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Abstract

Several estimation methods have been proposed for identifying errors-in-
variables systems, where both input and output measurements are corrupted
by noise. One of the promising approaches is the so called Frisch scheme.
This paper provides an accuracy analysis of the Frisch scheme applied to
system identification. The estimates of the system parameters and the noise
variances are shown to be asymptotically Gaussian distributed. An explicit
expression for the covariance matrix of the asymptotic distribution is given
as well. Numerical simulations support the theoretical results. A compar-
ison with the Cramer-Rao lower bound is also given in examples, and it is
shown that the Frisch scheme gives a performance close to the Cramer-Rao
bound for large signal-to-noise ratios.

1 Introduction

Many different solutions have been presented for system identification of linear
dynamic systems from noise–corrupted output measurements see, for example, [6],
[10]. Estimation of the parameters for linear dynamic systems when also the input
is affected by noise (‘errors–in–variables’ models) is recognized as a more difficult
problem.

The class of scientific disciplines which makes use of such representations is very
broad, as proved by the several applications collected in [12], [13], such as time
series modelling, array signal processing for direction–of–arrival estimation, blind
channel equalization, multivariate calibration in analytical chemistry, image pro-
cessing, astronomical data reduction, etc. In case of static systems, errors–in–
variables representations are closely related to other well–known topics such as
latent variables models and factor models [4].
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Some comparisons between different approaches for errors-in-variables modelling
are given in [9] and references therein.

The so called Frisch scheme is one of the more interesting approaches for the
errors-in-variables identification. It has its roots in [3], where a regression problem
was treated. It has been proposed for identifying dynamic systems in [1] and
was further elaborated in [2]. So far, theoretical analysis has been limited to
consistency. The aim of this paper is to provide such an analysis concerning the
accuracy of the estimates obtained using the Frisch scheme.

2 Problem statement and notional setup

2.1 Setup

As a typical model example, consider the system depicted in Figure 1 with noise-
corrupted input and output measurements.
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Figure 1: The basic setup for a error-in-variables problem.

The noise–free input is denoted by uo(t) and the undisturbed output by yo(t).
They are linked through the linear difference equation

A(q−1) yo(t) = B(q−1) uo(t), (2.1)

where A(q−1) and B(q−1) are polynomials in the backward shift operator q−1, i.e.
q−1 x(t) = x(t− 1) etc. More precisely,

A(q−1) = 1 + a1q
−1 + · · ·+ anaq

−na

B(q−1) = b1q
−1 + · · ·+ bnbq

−nb . (2.2)

We assume that the observations are corrupted by additive measurement noises
ũ(t) and ỹ(t). The available signals are of the form

u(t) = uo(t) + ũ(t)
y(t) = yo(t) + ỹ(t)

. (2.3)

The general problem is to determine the system characteristics, i.e. the transfer
function

G(q−1) =
B(q−1)

A(q−1)
. (2.4)

In other words, the estimation problem is as follows. Given the noisy input-output
data u(1), y(1), . . . u(N), y(N), determine an estimate of the parameter vector

ϑ = (a1 . . . ana b1 . . . bnb λy λu)
T . (2.5)

There are several estimation methods that can produce an estimate of ϑ:
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• The bias-eliminating least squares method (BELS) is described in [15], [14].

• The Frisch scheme goes back to [3]. Its application to system identification
is presented in [1]. An alternative implementation was proposed in [2]. This
is the method that will be considered in this paper.

• A prediction error method or a maximum likelihood method can be applied.
Its use for the errors-in-variables problem is described in [7], [9].

Once an estimation method is specified, it is of interest to examine its statistical
properties. In this paper we will focus on the asymptotic covariance matrix

P = lim
N→∞

ENcov(ϑ̂− ϑo)(ϑ̂− ϑo)
T (2.6)

where ϑ̂ is the estimate of ϑ, and ϑo denotes the true value.

2.2 Assumptions

In order to proceed, some further assumptions must be introduced.

