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Abstract
This paper introduces a new stochastic global optimization method targeting protein-protein docking
problems, an important class of problems in computational structural biology. The method is based
on finding general convex quadratic underestimators to the binding energy function that is funnel-
like. Finding the optimum underestimator requires solving a semidefinite programming problem,
hence the name semidefinite programming-based underestimation (SDU). The underestimator is
used to bias sampling in the search region. It is established that under appropriate conditions SDU
locates the global energy minimum with probability approaching one as the sample size grows. A
detailed comparison of SDU with a related method of convex global underestimator (CGU), and
computational results for protein-protein docking problems are provided.
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I. INTRODUCTION
This work is motivated by a fundamental and challenging problem in computational structural
biology. Proteins interact with each other and with other chemical entities in the cell to form
complexes consisting of two (or more) macromolecules. Protein-protein interactions play a
central role in metabolic control, signal transduction, and gene regulation. Proteins also interact
with a large number of small molecules that serve as substrates, inhibitors, or cofactors in
metabolic reactions, as well as with external compounds acting as drugs in modulating

© 2007 IEEE
Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

NIH Public Access
Author Manuscript
IEEE Trans Automat Contr. Author manuscript; available in PMC 2009 September 15.

Published in final edited form as:
IEEE Trans Automat Contr. 2007 April 1; 52(4): 664–676. doi:10.1109/TAC.2007.894518.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://ieeexplore.ieee.org


biological behavior. Determining the three-dimensional (3-D) structure of a complex from the
atomic coordinates of two or more interacting molecules is known as the molecular docking
problem. Experimental techniques -x-ray crystallography or nuclear magnetic resonance
(NMR)– can provide such 3-D structures but are time-consuming, expensive, and not
universally applicable as many molecular complexes are short-lived and exist only under well
defined cellular conditions. As a result, solving these problems computationally is critical and
has attracted a lot of attention.

Docking two proteins can be seen as a control problem as one has to control one of them as it
approaches and docks with the other; this has parallels with problems arising in robot arm
manipulation [1], [2]. From a static point of view, thermodynamic principles imply that proteins
bind in a way that minimizes the Gibbs free energy of the complex. These energy functions
have multiple deep funnels and a huge number of local minima of less depth that are spread
over the domain of the function (see Fig. 1). This “complexity” of the energy landscape is
perhaps best articulated in the Levinthal paradox [3]: The probability that nature could find the
native 3-D structures (or “conformations”) by random search seems uncomfortably close to
zero. More recently though, it was recognized that the funnel-like shape of the energy function
may explain why proteins bind with other molecules very fast and in so doing they may follow
multiple pathways on the energy surface (see [4]). In this paper, we introduce a new
optimization method for solving docking problems. It is exactly this funnel-like shape of the
energy function we set out to exploit.

In general, the energy functions include forces that act in different space-scales, resulting in
multi-frequency behavior, and leading to a huge number of local minima caused by high-
frequency terms. Even though some global optimization methods (see [5]) have been useful in
the related problem of protein folding, it appears that only simulated annealing has been
consistently used in docking. Specifically, Baker et al. [6] employ simulated annealing on a
progressively improving approximation of the energy function. This has been fairly effective
but it is computationally expensive and, thus, applicable to relatively small problem instances.
A number of other recent approaches have attempted, with some success, to use the funnel-
like shape to guide the global search to the vicinity of the global minimum [e.g., the semiglobal
simplex (SGS) by Dennis and Vajda [7], and SmoothDock by Camacho and Vajda [8]]. Of
most, relevance to this paper is the convex global underestimator (CGU) method of Phillips
et al. [9] where convex canonical quadratic underestimators are used to approximate the
envelope spanned by the local minima of the energy function. It has been shown that CGU
does not perform well in some cases and that its performance deteriorates as the dimension of
the search space increases [7]. We contend that a critical reason for this poor performance is
the restricted class of underestimators used in CGU. This restriction amounts to a lack of
flexibility in capturing the overall shape of the funnels and hence an inability to locate
promising regions.

We use the same strategy of using quadratic convex functions to underestimate the envelope
spanned by the local minima of the energy function. However, we consider the class of general
convex quadratic functions for underestimation. In this case, given a finite set of local minima,
finding the optimal underestimator amounts to solving a semidefinite programming (SDP)
problem, hence the term SDU. The dual to this problem involves linear matrix inequalities
(LMIs) which have found ubiquitous use in control theory lately. Another key contribution of
the new method we introduce is the use of a biased exploration strategy that is guided by the
underestimator. We show, theoretically as well as experimentally, that SDU outperforms CGU,
often significantly. Moreover, we show that SDU will indeed (probabilistically) converge to
the global minimum when applied to a general class of funnel-shaped functions as the number
of local minima used for underestimating the energy function grows. This suggests that SDU
has the potential to be useful in solving molecular docking problems. A number of numerical
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results, some involving real instances of the protein-protein docking problem, reinforce this
conclusion.

The rest of this paper is organized as follows. Section II presents background material on
docking and surveys various approaches. Section III presents the SDU method. Comparisons
with CGU are in Section IV. SDU’s convergence properties are discussed in Section V.
Numerical results for a set of test functions are in Section VI. Some results on docking proteins
are discussed in Section VII. We end with conclusions in Section VIII.

Notational Conventions
Throughout this paper, all vectors are assumed to be column vectors. We use lower case
boldface letters to denote vectors and for economy of space we write x = (x1,…,xn) for the
column vector x.x′ denotes the transpose of x, 0 the matrix (or vector) of all zeroes, e the vector
of all ones, I the identity matrix, and ei the ith unit vector. For any vector x we write ‖x‖1 for

the L1 norm, i.e., , and ‖x‖ for the Euclidean norm. We use upper case boldface
letters to denote matrices and write  for the matrix A with (i, j)th element equal to
Ai,j. We denote by diag(x) the diagonal matrix with elements x1,…,xn in the main diagonal and
zeroes elsewhere. We also denote by diag(A, B) the block diagonal matrix with matrices A
and B in the main diagonal and zeroes elsewhere. We define

(1)

which is the Frobenius inner product of matrices. Finally, for any event , 1 { } denotes its
indicator function.

