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A Lyapunov Proof of an Improved Maximum Allowable
Transfer Interval for Networked Control Systems

Daniele Carnevale, Andrew R. Teel, and Dragan Nešić

Abstract—Simple Lyapunov proofs are given for an improved (relative
to previous results that have appeared in the literature) bound on the
maximum allowable transfer interval to guarantee global asymptotic or
exponential stability in networked control systems and also for semiglobal
practical asymptotic stability with respect to the length of the maximum
allowable transfer interval.

Index Terms—Lyapunov, networked control, nonlinear, stability.

I. INTRODUCTION

A networked control system (NCS) is composed of multiple feed-
back control loops that share a serial communication channel. This ar-
chitecture promotes ease of maintenance, greater flexibility, and low
cost, weight and volume. On the other hand, if the communication is
substantially delayed or infrequent, the architecture can degrade the
overall system performance significantly. Results on the analysis of an
NCS include [1]–[5]. In an NCS, the delay and frequency of communi-
cation between sensors and actuators in a given loop is determined by a
combination of the channel’s limitations and the transmission protocol
used. Various protocols have been proposed in the literature, including
the “round robin” (RR) and “try-once-discard” (TOD) protocols dis-
cussed in [1] and [2]. When the individual loops in an NCS are designed
assuming perfect communication, the stability of the NCS is largely de-
termined by the transmission protocol used and by the so-called “max-
imum allowable transfer interval” (MATI), i.e., the maximum allow-
able time between any two transmissions in the network. Following [1]
and [2], we consider the problem of characterizing the length of the
MATI for a given protocol to ensure uniform global asymptotic or ex-
ponential stability.

In [4], the authors were able to improve on the initial MATI bounds
given in [1] and [2] by efficiently summarizing the properties of proto-
cols through Lyapunov functions and characterizing the effect of trans-
mission errors through Lp gains. They established uniform asymptotic
or exponential stability and input–output stability when the MATI 2
[0; �MATI] with

�MATI �
1

L
ln 1 +

1� �



L
+ �

(1)

where � 2 [0; 1) characterized the contraction of the protocol’s
Lyapunov function at transmission times while L > 0 described its
expansion between transmission times, and 
 > 0 captured the effect
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TABLE I
BOUNDS COMPARISON FOR TOD/RR PROTOCOLS: BATCH REACTOR IN [4]

of the error signals on the behavior of the ideal system through an Lp

gain.1

In this note, we will give a simple Lyapunov proof of an improved
(larger) MATI bound, expressed in terms �, L and 
 corresponding to
the case of L2 gains. (A similar approach can be taken for the general
Lp case.) In particular, we establish uniform asymptotic or exponential
stability when

�MATI �

1
Lr

arctan r(1��)

2 ( �1)+1+�

 > L

1
L

1��
1+�


 = L

1
Lr

arctanh r(1��)

2 ( �1)+1+�

 < L

(2)

and note that in the first and last expressions we use respectively the
trigonometric and hyperbolic functions, where

r :=



L

2

� 1 : (3)

It is not obvious, except for the case 
 = L, that (2) provides a
larger bound than (1). We will establish that it is an improvement by
first noting that the bound in (1) is the value �1 satisfying

_�1 = �L�1 � 
 �1(0) = 1 �1(�1) = � (4)

whereas the bound in (2) is the value �2 satisfying

_�2 = �2L�2 � 
 �22 + 1 �2(0) = ��1 �2(�2) = � (5)

and that necessarily �2 > �1 for all L > 0, 
 > 0 and � 2 (0; 1). The
above equations can be obtained from appropriate Lyapunov arguments
that are presented later in our proofs. The difference in the bounds for
the batch reactor system considered in [4] is reported in Table I. (For
more discussions, see Remark 2.) The improvement is on the order of
10%. (The values L = 15:73, � = 1=2, 
 = 15:9222 for the TOD
protocol and 
 = 21:5275 for the RR protocol are reported in [4].) For
some systems, the improvement could be over 50%. See Figs. 1 and 2,
which address separately the case 
 < L and 
 � L.