A1. The dynamic system (1) is asymptotically stable, i.e. A(z) has all zeros
outside the unit circle.
A2. All the system modes are observable and controllable, i.e. A(z) and B(z)
have no common factors.
A3. The polynomial degrees na and nb are a priori known.
A4. The processes ũ(t) and ỹ(t) are mutually uncorrelated, and uncorrelated with
the noise–free signals uo(t) and yo(t).
A5. The sequences ũ(t) and ỹ(t) are zero–mean Gaussian white noise sequences
with variances λu and λy, respectively.
A6. The true input uo(t) is a zero–mean stationary ergodic random signal, that
is persistently exciting at least of order na + nb.

2.3 Notations

The following notations will be convenient. The system parameter vector to be
estimated is

θ = (a1 . . . ana b1 . . . bnb)
T . (2.7)

Similarly we introduce the regressor vector

ϕ(t) = (−y(t− 1) . . .− y(t− na) u(t− 1) . . . u(t− nb))T . (2.8)

Further, we will use the conventions:

• θo denotes the true parameter vector, and θ̂ its estimate.

• Similarly, we let Ao(q
−1), Bo(q

−1), λo
u, λo

y, ϑo denote the true values of
A(q−1), B(q−1), λu, λy, ϑ, respectively.

• ϕo(t) denotes the noise-free part of the regressor vector:

ϕo(t) = (−yo(t− 1) . . .− yo(t− n) uo(t− 1) . . . uo(t− n))T . (2.9)
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• ϕ̃(t) denotes the noise-contribution to the regressor vector. This means that

ϕ̃(t) = (−ỹ(t− 1) . . .− ỹ(t− n) ũ(t− 1) . . . ũ(t− n))T . (2.10)

Sometimes it is very convenient to add a leading element to θ and to ϕ. For this
reason we also introduce the extended regressor vector as

ϕ(t) =

( −y(t)
ϕ(t)

)
, (2.11)

and the extended parameter vector

θ =

(
1
θ

)
. (2.12)

At other times it is useful to work with partitioned parameter and regression
vectors. For this reason we introduce also

θ =

(
a
b

)
, a =




a1
...

ana


 , b =




b1
...

bnb


 , (2.13)

and

ϕ(t) =

(
ϕy(t)
ϕu(t)

)
, ϕy(t) =




−y(t− 1)
...

−y(t− na)


 , ϕu(t) =




u(t− 1)
...

u(t− nb)


 .

(2.14)
Extended versions of the partioned vectors will also be handy:

θ =

(
a
b

)
, a =

(
1
a

)
, (2.15)

ϕ(t) =

(
ϕy(t)
ϕu(t)

)
, ϕy(t) =

( −y(t)
ϕy(t)

)
. (2.16)

Cross-covariance matrices between two vectors x(t) and y(t) are denoted

Rxy = Ex(t)yT (t), (2.17)

and their natural estimates are denoted as

R̂xy =
1

N

N∑
t=1

x(t)yT (t). (2.18)

The covariance matrices are often partioned in a way compatible with the partion-
ing of the vectors. For example,

R̂ϕ =

(
R̂ϕy

R̂ϕyϕu

R̂ϕuϕy
R̂ϕu

)
. (2.19)
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3 The Frisch scheme

3.1 Basic relations

The relations presented in this subsection are fundamental when deriving the Frisch
estimator.

First we note that

ϕT
o (t)θo = −Ao(q

−1)yo(t) + Bo(q
−1)uo(t) = 0. (3.1)

Further it holds that

Rϕ = Rϕo + Rϕ̃, Rϕ = Rϕo
+ Rϕ̃. (3.2)

It follows from (3.1) that

Rϕo
θo = Eϕoϕ

T
o θo = 0. (3.3)

Hence the matrix Rϕo
is singular (positive semidefinite), with at least one eigen-

value equal to zero. The corresponding eigenvector is θo. One can show that under
the general assumptions A2 and A6, the matrix Rϕo

will in fact have only one
eigenvalue in the origin.

The noise covariance matrix has a simple structure, as

Rϕ̃ =

(
λyIna+1 0

0 λuInb

)
. (3.4)

The relation (3.3) is the basis for the Frisch method. The idea is to have appro-
priate estimates of the noise variances and then determine the parameter vector θ
from (

R̂ϕ − R̂ϕ̃

)
θ̂ = 0. (3.5)

3.2 Determining λ̂y and θ̂

Assume for the time being that an estimate λ̂u of the input noise variance is avail-
able. Then the output noise variance λy is determined so that the matrix appearing
in (3.5) is singular. More specifically, we have the following result.