II. PRELIMINARIES AND BACKGROUND
In this section, we provide some biological background on the docking problem in order to
establish the appropriate context for the optimization methodology we introduce.

State-of-the-art protein-protein docking approaches start by identifying conformations with
good surface/chemical complementarity where the two interacting proteins are considered
rigid bodies. Accordingly, the problem of forming a complex by docking one protein—the
ligand—to the other—the receptor—has parallels with problems arising in rigid body motion
and robot arm manipulation (see, e.g., Murray et al. [1], Gwak et al. [2]). In particular, one has
to control the ligand as it approaches and docks with the receptor. The ligand’s relative position
lies in the Euclidean group of rigid-body motion, SE(3), which is the semidirect product of
ℝ³ (translations) and the rotation group SO(3). The dynamics of the ligand’s approach to the
receptor play an important role in nature but are hard to model (and computationally prohibitive
to simulate) in the time-scale they evolve. The problem is further complicated by the fact that
proteins are not rigid bodies and experience conformational changes as they bind (mostly the
side-chains on the interface). The protein-protein docking literature (e.g., [8] and the references
therein) is predominantly treating the docking problem as a static problem and this is the view
we will initially adopt for this problem.

Protein-protein docking approaches initially screen conformations by various measures of
surface complementarity which can be efficiently computed using fast Fourier correlation
techniques (FFTs). However, when docking unbound conformations these methods yield many
“false positives” (i.e., conformations that have good score but are far from the native one). An
effective approach used by Comeau et al. [10] is to cluster the conformations obtained by the
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FFT filtering based on how close they are. (A common metric of distance between
conformations is the root mean square deviation (RMSD) of their atomic coordinates).
Clustering identifies low free energy regions (funnels) one needs to further explore. We will
be referring to the problem of exploring a funnel as the medium-range problem. The proposed
SDU method aims at solving this problem by exploring the funnel shape of the energy function.
Next we review key properties of the free energy functions.

A. Free Energy and its Mathematical Properties
Free Energy Models—At fixed temperature and pressure, a complex of two molecules
adopts the conformation that corresponds to the lowest Gibbs free energy of the system that
includes the component molecules and the solvent—usually water—surrounding them. Thus,
in docking calculations the natural target function to minimize is an approximation of the Gibbs
free energy, GRL, of the receptor-ligand complex, or that of the binding free energy, ΔG. In
particular, ΔG = GRL − GR − GL, where GR and GL are the free energies of the receptor and
ligand, respectively, and both GR and GL are independent of the conformation of the complex;
thus, minimizing GRL reduces to minimizing ΔG.

We use free energy evaluation models that combine molecular mechanics with continuum
electrostatics and empirical solvation terms [11]. For protein docking applications, the binding
free energy can be approximated as

(2)

where ΔEelec is the change in electrostatic energy upon binding, ΔEvdw is the change in van
der Waals energy, and —the desolvation free energy—is associated with the removal of
the solvent from the interacting surfaces of the protein and ligand, where the * denotes that it
includes the change in the solute-solvent van der Waals energy. The entropy term, −TΔSsc,
accounts for the decrease in entropy experienced by the interface side chains upon binding.

Multifrequency Behavior—The free energy function can be regarded as the sum of three
components with different frequencies. First, the following “smooth” component

(3)

changes relatively slowly along any reaction path, where the desolvation free energy ΔGdes
does not include the solute-solvent van der Waals term. The full contribution of the desolvation
forces is estimated by the atomic contact potential (ACP) [12], where the ACP potential
includes the self-energy change on desolvating charge or polar atom groups and the side chain
entropy loss, i.e., ΔGACP = ΔGdes − TΔSsc. ΔGACP is much less sensitive to structural
perturbations than ΔEvdw and ΔEelec. The electrostatic energy ΔEelec changes with an
intermediate frequency, and the frequency of change is very high for ΔGvdw. Thus, the van der
Waals component is essentially a high frequency noise, because on its own it carries very little
information about the distance from the native state.

Funnel-Like Shape—As discussed in Section I, the concept of the funnel-shaped energy
landscapes (see Fig. 1) has had a significant impact on understanding protein folding and
docking. This behavior has a physical explanation. Due to the term ΔEvdw, the free energy
function defined by (2) exhibits high sensitivity to structural perturbations. In addition, in any
conformation without steric overlaps the van der Waals energy term is favorable, resulting in
a number of local minima. Since most random perturbations yield overlaps, the local minima
are separated by high energy barriers. In the conformations without overlaps, the solute-solute
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and solute-solvent interfaces are equally well packed, and thus the intermolecular van der
Waals interactions in the bound state are largely balanced by solute-solvent interactions in the
free state. Therefore, restricting consideration to such conformations, both ΔEvdw and the van
der Waals contributions to the desolvation free energy can be removed, and the binding free
energy is reduced to the smooth components described by (3). Thus, in local minima in which
the internal and van der Waals terms are close to zero, the free energy surface is essentially
determined by the “smooth” free energy component ΔGs.

B. Implications for Global Optimization and Our Method
Summarizing the discussion thus far it is evident that the free energy function in (2) has a huge
number of local minima caused by high-frequency terms; primarily the van der Waals term.
Even if one ignores changes in the interface side-chains, local minimization in SE(3)[2]
enhanced with multistart would have to be quite lucky to approach a global minimum in some
reasonable time. Generic global optimization approaches (e.g., those supported by GAMS
[13]) typically require some regularity conditions (e.g., twice continuously differentiable
functions) and are not designed for minimizing complex free energy functions having a huge
number of local minima. A deterministic branch-and-bound global optimization method, the
αBB method (see [5]), has been a part of a successful protein-folding approach [14] but it can
be costly since it systematically explores all of the search region. The same will be true for
other deterministic approaches. In fact, this is part of the motivation of the hybrid approach by
Klepeis et al. [15] that combine αBB with a randomized search approach using ideas from
genetic algorithms. To the best of our knowledge, the only systematic optimization method
consistently applied in protein-protein docking is simulated annealing [6]. The CGU method
[9], which motivated our work, has also been used in protein folding.

