this is
enough to conclude that the sequence (), f,(7)), converges
to>., 0=0. u

We don’t know how far the critical ratio 1/e can be improved.
It might be the case that all states are reachable for almost all
automata. As far as we know this is an open problem.

IV. AN UPPER BBOUND ON COMPLEXITY

If a state of an n-state automaton is reachable from the initial
state, then it is so with an input word of length at most n; hence
the complexity of feedback and open loop are both bounded by
n. On average much more can be said.

Theorem 2: There is a constant C' such that for almost all
n-state automata, if a state is reachable from another state, then
it is reachable with an input word of length at most C'In n.

We do not prove this result here; the interested reader is re-
ferred to Theorem 5.5 in [6].

Corollary 1: There is a constant C' such that for almost all
n-state instances of the reachability problem, there are feedback
and open loop solutions of C'Inn states or less. In particular,
the expected complexity of a solvable instance is in O(In n) for
both strategies.

V. LOWER BOUNDS ON COMPLEXITY

Let us a take a random instance of the reachability problem
of size n, i.e., a random n-state automaton (with binary input
and output alphabets) with a random target state. Take a random
p-state inputless automaton (with binary output alphabet). We
will denote P°!(m,p) the probability that the random p-state
control automaton solves the random n-state instance of the
reachability problem in open-loop.
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Now take a random p-state automaton (with binary input and
output alphabets). We will denote P/ (n, p) the probability that
the random p-state control automaton solves the random n-state
instance in feedback.

In this section, we compute estimates of these quantities that
allow us to give lower bounds on complexity.

First of all, a technical lemma:

Lemma 1: There is a constant ¢ > 0 such that for any large
enough p, any n > p® and k = 2pv/nInn we have

—_

nPe=k

— <
—k —
ktp pn
(1-5%)

Proof: Taking the logarithm:

o
3|

p,—k
n— ¢ —k+plan

o pn—k
(1-52)
—(pn—k)In <1 — k—f—p)

pn
k
=—k+plnn+ (pn—k) +P
pn
1 k+p\>
“(pn—k
+ 5 )< o )

k+p\°
—|—O((pn—k)< p))
pn
We used the expansion In(1 + ) = z — 22/2+ O(2?). A little
calculation yields:

pek k(k
L}m_k:_k+plnn+k+p_w
(1_k+2’) pn

pn

In

L(k+p)?® 1k(k+p)®
pn 2 (pn)?

e <pn(p’“7)3)

—p(inn + 1) + L=EETP) 20(: )

— lk(k——}—p)Z +0 (k_3>
2 (pn)? (pn)?
2 2
_ ok
=p(lnn+1)+ 2o 2pm
1k(k +p)* Lo (p1n3/2n>

2 (pn)?
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The last two terms of the last line are bounded by a constant,
provided that n > p3. We can also suppose p > 2. Thus, by
exponentiation:

for some ¢ > 0. [ |
Finally, a “Stirling-like” formula, taken from [12].
Lemma 2: Foralln > 1,

n\" n\"
e(—) gn!gen(—) .
e e

Proof: From |z| < z < [z], we have In|z]| < Inz <
In[z]. Integrating between 1 and n, we find:

n—1 n
Zlni <[zlnz —2z]} < Zlni
i=1 i=2

which is equivalent to

In(n —1)!'<nlnn—-—n+1<lnnl
The result follows almost immediately by exponentiation. H

A. A Lower Bound for Open-Loop Complexity

We may obtain the following bound on P°!(n, p):

Proposition 2: For any large enough p and any n. > p3, the
probability P°!(n, p) for a random inputless p-state automaton
to solve a random n-state instance of the reachability problem
in open-loop satisfies the following bound:

1
P (n,p) < 3p\/n7-

Proof: We fix an arbitrary inputless control automaton of
p states, and plug the output to the input of a random n-state
automaton.

In a first step we give an upper bound on the probability for the
path described in the random target automaton to pass through
at least £ of the n states. In a second step we use Lemma 1 to
compute a bound on P! (n, p).