We emphasize that the contribution of this note is not only a (modest)
improvement in the MATI bound relative to [4] but also a simple Lya-
punov proof. At the same time, we give a direct Lyapunov proof of a
result in [5] which states that if an NCS is asymptotically stable with
perfect communication then it is semiglobally practically asymptoti-
cally stable with respect to �MATI. This proof also generalizes easily
to the case, addressed in [5], where there are exogenous inputs to which
the system with perfect communication is input-to-state stable.

1For convenience, in a minor departure from the description in [4], we use an
inequality rather than a strict inequality in (1) but take 
 to be any number that
is strictly greater than the L gain used in [4].

Fig. 1. Percentage improvement in the MATI bound using Theorem 1 com-
pared to using [4, Th. 4], ~
 = 
=L � 1.

Fig. 2. Percentage improvement in the MATI bound using Theorem 1, com-
pared to using [4, Th. 4], ~
 = 
=L < 1.

II. NOTATION AND DEFINITIONS

We denote by and the sets of real and integer numbers, re-
spectively. Also �0 = [0;+1), and �0 = f0; 1; 2; . . .g. The
Euclidean norm is denoted j � j. A function � : �0 ! �0 is
said to be of class K if it is continuous, zero at zero and strictly in-
creasing. It is said to be of class K1 if it is of class K and it is un-
bounded. A function � : �0 � �0 ! �0 is said to be of class
KL if �(�; t) is of class K for each t � 0 and �(s; �) is nonincreasing
and satisfies limt!1 �(s; t) = 0 for each s � 0. A function � :

�0 � �0 � �0 ! �0 is said to be of class KLL if, for each
r � 0, �(�; r; �) and �(�; �; r) belong to class KL.

We recall definitions given in [6] that we will use to develop a hybrid
model of a NCS. The reader should refer to [6] for the motivation and
more details on these definitions.

Definition 1: A compact hybrid time domain is a set D � �0 �

�0 given by:

D =

J�1

j=0

([tj ; tj+1]; j)
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where J 2 �0 and 0 = t0 � t1 . . . � tJ . A hybrid time domain is
a set D � �0 � �0 such that, for each (T; J) 2 D, D \ ([0; T ] �
f0; . . . ; Jg) is a compact hybrid time domain.

Definition 2: A hybrid trajectory is a pair (dom �; �) consisting of
hybrid time domain dom � and a function � defined on dom � that is
continuously differentiable in t on (dom �) \ ( �0 � fjg) for each
j 2 �0.

Definition 3: For the hybrid systemH given by the open state space
O � n and the data (F;G; C;D) where F : O ! n is continuous,
G : O ! O is locally bounded, and C and D are subsets of O, a
hybrid trajectory � : dom � ! O is a solution to H if

1) for all j 2 �0 and for almost all t 2 Ij := dom �\( �0�fjg),
we have �(t; j) 2 C and _�(t; j) = F (�(t; j));

2) for all (t; j) 2 dom � such that (t; j + 1) 2 dom �, we have
�(t; j) 2 D and �(t; j + 1) = G(�(t; j)).

Hence, the hybrid system models that we consider are of the form

_�(t; j) =F (�(t; j)) �(t; j) 2 C

�(tj+1; j + 1) =G (�(tj+1; j)) �(tj+1; j) 2 D:

We sometimes omit the time arguments and write

_� =F (�) � 2 C

�
+ =G(�) � 2 D (6)

where we denoted �(tj+1; j + 1) as �+ in the last equation. We also
note that typically C \ D 6= ; and, in this case, if �(0; 0) 2 C \ D

we have that either a jump or flow is possible, the latter only if flowing
keeps the state in C . Hence, the hybrid model we consider may have
nonunique solutions.