Fortunately, the funnel-like shape of the energy function can provide some guidance. Suppose
we have identified (by FFT filtering and clustering) a number of conformations in the native
energy funnel and we seek to determine the native conformation. The low-frequency energy
terms [cf. (3)] form a smooth function which can often be well approximated by a convex
quadratic. To exploit this structure we work on the envelope surface spanned by the set of local
minima. This surface inherits the smooth behavior of the low-frequency energy terms. More
specifically, we generate a large number of local minima and construct a convex quadratic
function that forms the tightest underestimator of all of them. This quadratic function suggests
the location of the deep energy valley containing the native structure. We use this information
to iteratively refine our search. We note that this approach does not need access to individual
energy terms; it only requires access to a program evaluating ΔG.

III. SDU: SEMIDEFINITE UNDERESTIMATOR METHOD
SDU consists of two key components: i) underestimating the surface spanned by the local
minima [see Fig. 1 (right)], and ii) using the underestimator to guide further exploration.

A. Constructing an Underestimator
Let us denote by f : ℝn → ℝ the free energy function we seek to minimize and assume we have
obtained a set of K local minima ϕ¹,…,ϕK of f(·). We are interested in constructing a convex
quadratic function U(ϕ) that underestimates f(·) at all local minima ϕi, i = 1,…,K. Let

where Q ∈ ℝn×n is positive semidefinite (hence, U(·) is convex), b ∈ ℝn, and c is a scalar.

Paschalidis et al. Page 5

IEEE Trans Automat Contr. Author manuscript; available in PMC 2009 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Using an L1 norm as a distance metric the problem of finding the tightest possible such
underestimator U(·) can be formulated as follows:

(4)

where the decision variables are Q, b, and c, and “⪰ 0” denotes positive semidefiniteness.

Let now introduce vectors b+, b− ≥ 0, scalars c+,c− ≥ 0 satisfying b = b+ − b− and c = c+ −
c−, and slack variables s = (s1,…,sK). Define the block diagonal matrix

(5)

Define F0 ≜ diag(diag(0), −diag(e)), Fj ≜ diag(ϕj ϕj′, diag(ϕj), −diag(ϕj), 1, −1, diag(ej)), for
all j = 1,…,K, where 0 is the (3n + 2)-dimensional zero vector, e is the K-dimensional vector
of ones, and ej is the jth unit vector. Let also Ei,j denote the (3n+K+2)×(3n+K+2) matrix with
all elements equal to zero except the (i,j)th element which is equal to 1. Then, (4) can be written:

(6)

where the decision variable is the matrix Y. Problem (SDP-P) in (6) is a semidefinite
programming (SDP) problem (see [16] or [17]). SDP problems can be solved efficiently using
interior-point methods [16]. General purpose solvers for SDP problems are readily available
(e.g., [18]).

The dual to (SDP-P) in (6) is the problem

(7)

where the decision variables are the xj’s and wi,j’s. Problem (LMI-D) can be seen as the problem
of minimizing a linear function subject to a linear matrix inequality (LMI). The following
theorem summarizes the construction of the underestimator.

Theorem III.1—Consider a function f : ℝn → ℝ and a set of local minima ϕ¹,…,ϕK of f(·).
Let (Q,b+,b−,c+,c−,s) form an optimal solution Y of Problem (SDP-P) in (6), where Y is defined
as in (5). Let U(ϕ) ≜ ϕ′Qϕ+(b+ − b−)′ϕ + (c+ − c−). Then U(·) satisfies f(ϕj) ≥ U(ϕj) for all j =
1,…,K, while minimizing ‖(f(ϕ¹),…,f(ϕK)) − (U(ϕ¹),…,U(ϕK))‖1. Moreover, the dual to
Problem (SDP-P) is the LMI problem (LMI-D) in (7).
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Hereafter, we will say that a function U(·) satisfying the statement of Theorem III.1
underestimates f(·) at points ϕ¹,…,ϕK. Fig. 1 (Right) illustrates such an underestimator.

B. Sampling
Suppose we are seeking the native conformation in some region ℬ. Using a set of local minima
ϕ¹,…,ϕK ∈ ℬ of f(·) we construct an underestimator U(·) as described in Section III-A.
Depending on the samples we used, and assuming that the constructed underestimator reflects
the general structure of f(·), the global minimum of U(·), say ϕP, is in the vicinity of the global
minimum of f(·). We will be referring to ϕP as the predictive to conformation.

Clearly, the distance of the predictive conformation from the native one depends on whether
the underestimator is constructed using a sufficiently rich set of local minima. However, even
if that is the case, locating the global minimum is difficult since van der Waals interactions
create a large enough number of local minima around the native conformation. Our strategy is
to sample in the area around ϕP such that conformations close to ϕP are more likely to be
selected. In addition, conformations with high enough energy can safely be ignored. This can
be achieved by using the following probability density function (pdf) in ℬ:

where Umax = maxℬ U(ϕ) and A denotes the integral in the denominator.