Step 1: To explore at least k + 1 different states, we must ex-
plore at least k different edges. Each time a new edge is being
explored, the end state of the edge is randomly chosen among
the n states. If this new edge occurs after [ steps (i.e., when the
path already drawn has length [), and if less than &k edges are
explored at that moment, then at most n — [I/p| states are al-
lowed for the end state of the edge (in order not to loop before
having seen k edges). This is because if the pair (state of the
control automaton, state of the system automaton) is the same
at two steps, then the system enters a loop, and because the suc-
cession of states of an inputless automaton is eventually periodic
with period at most p. Thus at least |[/p] states are “forbidden”.
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Moreover, the ith new edge is discovered after a length [ > 4.
Thus the probability to explore at least & edges is less than the
following product of £ factors:

p <p
P B e X
n o nmn-1 n-—1 n—|k/p] n-—|k/p]
n n o on n n n

ey
where each factor—except maybe the last—is repeated p times.
Dropping the last factor, this product is smaller than:

n! P e~ Lk/p] ’
(e mmmr) < )
n|p
gm’%
=)

where k' = k—p (implying ¥’ /p < |k/p| < k'/p+1). Lemma
2 has been used to derive the first inequality.

Step 2: Let k’ be equal to 2pv/n In n. Then Lemma 1 ensures
that

!
ek 1

oW S
(1 — _k'+p)p ’ n
pn

for some ¢ > 0, if p is large enough and n > p>. Thus the
probability to explore more than 2pv/nInn + p + 1 states is at
most ¢/n. The expected number of states visited by the control
automaton in the system automaton is therefore at most

1 1
<1 - c—) (2pVnlnn+p+1)+c—n < 3pVnlnn
n n

for p large enough and n > p3. As any of the n states may be
chosen as the target state with equal probability, we conclude
that P°!(n,p) < 3py/Inn/n for p large enough and n > p>. m

In fact, the proof shows that the result holds not only for a
random control automaton but for any fixed control automaton.

‘We now derive a lower bound on open-loop complexity.

Proposition 3: There is a c such that for any large enough n
the expected complexity of the open-loop strategy for a random
n-state solvable instance of the reachability problem is at least
clnn.

Proof: The behavior of an inputless automaton is com-
pletely characterized by the infinite word it produces as output.
This output word is eventually periodic.

The number of inputless p-state automata generating different
output sequences is p2?. Indeed, p is the sum of lengths of the
non-periodic part and the period, and there are p possibilities for
the length of the period. This also includes the control automata
of less than p states.

So, using Proposition 2, the probability that an n-state
instance of the reachability problem is solved by at least one

p-state open-loop automaton is (provided that n > p? and p is
large enough) bounded above by

/1
p2P3p 2
n

Assume that this quantity is lower than 1/6:

or3py /0 < L
n 6

which may be written as

1 n
3pP2P < — [ —.
P — 6\ Inn

This is satisfied if

p<coglnn

for some ¢y > 0. This condition is stronger than n. > p3, for p
large enough.

Thanks to Proposition 1, we know that for n large enough,
at least one third of the n-state instances of the reachability
problem are solvable. If p < ¢glnn, at most one sixth of the
n-state instances are solved by open-loop control automata of p
states or less.

Hence at least one half of the n-state solvable instances are
not solved by any open-loop control automaton of at most p
states. Consequently, the average complexity of an n-state solv-
able instance is at least (¢p/2) Inn. So the result follows with
c=co/2. ]

B. A Lower Bound for Feedback Complexity

We now adapt the arguments of the preceding subsection to
the case of feedback.

Proposition 4: For any large enough p and for any n >
(2p)3, the probability Pf (n, p) for a random p-state automaton
to solve in feedback a random n-state instance of the reacha-
bility problem satisfies the following bound:

Pl (n,p) < 617\/1%1-

Proof: First we fix an arbitrary feedback control automaton
F.