III. PROBLEM STATEMENT

In this section, we formally state the problem that we consider and
summarize the model of NCS from [4]. In the next section, we will
embed this model within the hybrid framework of [6] by representing
it in the form (6) that is useful in our proofs.

We pursue the controller design technique proposed in [1], [2] and
further developed in [4], [5]. The plant model is given by equations:

_xP = fP (xP ; u)

y = gP (xP ): (7)

The first step in controller design is to ignore the network and design a
stabilizing controller for the plant

_xC = fC(xC ; y)

u = gC(xC): (8)

The second step in the design is to implement the above controller over
the network and determine the value of a network parameter (MATI)
that guarantees that the same controller implemented over the network
will yield stability. Note that this approach is very similar to the emu-
lation approach to controller design of sampled-data systems.

Now we describe the model of NCS. Let the sequence tj ; j 2 �0 of
monotonically increasing transmission times satisfy � � tj+1�tj � �

for all j 2 �0 and some fixed �; � > 0. Note that � is arbitrary and
it is used to prevent Zeno solutions in the model given below. At each
tj , the protocol gives access to the network to one of the nodes i 2
f1; 2; . . . ; `g. We refer to � as the maximum allowable transmission

interval (MATI). Using the plant (7) and controller (8), we introduce
the nonlinear NCS of the following form

_xP = fP (xP ; û) t 2 [tj�1; tj ]

y = gP (xP )

_xC = fC(xC ; ŷ) t 2 [tj�1; tj ]

u = gC(xC)

_̂y = f̂P (xP ; xC ; ŷ; û) t 2 [tj�1; tj ]

_̂u = f̂C(xP ; xC ; ŷ; û) t 2 [tj�1; tj ]

ŷ t
+

j = y(tj) + hy (i; e(tj))

û t
+

j =u(tj) + hu (i; e(tj)) (9)

where xP and xC are, respectively, states of the plant and the con-
troller; y is the plant output and u is the controller output; ŷ and û

are the vectors of most recently transmitted plant and controller output
values via the network; e is the network induced error defined as

e(t) :=
ŷ(t)� y(t)

û(t)� u(t)
=

ey

eu
:

We often use the choice f̂P = 0 and f̂C = 0 which means that the net-
worked version of the output ŷ and control û are kept constant during
the transmission intervals (i.e., the network nodes operate in a similar
manner to a zero order hold).

Note that if NCS has ` links, then the error vector can be partitioned
as follows e = [eT1 eT2 . . . eT` ]

T . The functions hu and hy are typically
such that, if the ith link gets access to the network at some transmis-
sion time tj we have that the corresponding part of the error vector has
a jump. For several protocols, such as the round robin and try-once-dis-
card protocols (see [4]), we typically assume that ei is reset to zero at
time t+j , that is ei(t+j ) = 0. However, we emphasize that this assump-
tion is not needed in general. This allows us to write the models hu,
hy for protocols commonly found in the literature (see [4] and [5] for
more details).

We combine the controller and plant states into a vector
x := (xP ; xC) and using the error vector defined earlier e = (ey; eu),
we can rewrite (9) as a system with jumps that is more amenable for
analysis

_x = f(x; e) 8t 2 [tj�1; tj ] (10)

_e = g(x; e) 8t 2 [tj�1; tj ] (11)

e t
+

j =h (j; e(tj)) (12)

where � � tj+1� tj � � for all j 2 �0, x 2 n , e 2 n and f , g
and h are obtained using straightforward calculations from (9), see [4].
In order to write (11), we assumed that functions gP and gC in (9) are
continuously differentiable (this assumption can be relaxed). We refer
to (12) as a protocol. The protocol determines the algorithm by which
access to the network is assigned to different nodes in the system. For
more details on protocol modelling in this manner, see [4] and [5]. Note
that

_x = f(x; 0) (13)

represents the closed loop system (7), (8) without the network. We con-
sider the following problem.