To generate random samples in ℬ using the above pdf we will use the so called acceptance/
rejection method. Let h(ϕ) = 1/V be the uniform pdf in ℬ where V = ∫ℬ dϕ. Notice that

and set R(ϕ) equal to the ratio of the left hand side over the right-hand side of the above, i.e.,

In order to discard high energy conformations we are interested in sampling points in ℬ with
associated probability density in some interval [ζ,1], where ζ ∈ [0,1). The algorithm in Fig. 2
outputs such a sample point. To see that notice that in Step 1 we generate uniformly distributed
samples in the set {(x,y) | x ∈ ℬ,y ∈ [ζ,1]}. The rule of Step 2 accepts uniformly distributed
samples in {(x,y) | x ∈ ℬ,ζ ≤ y ≤ g(x)}. Thus, the output ϕ of the algorithm is distributed in ℬ
according to g(·).

We finally note that the algorithm in Fig. 2 requires knowing Umax. In many cases, this is
straightforward to obtain. Consider for instance the case where ℬ is a polyhedron; one special
case of practical interest is when ℬ is a box set of the type {x | li ≤ xi ≤ υi, i = 1,…,n}. Then,
since U(·) is convex it achieves its maximum at an extreme point of ℬ. Alternatively, one can
use an estimate of Umax, e.g., maxi U(ϕi).

C. The SDU Algorithm
We now have all the ingredients to present our SDU algorithm. The algorithm seeks a global
minimum of f(·) in some region ℬ of the conformational space; it is presented in Fig. 3.
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Throughout the algorithm, we maintain a set ℒ of interesting local minima obtained so far
including the best such local minimum denoted by ϕG. The evolution SDU depends on the
parameters K,ζ ∈ [0,1], m and ϵ, and on the way we define the neighborhood (ϕP) in Step
5. These will be appropriately tuned in every problem instance.

A couple of remarks on the proposed SDU algorithm are in order. The algorithm combines
exploration with focalization in energy favorable regions of the conformational space (energy
funnels). The exploration is in fact biased towards these energy favorable funnels. This is
intended to avoid computationally expensive exploration in areas of the conformational space
that are not likely to contain the native structure.

We should point out that we make no claims that SDU converges to the global minimum of f
(·). In fact, it is straight-forward to see that it will not find the global minimum if we do not
use enough local minima to determine the underestimator or when f(·) is arbitrary and does not
have a funnel-like shape. However, later in the paper we will provide arguments that
(probabilistically) guarantee convergence for funnel-like functions under a suitable set of
conditions.

IV. THE IMPORTANCE OF THE UNDERESTIMATOR’S STRUCTURE
Next, we review some earlier work, study its limitations, and assess the relationships with SDU.
Let us consider the SDU algorithm under the following key modifications.

1. Underestimation: In deriving U(·) impose the constraint that Q is a diagonal positive
semidefinite matrix. Then the semidefinite constraint can be replaced by a non-
negativity constraint for all diagonal entries. It follows that Problem (SDP-P) can be
reformulated as a linear programming problem (LP) which can be easily solved.

2. Sampling: Replace our biased sampling with random (uniform) sampling in the
neighborhood of (ϕP) of ϕP.

The resulting method is the so called convex global underestimator (CGU) method by Phillips
et al. [9] for minimizing funnel-like free energy functions in molecular modeling problems.
We will argue that these two differences with our proposed SDU drastically affect the
performance of the corresponding optimization method. In particular, limiting the
underestimator search to the class of canonical parabolas substantially reduces the efficiency
and accuracy of CGU for general problems where the surface spanned by the local minima is
not typically aligned with the canonical coordinates defining the underestimating parabola.
Dennis and Vajda [7] report many such cases where CGU performs poorly. Some attempts in
addressing this limitation have been made by Rosen and Marcia [19] but again handling special
cases.

A. Comparing the CGU and SDU Underestimating Approaches
As we discussed in Section III, a quadratic underestimator will not be informative if either i)
f(·) is not funnel-shaped and the envelope of local minima can not be well approximated by a
convex quadratic, or ii) if we do not use a rich enough set of local minima in constructing U
(·). In the following we wish to remove these two potential sources of poor performance in
order to better assess the underestimating power of CGU and SDU. More specifically, we
consider the “ideal” case of underestimating a convex quadratic given by

. We assume that i) an infinite number of sample points of f(·)
in some compact sampling region ℬ is at our disposal when we construct the underestimator,
and ii) f(·) is continuous on ℬ. The construction of the underestimator based on utilizing all
sample points in ℬ can be formulated as the following (infinite-dimensional) optimization
problem:
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(8)

where the decision variables are the (yet unspecified) parameters defining U(t).

Suppose first that we use the SDU underestimating approach and seek to construct a function
U(t) = t′Qt + b′t + c, where Q ⪰ 0. Consider the problem in (8) for such a U(t). The next
proposition is immediate.

Proposition IV.1—SDU can underestimate f(·) exactly, in particular,  is
an optimal solution of (8).

We next consider the CGU underestimation approach. Specifically, we seek to construct a
function U(t) = t′Dt + b′t + c, where D = diag(d1,…,dn) and di ≥ 0 for i = 1,…,n. Consider the
problem in (8) for such a U(t). For simplicity of exposition let us assume that the search region
ℬ is the hypercube defined as ℬ = ℬ1 × … × ℬn where ℬi = [li, ui] and ui − li = T for all i = 1,
…n. We denote ,

and z = (d1,…,dn,b1,…,bn,c). Then, after some algebra, (8) becomes equivalent to

(9)

where z is the decision vector. Note that (LSIP-P) involves an infinite number of constraints.
A problem with such a structure is known as the linear semi-infinite programming (LSIP)
problem (see [20]). Its dual can be formulated in measure space as follows:

(10)

where M+(ℬ) denotes the set of non-negative regular Borel measures on ℬ.

1) Approximate Problem Converges to LSIP—Next we explore the relationship of the
underestimator obtained by solving (LSIP-P) in (9) to the underestimator obtained as in Section
III, namely, by using the function values f(t¹),…,f(tK) at a set of samples t¹,…,tK from ℬ.