The main idea of the proof is the same as in the proof of
Proposition 2. There we used the fact that if the system au-
tomaton is twice in the same state while the open-loop control
automaton is also in the same state, then the whole system falls
into a loop and will not discover new states. The case of the feed-
back strategy is slightly more complicated. Indeed, knowing the
states of the control and system automata is not sufficient to de-
termine the evolution of the system.

Suppose that the system automaton A “has just played” (re-
member the game-theoretic terminology) and is now in state g,
emitting a symbol y. The control automaton F' is about to play
and is in state s. Now we have enough information to determine
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the evolution of the system. If during two different steps, A is in
state ¢, outputs the symbol y and F' is in state s, then the whole
system enters a loop. Since y can take two values, the system
automaton and the control automaton can only be twice in the
same states if we still hope to discover new states of A. Heuristi-
cally, we thus expect the same result as in Proposition 2, except
that that p becomes 2p. The rest of the proof rigorously estab-
lishes this fact.

Let the states of ' be denoted by s, ..., s,. Atevery step of
time, when F has just played, and for every state s;, we define

e a; as the number of states of A that have been reached
exactly once while F' was in state s;;

e b, as the number of states of A that have been reached
exactly twice while F' was in state s;;

e r;asn—a;—b;; aslong as the whole system has not entered
a loop, 7; is the number of states of A that have never been
reached while F' was in s;.

At the beginning of the process, ; = n and a; = b; = 0 for
all states s;. At every step of time, if F' is in s;, then a;, b;, r;
must be updated. If a state of A is reached for the first time
while F' is in s;, then a; is increased (“a; := a; + 1) and r; is
decreased. If a state of A is reached for the second time while F’
is in s;, then a; is decreased and b; is increased. If a state of A
is reached for the third time or more, then we will not discover
any new state of A anymore.

In the first two cases, the quantity (a;/2) + r; decreases by
172.

We now want to estimate the probability that at least k + 1
states of the system automaton are visited when F' is connected
in feedback to it. To explore at least k + 1 different states of the
system automaton, we must explore at least &k different edges.
Every time a new edge is being explored, the end state of the
edge is chosen randomly among the n states. Suppose that after
l steps (i.e., when the path already drawn has length 1), less
than k edges have been reached, the system automaton is in
state ¢, I has just sent the output « and the edge starting from
G labelled by u has never been used: we must choose an end
state ¢ = 64(q, u) for this new edge, as well as an output value
y = va(q, ) for this edge.

Suppose in addition that the current state of F' is s;. The end
state of the new edge is to be chosen among three kinds of states.

¢ Those that have been reached once while F’ was in state s;.
There are a; of them. If one of these states is chosen, then
the probability for the trajectory to fall into a loop is at least
1/2, because one of the two possible values for v.4(q,u)
is “forbidden” (remember we do not want to loop before
having explored k edges).

» Those that have been reached (exactly) twice while F' was
in state s;. There are b; of them. They may not be chosen
as the end state of the edge, since the whole system would
loop.

* Those that have not been explored yet when F' was in state
s;. There are r; of them. They may be chosen without re-
striction.

So the probability to choose a “good” end state for a new edge
(i.e., not to fall into a loop) is at most (1/2)(a;/n) + (r;/n).
Remember that (1/2)a; + r; is equal to n — (1/2) (number of
times that F' has been in state s;).
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Call ¢; the number of occurrences of s; while exploring a new
edge, i.e., the number of times that F’ was in s; when we took an
edge of the path for the first time. If k£ edges at least have been
explored, then ¢t + -+ + ¢, > k.

The probability of discovering at least k£ new edges, condi-

tional to the repartition into ¢y, ...,t,, is thus bounded above
by
1 2 t;
H nh—an73 "T 3 )
; n n n n
1<i<p

The probability of discovering at least k new edges is this

product, averaged over all possible repartitions into ¢1, ..., t,.
On the other side, a product of this form, under the constraint
t1 4 ---+1t, > k, takes its maximum value when ¢1, . .., 1, are

all equal to |k/p]| or [k/p], as some elementary calculus can
show.