Problem: Suppose that the controller (8) was designed for the
plant (7) so that the closed loop system (7), (8) without network
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(equivalently, the system (13)) is globally asymptotically stable.
Determine the value of �MATI so that for any � 2 (0; �MATI] and
all � 2 [�; �MATI], we have that the NCS described by (10), (11),
(12) is stable in an appropriate sense.

Moreover, we show that the value of �MATI computed in [4] and given
by (1) is always smaller than the value of �MATI given by (2). Hence,
our new result provides a less conservative analytical bound for �MATI
that is very important in implementing the controller (8) via the network
in the manner described by (9). Indeed, this bound shows that stabiliza-
tion is possible with lower bandwidth of the communication channel
(since �MATI is inversely proportional to the channel bandwidth).

IV. MAIN RESULTS

In order to streamline the proofs, we map the model (10)–(12) of an
NCS that was introduced in the previous section into a hybrid system
of the type (6) discussed in the preliminaries section. In particular, we
consider systems of the form

_x = f(x; e)

_e = g(x; e)

_� = 1

_� = 0

� 2 [0; �MATI]

x+ = x

e+ = h(�; e)

�+ = 0

�+ = �+ 1

� 2 [";1) (14)

where " > 0 can be arbitrarily small, �MATI � " and x 2 n ,
e 2 n , � 2 �0 and � 2 �0.

In what follows, we will consider the behavior of all possible so-
lutions to the hybrid system (14) subject to � (0; 0) � 0. Since the
derivative of � is positive (equal to one) and when � jumps it is reset
to zero, it follows that � will never take on negative values. According
to the definition of solution for a hybrid system, the error vector e can
jump, following the rules of the protocol, after � seconds have elapsed
from the previous jump. This is because at the previous jump � was
reset to zero, when the system is not jumping we have _� = 1, and the
D set, which enables jumps, is the set f(x; e; �; �) : � 2 [";1)g.
On the other hand, if �MATI seconds have elapsed from the previous
jump then the error vector e must jump. This is because the C set is
f(x; e; �; �) : � 2 [0; �MATI]g, and thus flows are not allowed after
� reaches �MATI. In this way, the time-invariant hybrid system (14)
covers all of the possible behaviors described by (10)–(12).

Standing Assumption 1: f and g are continuous and h is locally
bounded.

We will give an upper bound on �MATI to guarantee asymptotic or
exponential stability.

Definition 4: For the hybrid system (14), the set f(x; e; �; �) : x =
0; e = 0g is uniformly globally asymptotically stable if there exists � 2
KLL such that, for each initial condition � (0; 0) 2 �0, �(0; 0) 2
�0, x(0; 0) 2 n , e(0;0) 2 n , and each corresponding solution

x(t; j)

e(t; j)
� �

x(0; 0)

e(0; 0)
; t; "j (15)

for all (t; j) in the solution’s domain. The set is uniformly globally
exponentially stable if � can be taken to have the form �(s; t; k) =
Ms exp(��(t+ k)) for some M > 0 and � > 0.

Remark 1: It is worth noting that when " = 0 there are (instanta-
neous Zeno) solutions to (14) satisfying x(0; j) = x(0; 0), � (0; j) =
� (0; 0) and �(0; j) = �(0; 0) + j for all j 2 �0. This motivates the
factor " multiplying j on the right-hand side of (15).

Definition 5: For the hybrid system (14) the set f(x; e; �; �) : x =
0; e = 0g is uniformly semiglobally practically asymptotically stable
(USPAS) with respect to �MATI if there exists � 2 KLL and for any
pair of positive real numbers (�;�) there exists �MATI > 0 such that
for each 0 < " � �MATI, each initial condition � (0; 0) 2 �0,
�(0; 0) 2 �0, jx(0; 0)j � �, je(0; 0)j � � and each corresponding
solution we have

x(t; j)

e(t; j)
� max �

x(0; 0)

e(0;0)
; t; "j ; � (16)

for all (t; j) in the solution’s domain.
In order to guarantee asymptotic or exponential stability, we make

the following assumption:
Assumption 1: There exist a function W : �0 �

n ! �0 that
is locally Lipschitz in its second argument, a locally Lipschitz, positive
definite, radially unbounded function V : n ! �0, a continuous
function H : n ! �0, real numbers � 2 (0; 1), L � 0, 
 > 0,
�W ; �W 2 K1 and a continuous, positive definite function % such
that, 8� 2 �0 and e 2 n