We introduce some additional terminology and notation. Let M2n+1 be the cone generated by
a(t) for t ∈ ℬ, i.e., M2n+1 = {w | w = ∫ℬ a(t)dμ(t), μ ∈ M+(ℬ)}. We denote by int(M2n+1) the
interior of M2n+1. We also denote by  the level sets of the (primal) problem (LSIP-P),
in particular, . We will say that the primal (LSIP-
P) is consistent if it has a feasible solution. We will say that (LSIP-P) is superconsistent if the
interior of the feasible set is non-empty, that is, if there exist z* such that a′ (t)z* < f(t) for all
t ∈ ℬ (this is Slater’s condition). Similarly, we will say that the dual (LSIP-D) is consistent if
h ∈ M2n+1; the dual will be termed superconsistent if h ∈ int(M2n+1).
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Lemma IV.2: Assume that (LSIP-P) is consistent. Then, (LSIP-D) is superconsistent and all
primal level sets  are bounded.

Proof: Recall that we have assumed ℬ to be compact and f(·) continuous on ℬ. We will first
show that (LSIP-D) is superconsistent. To that end, note that the uniform measure in ℬ is a
feasible solution of (LSIP-D), which implies that h ∈ M2n+1. Furthermore, the boundary of
M2n+1 consists of vectors a(t*) for some t* ∈ ℬ. Observe that h is not on the boundary, i.e.,
h ∈ int(M2n+1) which establishes the superconsistency of (LSIP-D). Using a result from [20,
Th. 6.11] the boundedness of all primal level sets follows.

Next consider an approximate finite problem constructed from (LSIP-P) by only enforcing a
finite number of constraints, say for t¹,…,tK ∈ ℬ. More generally, let  be a finite subset
of ℬ and form the LP

(11)

which can be seen as a finite approximation of (LSIP-P). Define  as
a metric of density of  in ℬ. Then, the boundedness of all (LSIP-P) level sets suffices to
guarantee the convergence of the (LP-P) solutions to the (LSIP-P) solutions. The result, which
is from [20], is provided in the following theorem.

Theorem IV.3: For every ϵ > 0 there exists δϵ > 0 such that for all 
it is the case that (LP-P) is solvable, and for every solution  of (LP-P) there exists a
solution z* of (LSIP-P) such that .

The result is insightful because it suggests that when we use enough samples the quality of the
CGU underestimator does not depend on sample selection but rather on the fundamental
structure of the underestimator function.

2) Limitations of the CGU Underestimator—We now have the necessary machinery to
analyze the CGU underestimator. In particular, we consider a class of functions to be
underestimated and demonstrate how the CGU underestimator fails.

Suppose we wish to underestimate , where

(12)

n ≥ 2, αi > 0 for all i, β < 0, and α1α2 − β² ≥ 0 to guarantee . This choice of  can be seen
as the simplest  with off-diagonal elements; the argument we present next can be generalized
to more general cases as well. Let the underestimator be given by U(t) = t′Dt + b′t + c, where
D = diag(d1,…,dn) ⪰ 0, b = (b1,…,bn) and c ∈ ℝ. The CGU underestimator is informative if
it manages to locate the minimum of f(t). In particular, we would like the minimizer of U(t) to
coincide with the minimizer of f(t). We will show by contradiction that this is not possible in
general.

Consider an instance of the underestimation problem at hand where ℬ is the hypercube defined
as ℬ = ℬ1 × … × ℬn where all ℬi’s are identical and given by ℬi ≜ [−2T/3,T/3] for all i = 1,
…,n and T > 1. (LSIP-D) takes the form
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(13)

where Eμ[·] denotes expectation with respect to μ, I2 = (1/T) ∫ℬ1 t²dt = T²/9, and I1 = (1/T)
∫ℬ1 tdt = −T/6. Since β < 0 the dual problem is equivalent to the problem of selecting a measure
μ in order to maximize Eμ[t1t2] subject to the constraint that the first and second moments of
the marginal distributions under μ match those of the uniform distribution (cf. definition of h
in Section IV-A). However, for any measure μ ∈ M+(ℬ) the expectation Eμ[(t1 − t2)²] is
nonnegative, hence

It follows that at optimality the above inequality holds with equality, that is, t1 and t2 are
colinear.

Next, let V(LSIP-P) and V(LSIP-D) denote the optimal values of (LSIP-P) and (LSIP-D),
respectively. We have already shown (cf. Lemma IV.2) that (LISP-D) is superconsistent.
Moreover, the argument in the previous paragraph suggests that V(LSIP-D) is finite.
Consequently, (LSIP-D) has an optimal solution and V(LSIP-D) = V(LSIP-D) (cf. [20, Th. 6.9]).
In the terminology of [20] we have perfect duality. The necessary and sufficient conditions for
optimality of a primal-dual pair are primal feasibility, dual feasibility, and perfect duality.

Let (ẑ, μ ̂) be an optimal primal-dual pair, where , and μ ̂ is a measure
in M+(ℬ) with the properties identified previously. The optimality conditions are

(14)

(15)

(16)

Consider now the primal feasibility condition (14) at t = 0 and at t = −2Te/3. These two
inequalities along with (16) imply ĉ = 0. Furthermore, (14) at t = −Te/3 and at t = Te/3 along
with (16) yield

(17)
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Next, fix some j ∈ {3,…,n} and some k > 3/T and apply (14) at t such that tj = −1/k, tl = 1/k
for all l ≠ j and at t such that tj = 1/k, tl = −1/k for all l ≠ j. These, along with (17), ĉ = 0, and
(16), imply

(18)

Now, for any j ∈ {3,…,n} and some k > 3/T apply (14) at t such that  for all
l ≠ j and at t such that tj = 0, tl = 1/k for all l ≠ j. These inequalities, along with (17), ĉ = 0, and
(16), lead to

(19)

To proceed consider ẑ with ĉ = 0 satisfying (18) and (19). Let
. We will show that (x,y) = (0,0). Assume otherwise. Using