Hence the probability of discovering at least k states in A is
at most

E]1\?
nn—j3n—3 n_[;-li
n o n n n
tself bounded by
k 1\ 7
nnn—1n-—1 n—[%]n—[%]
nn n n n n

where each factor is repeated twice.

Comparing with (1), we see that nothing has changed, ex-
cept that p has become 2p. So the end of the proof remains un-
changed in its principle: the conclusion is that the probability
that P/ (n, p) is less than 6p+/Inn/n. ]

Again, the proof holds not only for a random feedback control
automaton but for any feedback control automaton.

Thus:

Proposition 5: There exists a constant ¢ such that for any
large enough n, the expected number of states of the smallest
feedback control automaton that solves a random n-state
solvable instance of the reachability problem is greater than
¢(lnn/lnlnn).

Proof: The number of different p-state automata is p(2p)2?
and there are two possible initial bits (for the initial output of
the control automaton). So, using the preceding proposition, the
probability that a random n-state instance of the reachability
problem is solved by at least one p-state feedback automaton is,
for p large enough and n > (2p)3, bounded above by:

Inn
2p(2]7)2p610\/ -

We want this quantity to be lower than 1/6:

Inn 1
2p(2p)* 6p W < 3
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This is equivalent to

1 /' n
3(2p>2p+2 S g m

or

(Inn —Inlnn) —In18.

DN | =

(2p +2) In(2p) <

This is satisfied if

1 Inn
p—7mmn

for n large enough. Indeed, this condition implies

(2p +2) In(2p) <3pln(7p)

3 Inn

= Inlnn —Inlnl
_7ln1nn(n nn —Inlnlnn)

3 Inninlnlnn
= — 11’1 -

7 Inlnn

3
S?(lnn—lnlnn)

1
§§(lnn—1nlnn)—ln18

for any large enough p. This condition is stronger than n >
(2p)*.

Thanks to Proposition 1, we know that for n large enough,
at least one third of the n-state instances of the reachability
problem are solvable. If In n/ In In n, it means that at least half
of the solvable n-state instances are not solved by any p-state
open-loop control automaton. Hence the expected complexity
of an n-state instance is at least (1/2)(1/7) Inn. So the result
follows with ¢ = 1/14. ]

VI. PROOF OF THE MAIN THEOREM

We are now able to prove Theorem 1.

Corollary 1 of Section IV proves that the complexity for
both strategies is in O(ln n). Proposition 3 of Section V proves
that the open-loop complexity is in (lnn). Proposition 5
of Section V proves that the complexity of feedback is in
Q(Inn/Inlnn). Hence the open-loop complexity is in ©(In n)
and the feedback complexity is in Q(lnn/Inlnn) and in
O(lnn).

VII. CONCLUSIONS

We have studied finite automata as input/output systems, and
have analyzed the complexity needed to control them. It follows
from our results that making measurements on the output of a
system is not very useful for automata with a completely random
structure. Of course, feedback cannot be more complex than

open-loop, and we gave an example where it is actually much
less complex.

Thus, we are lead to the conclusion that feedback is useful to
reduce complexity only when the automaton to be controlled has
a particular structure. Future work could be devoted to finding
classes of particular systems for which feedback is particularly
interesting. For instance, it would be natural to see what happens
if the automaton results from the quantization of a linear system.
The introduction of some noise or nondeterminism in the model
is also a logical direction of research.

Finally, it can be argued that we did not really address the in-
troductory example (describing a path in a city), since in that
case the size of the output alphabet (number of streets, for in-
stance) is not fixed, but depends on the size of the automaton
(number of crossroads). For what kind of dependence between
sizes of input alphabet, output alphabet, and number of states
does Theorem 1 remain valid? We have seen for instance that if
we allow output alphabets of the size of the system automaton,
then one-state feedback controllers are always enough.
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