�W (jej) �W (�; e) � �W (jej) (17)

W (�+ 1; h(�; e)) ��W (�; e) (18)

and for all � 2 �0, x 2 n and almost all e 2 n

@W (�; e)

@e
; g(x; e) � LW (�; e) +H(x); (19)

moreover, for all e 2 n , all � 2 �0, and almost all x 2 n ,

hrV (x); f(x; e)i � �% (jxj)� % (W (�; e))

�H2(x) + 

2
W

2(�; e): (20)

Remark 2: This assumption is essentially the same as the main as-
sumption of [4, Th. 4] when considering L2 gains. The condition on
_x = f(x; e) is expressed here in terms of a Lyapunov function that es-
tablishes an L2 gain 
 from W to H whereas in [4, Th. 4] it is directly
in terms of the L2 gain 
. However, in practice the L2 gain is often
verified with a Lyapunov function V that satisfies (20). For example,
the results in the first row of Table I, which come from [4], use values
(�;L; 
) that admit functions W , H and a positive definite, quadratic
function V that satisfy (17)–(20) with %(s) = "s2 for some " > 0
sufficiently small.

Theorem 1: Under Assumption 1, if �MATI in (14) satisfies the
bound (2) and 0 < " � �MATI then, for the system (14), the set
f(x; e; �; �) : x = 0; e = 0g is uniformly globally asymptoti-
cally stable. If, in addition, there exist strictly positive real numbers
�W ; �W , a1, a2, and a3 such that �W jej � W (�; e) � �W jej,
a1jxj

2 � V (x) � a2jxj
2, and %(s) � a3s

2 then this set is uniformly
globally exponentially stable.

Remark 3: The proof of Theorem 1 will show that, for each solu-
tion and each (tj ; j) and (tj+1; j + 1) belonging to the domain of the
solution

V (x(tj+1; j + 1)) + 
W
2 (�(tj+1; j + 1); e(tj+1; j + 1))

< V (x(tj ; j)) + 
W
2 (�(tj; j); e(tj ; j)) :

In other words V (x)+
W 2(�; e) is a strict Lyapunov function for the
discrete-time system that is generated as the composition of flows and
jumps in the system (14).

Theorem 2: Consider the hybrid NCS (14). Suppose that the fol-
lowing conditions hold.
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1) There exists a function W : �0 �
n ! �0 that is locally

Lipschitz in its second argument, a continuous, positive definite
function % and class-K1 functions �W ; �W ; � such that, 8� 2

�0 and e 2 n ,

�W (jej) �W (�; e) � �W (jej) (21)

W (�+ 1; h(�; e)) �W (�; e)� %(e) (22)

and for all � 2 �0 and almost all e 2 n ,

@W (�; e)

@e
� � (jej) : (23)

2) The origin of _x = f(x; 0) is globally asymptotically stable.
Then, for (14), the set f(x; e; �; �) : x = 0; e = 0g is USPAS with

respect to �MATI.