(18) and (19) the primal feasibility condition (14) reduces to

(20)

Let 0 < δ < T/3 and apply the above at (t1,t2) = (δ, −δ) and (t1,t2) = (−δ, δ). It follows

If y ≠ 0, by selecting δ close enough to zero we can violate primal feasibility. Therefore, y =
0. Further, let 1 < k < T and apply (20) at (t1,t2) = (k/3,1/3) and (t1,t2) = (1/3,k/3). It follows:

If x ≠ 0, by selecting k close enough to one we can violate primal feasibility. Therefore, x = 0.
In summary, we have

(21)

The minimum of the CGU underestimator, say t ̂, is given by t ̂ = −(1/2)D ̂−1b ̂ which due to
(Section IV-A.II) yields

However, the minimum of f(·), say t*, is given by
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Clearly, t ̂ is different from t ̂ in general and the CGU underestimator can not locate the minimum
of f(·). We summarize the result of this subsection in the following theorem.

Theorem IV.4: Let , where  is given in (12). Further, let Û(t) = t′D ̂t + b ̂
′t + ĉ be the function formed from the optimal solution to (LSIP-P), i.e., the optimal CGU
underestimator to f(t). Then, in general, the minimizer of the underestimator is different from
the minimizer of f(t).

The result of Thm. IV.4 is significant since it establishes that the CGU underestimator cannot
locate the minimum of f(·) even if it uses an infinite number of samples. In contrast, according
to Proposition IV.1 and Theorem IV.3, SDU will find the minimum of f(·) as the number of
samples grows to infinity.

V. On SDU’s Convergence
In this section, we provide a rough analysis of the SDU algorithm and show that under
appropriate conditions it converges to the global minimum of f(·). Since the free energy
functions we seek to minimize are funnel-like, for the remainder of this section we will impose
a set of structural assumptions on f(·) and the search region ℬ that reflect this structure. We
denote by epi(f) the epigraph of f(·) which is defined as epi(f) = {(ϕ,w) | ϕ ∈ ℬ, f (ϕ) ≤ w}. We
also denote by conv( ) the convex hull of any set .

Assumption A
Assume that f(ϕ) satisfies the following set of conditions: i) it is continuously differentiable; ii)
f(·) has a unique global minimum in ℬ; iii) ℬ is compact; iv) for all local minima ϕ of f(·) there
exists an open set such that ϕ is the unique minimizer of f(·) within this set; (iv) the extreme
points of conv(epi(f)) lie on a quadratic function Ũ(ϕ) = ϕ′Q ̃ϕ + b′ϕ+c;̃ v) Ũ(ϕ) has a unique
global minimum which is identical with the global minimum of f(·) in ℬ.

For functions that satisfy Assumption A we will say that they have a funnel-like shape [see
Fig. 1 (Right)]. The next proposition provides a sufficient condition for exactly determining
the quadratic function Ũ(·) which tightly underestimates all local minima of f(·).

Proposition V.1
Let Assumption A prevail. Consider the SDU algorithm of Fig. 3 and suppose that in Step 1
we obtain at least K = ((n+1)(n+2))/2 distinct local minima ϕ¹,…,ϕK of f(·) which are extreme
points of conv(epi(f)). Then, the underestimator U(·) obtained in Step 2 is identical to Ũ(·).

Proof—Constructing the underestimator U(·) is equivalent to solving problem (4). Clearly,
(Q, b, c) = (Q̃, b ̃, c)̃ is an optimal solution because it is feasible and achieves a zero cost. At
local minima ϕj we have U(ϕj) = f(ϕj) for all j = 1,…,K which form a linear system of equations.
This linear system has (n² + n)/2 unknown elements of Q plus n unknown elements of b plus
the unknown value of c. It follows that for K ≥ ((n + 1)(n + 2))/2 we obtain the exact quadratic
function which passes from all extreme points of conv(epi(f)).

The following theorem establishes that given sufficient sampling of the search region ℬ the
SDU underestimation procedure can locate the global minimum of f(·) which we denote by
ϕ*.

Theorem V.2
Let Assumption A prevail. Consider the SDU algorithm of Fig. 3 and assume that ℬ contains
at least ((n + 1)(n + 2))/2 distinct local minima of f(·) which are extreme points of conv(epi
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(f)). Suppose that in Step 1 of the algorithm we obtain K local minima ϕ¹,…,ϕK of f(·) starting
from uniformly distributed starting points in ℬ. Then, the global minimum ϕP of the
underestimator U(·) obtained in Step 2 of the algorithm converges in probability to the global
minimum ϕ* of f(·) as K → ∞, namely, limK→∞ P[ϕP = ϕ*] = 1.

Proof—Due to Assumption A function f(·) satisfies all the conditions of the capture theorem
[21, Prop. 1.2.5]. In particular, for every local minimum ϕj of f(·) which is an extreme point of
conv(epi(f)) there exists an open set j = {ϕ | ‖ϕ − ϕj‖ < ϵj} such that any convergent local
minimization algorithm initialized with any point in j converges to ϕj.1 We assumed that ℬ
contains at least M = ((n + 1)(n + 2))/2 distinct local minima of f(·) which are extreme points
of conv(epi(f)). Without loss of generality let ϕ¹,…,ϕM ∈ ℬ and set ρj = (∫ϕ∈ j∩ℬ dϕ)/(∫ϕ∈ℬ
dϕ), for j = 1,…,M. Note that there exists an ϵ > 0 such that ρj > ϵ for all j. By virtue of
Proposition V.1 we need at least M = ((n + 1)(n + 2))/2 distinct local minima of f(·) which are
extreme points of conv(epi(f)) in order to exactly construct Ũ(ϕ); this suffices to yield ϕ*. Let
P [success] the probability that we do indeed obtain M distinct local minima of f(·) which are
extreme points of conv(epi(f)) by randomly sampling K points in ℬ and performing local
minimization starting from every sample. Let also j the event that such random sampling
yields ϕj, j = 1,…,M, at least once. For any event  we denote by ̅ its complement. We have

(22)

The first inequality shown previously is due to the fact that on the right-hand side we consider
only local minima ϕ¹,…,ϕM; ℬ may contain additional local minima which are extreme points
of conv(epi(f)). The second inequality above uses the union bound. Next observe that since the
ρj are bounded away from zero the right hand side of (22) converges to one as K → ∞.

We can think of Theorem V.2 as a simple sanity check of the SDU underestimation approach.
It implies that given an appropriate funnel-like structure, SDU can locate the global minimum
of the free energy function with probability approaching one as the number of random samples
in ℬ increases. Actual free energy functions are expected to deviate from the structure put forth
in Assumption A. In particular, the local minima of f(·) may not be tightly underestimated by
a quadratic function and/or the global minimum of a quadratic underestimator may not coincide
with ϕ*. These factors have motivated the form of the SDU given in Fig. 3.

VI. NUMERICAL RESULTS FOR A SET OF TEST FUNCTIONS
In this section, we apply SDU to test functions that were selected to resemble free energy
functions. Throughout we compare SDU with CGU.2 Here, and for all numerical results
reported in this paper, we have used the SDPA [18] semidefinite programming solver.

The test functions we use are from [7] and are given by

1For simplicity of the exposition we assume that we can determine ϕj exactly. Local minimization algorithms can approach ϕj arbitrarily
closely. Using continuity arguments a similar proof can establish that ϕP converges in probability to an arbitrarily small neighborhood
of ϕ* as K → ∞.
2We followed the original CGU algorithm as described in [9] and implemented in code made available by the authors of [9].
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(23)

where ϕ = (ϕ1,…,ϕn), a = 1, b = 2, c = 3, d = 4, α = 3π, β = 4π, and γ = 3.3π. Note that the origin
is the global minimum of f(·). The parameter A determines the amplitude of the high frequency
term f3(·), thus, the larger A the more “noisy” and harder to optimize we expect f(·) to be.

First, and to illustrate once again the flexibility that a general quadratic underestimator adds,
we consider a version of the test function in (23) for n = 2 and rotate the coordinate system
with respect to the two axis by 45°.3 Fig. 4 (top) depicts the underestimators (along a certain
vertical hyperplane) obtained by CGU and SDU, denoted by UCGU(·) and USDU(·) respectively,
intheir first iteration based on 20 (= 8n + 4 for n = 2 as required by CGU) uniformly sampled
local minima. UCGU(ϕ) has the global minimum at (0.5225, −0.7238) and USDU(ϕ) at (0.2669,
0.4581), which is closer to the true global minimum (0, 0). The bottom figure in Fig. 4 depicts
the contours of the two underestimators illustrating that they predict rather different global
minima.

Our next example, concerns the six-dimensional version of the test function in (23). This is in
fact the appropriate space for rigid docking problems (translation and rotation). We applied
both CGU and SDU and report various indicators of their performance. For both cases the
search region ℬ was selected as the box {ϕ | −100 ≤ ϕi ≤ 10,i = 1…,n} so that the global
minimum at the origin is not at the center of ℬ. We used 8n + 4 initial samples in ℬ as required
by CGU (which is more than what Proposition V.1 suggests for SDU when n = 6). We use the
following notation: i)  denotes the initial predictive conformation, that is, the minimum of
the initial underestimator we obtain (Step 2 of SDU); ii)  denotes the local minimum of f(·)
obtained by starting the local minimization at ; iii)ϕG denotes the best local minimum of f
(·) found throughout the evolution of the algorithm; iv) D(ϕ) denotes the (Euclidean) distance
of a conformation ϕ from the known optimal conformation which is at the origin, i.e.,

; v) η denotes a metric of success of the corresponding algorithm adjusted
to the difficulty of the optimization problem, more specifically, η = 1{D(ϕG) < 1} for the case
A = 10, η = 1 {D(ϕG) < 1.2}, for the case A = 20, and η = 1{D(ϕG) < 1.5} for the case A = 30;
and, finally, vi) nf denotes the number of times the corresponding algorithm evaluates the
function f(·) during its course.

Table I reports results for the function in (23) and Table II (left) reports results for the function
in (23) when we rotate the coordinate system by 60° with respect to all six axes. In each of
these tables we considered three problem instances for A equal to 10, 20, and 30, respectively.
For each case, we performed 100 independent runs of both CGU and SDU.4 The various values
we report are the means of the corresponding quantities over the 100 independent runs. We
also report the corresponding standard deviations; σX denotes the standard deviation of X.

3That is, we minimize f(R−1ϕ) where R is the product of axis rotation matrices, one for each axis.
4Note that for each run a number of random samples in ℬ are been generated.
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We should note that the most important performance metric is the closeness of the conformation
found to the best one (measured by D(ϕG) and η). There are a number of reasons for this
preference, including that i) the 3-D structure of the bound complex determines its function,
ii) molecular simulation may be used to discover the native conformation starting from a
conformation close to it, and iii) the energy evaluation models used by molecular docking
algorithms are approximations of the actual free energy function. As a result, a conformation
closer to the native one (like the ones SDU discovers) is more useful than some deep local
minima further away (like the ones CGU may discover).

For the cases where the test function is not rotated, CGU, not surprisingly, performs reasonably
well. SDU produces conformations with somewhat higher energy but closer to the native one.
The performance difference between SDU and CGU is more dramatic in the cases where the
test function has been rotated. In the three cases considered CGU fails to discover a
conformation close enough to the native one while SDU largely succeeds (observe the
differences in η). The key reason, we believe, is that SDU can better capture the structure of
the native funnel, which is used to bias sampling in that area. This latter point is perhaps more
clearly illustrated in Fig. 5. We draw histograms of the distance of the predictive conformation
during the evolution of both algorithms. Histograms k = 1,…,6 appearing from top to bottom
correspond to  obtained at the kth iteration. The horizontal axis plots the values of

 for the bottom graph) and the vertical axis plots the percentage of problem
instances (out of the 100 runs). It can be seen that SDU starts with a much better initial
predictive conformation than CGU and maintains its predictive conformation within 2 units of
the native one at all subsequent iterations. The best local minimum found by SDU is not always
within 1 unit, but in 84% of the cases it was within 1.5 unit (versus 4% with CGU).