V. PROOFS OF MAIN RESULTS

A. Proof of Theorem 1

Let � : [0; �MATI] ! be the solution to

_� = �2L�� 
(�2 + 1) �(0) = �
�1
: (24)

We will establish the following claim in the next section:
Claim 1: �(�) 2 [�; ��1] for all � 2 [0; �MATI].
We will use the definitions � := [xT ; eT ; �; �]T and F (�) :=

[f(x; e)T ; g(x; e)T ; 1; 0]T . Define

U(�) := V (x) + 
�(�)W 2(�; e): (25)

Later, by abuse of notation, we consider the quantity hrU(�); F (�)i
even though W is not differentiable with respect to �. This is justified
since the component in F (�) corresponding to � is zero. We first note
that

U(�+) =V (x+) + 
�(�+)W 2(�+; e+)

=V (x) + 
�(0)W 2 (�+ 1; h(�; e))

�V (x) + 
�W
2(�; e) � U(�): (26)

We also have, for all (�; �) and almost all (x; e)

hrU(�); F (�)i � � % (jxj)� % (W (�; e))�H
2(x)

+ 

2
W

2(�; e)

+ 2
�(�)W (�; e) (LW (�; e) +H(x))

� 
W
2(�; e) 2L�(�) + 
 �

2(�) + 1

� � % (jxj)� % (W (�; e))�H
2(x)

+ 2
�(�)W (�; e)H(x)

� 

2
W

2(�; e)�2(�)

� � % (jxj)� % (W (�; e)) : (27)

Since % is positive definite, V is positive definite and radially un-
bounded, and Claim 1 holds, it follows that there exists a continuous,
positive definite function % such that

hrU(�); F (�)i � �% (U(�)) : (28)

Then, by standard results for continuous-time systems (see, for ex-
ample, [7]), we have the existence of � 2 KL satisfying

�(s; t1+ t2) = �(�(s; t1); t2) 8(s; t1; t2) 2 �0� �0� �0

(29)
and such that

U (�(t; j)) � � (U (�(tj ; j)) ; t� tj)

8(tj ; j) � (t; j) 2 dom � (30)

where (tj ; j) � (t; j) means that tj � t. From (26) it follows that

U (�(tj+1; j + 1)) � U (�(tj+1; j)) (31)

for all j such that (t; j) 2 dom � for some t � 0. Combining
(29)–(31), we get

U (�(t; j)) � � (U (�(0; 0)) ; t) 8(t; j) 2 dom �: (32)

Next, since t � "j for all (t; j) 2 dom �, it follows that

U (�(t; j)) � � (U (�(0; 0)) ; 0:5t+ 0:5"j) 8(t; j) 2 dom �:

(33)
Then, using that V is positive definite and proper, using (17), Claim 1,
and the definition of U in (25), uniform global asymptotic stability of
the set f(x; e; �; �) : x = 0; e = 0g follows.

Under the assumptions made in the theorem to guarantee uniform
global exponential stability, it follows that % can be taken to be linear
and � can be taken to be of the form �(s; t) = Ms exp(��t). Then
uniform exponential stability follows from the quadratic upper and
lower bounds on V (x) and W 2(�; e).

The proof will be complete after we prove Claim 1, which we will
do in Section VI-B.

B. Proof of Theorem 2

Using (21) and (22), one can combine the ideas in [8] and [9, pp.
22–23] to get a continuously differentiable function � 2 K1 and � >

0 such that with W (�; e) := �(W (�; e)) we have

W (�+ 1; h(k; e)) � e
��

W (�; e): (34)

Using the last assumption of the theorem, let the smooth function V

be the one obtained from Kurzweil’s converse Lyapunov theorem [10],
satisfying

hrV (x); f(x; 0)i � ��V (jxj) (35)

for some �V 2 K1. Using the definition of � and F (�) from the proof
of Theorem 1, define

U(�) := V (x) + e
���=�

W (�; e): (36)

Then, using (34), (14), and (36), we get

U(�+) � V (x) + e
��

W (�; e) � U(�): (37)
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Using the continuity of f , (35), (21) and (23), we also have the exis-
tence of a continuous function ' satisfying '(x; 0) = 0 for all x and
such that

hrU(�); F (�)i � ��V (jxj) + '(x; e)

���1MATI�e
���=� � � �W (jej) : (38)

Now the continuous-time arguments given in [11] or [12, Lemma 2.1]
can be used to assure that, for each pair of strictly positive real numbers
� < � there exists �MATI > 0 such that, for almost all � in the set

(x; e; �; �) : � �
x

e
� �; � 2 [0; �MATI]; � 2 �0

we have

hrU(�); F (�)i � �0:5�V (jxj)� 0:5�W (jej) : (39)

The result follows using standard continuous-time arguments like in
the proof of Theorem 1.

VI. PROOF OF CLAIM 1 AND THAT THE BOUND IS BETTER

A. A Race Between Differential Equations

In this section, we establish the following fact.
Lemma 1: For each � 2 (0; 1), the value �1 in (4) is less than the

value �2 in (5).
This lemma shows that Claim 1 in the proof of Theorem 1 holds

when �MATI satisfies the bound given by the right-hand side of (1).
Thus, the proof of Theorem 1 is complete in this case. In the next sub-
section, we establish that the bound (2) is equal to the value �2 in (5).
This will establish Claim 1 and finish the proof of Theorem 1 as it is
stated. It will also confirm that the bound on �MATI reported here is
larger than the bound reported in [4].

Proof of Lemma 1: Note that �2 = �2+ + �2� where �2+ and
�2� satisfy

_�2 = � 2L�2 � 
 �22 + 1

�2(0) = 1; �2(�2+) = �; �2(��2�) = ��1: (40)

Define �1+ := �1. Let �1(�), respectively �2(�), denote the so-
lution of (4), respectively, (40). Since �1(�1+) = �2(�2+) =
� and �2(��2�) = ��1, we have 1 = d�i(�i+)=d� =
(d�(�i+)=d�i+)(d�i+=d�) and ���2 = d�2(�2�)=d� =
�(d�(�2�)=d�2�)(d�2�=d�). These equations yield

d�1+
d�

=
�1

L�+ 

d�2+
d�

=
�1

2L�+ 
(�2 + 1)

d�2�
d�

=
�1

�2 (2L��1 + 
(��2 + 1))
=

�1

2L�+ 
(�2 + 1)
:

Using �2 + 1 < 2, �1+ = �1, and �2 = �2+ + �2� gives

d�2
d�

<
d�1
d�

: (41)

Since �1 = �2 = 0 when � = 1, condition (41) establishes the lemma.

B. Proof of Claim 1

Claim 1 follows immediately from the following lemma.

Lemma 2: The right-hand side of (2) is equal to the value �2 in (5)
[cf. (24)].

Proof: By definition, we can write �2 = �
�

�
(d�=(
�2 +

2L� + 
))= �(1=
)
�+(L=
)

� +(L=
)
(ds=(s2 � sgn(L� 
)(Lr=
)2)),

where s := � + (L=
), r is defined in (3) and sgn(�) is the sign
function with sgn(0) = 0. The first formula in (2), when 
 > L,
comes from using the fact that �(1=
)

b

a
(ds=((Lr=
)2 + s2))=

�(1=Lr)[arctan(b
=Lr) � arctan(a
=Lr)] and that for all c2 �

c1 � 0 we have arctan(c2)� arctan(c1) = arctan((c2 � c1)=(1 +

c1c2)). The second formula in (2), when L = 
, follows from the fact
that �(1=
)

b

a
(ds=s2) = (1=
)((1=b)� (1=a)). The third formula

in (2), when 
 < L follows from (1=
)
b

a
(ds=((Lr=
)2 � s2))=

(1=Lr)[arctanh(b
=Lr)� arctanh(a
=Lr)]. Then, the last formula
in (2) is obtained by using the identity arctanh(c2)� arctanh(c1) =

arctanh((c2 � c1)=(1� c2c1)).

VII. CONCLUSION

We have provided a simple Lyapunov proof for certain results that
have appeared previously in the literature on the stability of networked
control systems. Along the way, we have provided some modest im-
provements to the previous results. We hope that the Lyapunov ap-
proach to proving stability for networked control systems with lead to
better insight into the design of protocols for these systems and will
also inspire even sharper analysis tools.
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