We also compared SDU and CGU to a commonly used simulated annealing algorithm, the
ASA algorithm in [22] (see Table II). Even though ASA reaches some deep local minima it
ends up converging far away from the global minimum.

In terms of computational efficiency and running time, CGU and ASA take on the order of a
few seconds in a top-of-the-line PC and SDU takes on the order of 5 minutes without particular
effort at optimizing the code. The key reason is that SDU solves a number of (relatively large)
SDP problems. However, SDU performs much fewer function evaluations (by a factor of 3
compared to CGU and by a factor of 1000 compared to ASA as it is evident by the nf values
in Table II). For the test functions we considered in this section the function evaluation time
is negligible using (23). Yet, in docking actual proteins function evaluations (e.g., using
CHARMM [23] or other complex potentials) dominate all other tasks; for instance, in the
results we report in the next section function evaluations take more than 90% of the running
time.

VII. APPLICATIONS IN RIGID-BODY PROTEIN DOCKING
In this section, we report results from applying SDU to a number of protein-to-protein docking
instances. We assume that both proteins are rigid bodies. This is certainly true for their
backbones and, as we will see, we will allow some flexibility in determining the conformation
of the side chains in the interface between the two proteins. We consider 3-D problems where
one protein is held fixed, both proteins are oriented based on information we obtain from the
known bound structure, and we seek to determine the position of the second protein in the
bound structure with respect to the first one. We constrain these three translational variables
to be in a 10Å cube centered around the origin of the coordinate system, which corresponds to
the native position of the ligand. That is, we have already identified the dominant funnel of the
energy function and seek to solve the medium-range energy minimization problem within this
funnel.
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The (free) energy functional we minimize includes van der Waals interactions (ΔEvdw), the
desolvation energy (ΔEdes) and the electrostatic energy (ΔEelec). We use the software package
CHARMM [23] to evaluate the free energy and to perform local minimization. We allow side-
chains to be flexible during the local minimization phase; this is critical as side-chains in the
interface between the two proteins can not be considered rigid and they are packed in a way
that minimizes the overall free energy of the bound complex.

In Table II (right) and Table III we report results for the complexes 1BRS (barnase/barstar),
1MLC (a monoclonal antibody and lyzozyme complex), and 2PTC (a trypsin-inhibitor
complex). The bound structure for each case has the ligand centered at the origin, that is, the
optimal solution is (0, 0, 0). The initial search region ℬ is a 10Å cube. In each iteration (indexed
by i in the tables), we report the best structure found so far, ϕG, the corresponding energy f
(ϕG) (in kcal/mol), and the RMSD distance D(ϕG) from the native structure (inÅ). As discussed
earlier, the key measure of success is the proximity of D(ϕG) to zero.

The evolution of SDU in all three complexes considered is depicted in Fig. 6. A better
illustration is given in Fig. 7 for the 1BRS complex. In both figures we plot the fixed receptor.
We generated 28 random positions of the ligand in the initial search region and in the left figure
we plot a sphere at the center of the ligand for each one if these 28 ligand positions. Spheres
in lighter shades of gray correspond to lower energy conformations. The position of the native
ligand is shown as a dotted sphere and pointed by an arrow. After performing the first iteration
of SDU we sample a new set of ligand positions using the procedure in SDU’s Step 5 (b) (cf.
Fig. 3). The centers of these ligands are depicted in the right figure. The corresponding
structures are both very close to the native one and have low energies.

We conclude by noting that the starting point for our medium-range optimization is the cluster
of best conformations produced by the techniques in [10]. As seen in Fig. 6, these produce
conformations within 3–5 Å from the native one. Our method is able to reduce this distance to
less than 1 Å in all three complexes considered. In most cases this is considered a very
successful identification of the native conformation as the (approximate) energy models used
do not provide a much greater degree of accuracy.

VIII. CONCLUSION
We introduced a new method for minimizing free-energy functions appearing in molecular
docking and other important problems in computational structural biology. These energy
functions are notoriously hard to minimize as they consist of terms acting in disparate space-
scales and have a huge number of local minima. Yet, in certain areas they exhibit a funnel-like
shape which we use to our advantage.

Our method works on the surface spanned by local minima. We developed a technique based
on semidefinite programming to form a general convex underestimator of the energy function.
The underestimator guides random, yet biased, exploration of the energy landscape. We
established, theoretically as well as numerically, that our method performs better than an
alternative (CGU) method. Finally, we applied our algorithm to some protein-protein docking
problems and showed that the resulting conformation is extremely close to the native one
(within 1 Å RMSD). This improves upon the 3–5 Å RMSD that current state-of-the-art methods
produce.
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Fig. 1.
(Left) Protein docking funnels and the operation of the docking method SmoothDock [8].
(Right) A funnel-like shaped function and a quadratic function underestimating the surface
spanned by the local minima.
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Fig. 2.
Algorithm generating a sample in ℬ drawn from g(·) with associated density in [ζ,1].
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Fig. 3.
SDU algorithm.
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Fig. 4.
SDU derives tighter underestimators.
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Fig. 5.
Histograms of predictions and final solutions reported by CGU and SDU for the case
corresponding to  = 30 in Table II (left).
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Fig. 6.
Evolution of SDU for the 1BRS, 1MLC, and 2PTC complexes.
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Fig. 7.
Illustration of the 1BRS docking procedure.
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