Lemma 3.1. Let the estimate λ̂u satisfy

0 ≤ λ̂u ≤ λmin

(
R̂ϕu − R̂ϕuϕy

R̂−1
ϕy

R̂ϕyϕu

)
, (3.6)

where λmin(C) denotes the minimal eigenvalue of the symmetric matrix C.

Define

λ̂y = λmin

(
R̂ϕy

− R̂ϕyϕu

(
R̂ϕu − λ̂uInb

)−1

R̂ϕuϕy

)
. (3.7)
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Then the matrix

C =

(
R̂ϕy

R̂ϕyϕu

R̂ϕuϕy
R̂ϕu

)
−

(
λ̂yIna+1 0

0 λ̂uInb

)
(3.8)

is positive semidefinite with one eigenvalue in the origin.

Proof. See Appendix A.

An essential part of the Frisch algorithm is based on Lemma 3.1. Assume that
an estimate λ̂u of the input noise variance is available (how this estimate is to
be found will be described in the Section 3.3). The estimate λ̂y is then found
from (3.7). The estimate of the parameter vector θ is next determined by solving
equations 2, . . . , na + nb + 1 of

Cθ̂ = 0, (3.9)

where the matrix C is given by (3.8). As C by construction is singular, this means
that θ̂ is the solution to

(
R̂ϕ −

(
λ̂yIna 0

0 λ̂uInb

))
θ̂ = r̂ϕy. (3.10)

3.3 Determination of λ̂u

What remains is to determine λ̂u. Different alternatives have been proposed:

• In [1], the function λ̂y(λ̂u) is evaluated both for the nominal model and for an
extended model, adding one A or one B parameter (or both). The functions
correspond to curves in the (λ̂u, λ̂y) plan. The curves will ideally intersect
in one unique point, which defines the estimates.

• Another alternative is to compute residuals, and compare their statistical
properties with what can be predicted from the model. This alternative was
proposed in [2] and is the option analysed in this paper. It is described
below.

Define the residuals

ε(t, θ̂) = Â(q−1)y(t)− B̂(q−1)u(t) (3.11)

and compute sample covariance elements

r̂ε(k) =
1

N

N∑
t=1

ε(t, θ̂)ε(t + k, θ̂). (3.12)

Compute also theoretical covariance elements r̂εo(k) based on the model

εo(t) = Â(q−1)ˆ̃y(t)− B̂(q−1)ˆ̃u(t), (3.13)
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where
E ˆ̃y2(t) = λ̂y, E ˆ̃u2(t) = λ̂u.

Next, define a criterion for comparing {r̂ε(k)} and {r̂εo(k)}. A fairly general way
to do this is to take

VN(λ̂u) = δT Wδ (3.14)

where W is a user chosen, positive definite weighting matrix and the vector δ is

δ =




r̂ε(0)− r̂εo(0)
...

r̂ε(m)− r̂εo(m)


 . (3.15)

The maximum lag m used in (3.15) is to be chosen by the user.

Such a form was first proposed in [2] although the description followed a slightly
different form. Further, the weighting matrix inherent in [2] was

W =




m + 1 0 . . .
0 2m 0 . . .

0 2(m− 1) 0

0
. . .

0 2




. (3.16)

The estimate λ̂u is determined as the minimizing element of the criterion

λ̂u = arg min
λu

VN(λu). (3.17)

We hence have
d

dλu

VN(λu)

∣∣∣∣
λu=λ̂u

= 0. (3.18)

In summary the Frisch scheme algorithm consists of the equations (3.7), (3.10)
and (3.18). In its implementation, there is an optimization over one variable, λ̂u,
in (3.17). In the evaluation of the loss function VN(λ̂u), also (3.7) and (3.10) are
used to get λ̂y and θ̂, respectively.

It turns out that the first element of δ is always zero.

Lemma 3.2. It holds that
r̂ε(0) = r̂εo(0). (3.19)

Proof. See Appendix A.

In what follows we will therefore exclude the element for time argument 0 in δ,
and instead of (3.15) use

δ =




r̂ε(1)− r̂εo(1)
...

r̂ε(m)− r̂εo(m)


 . (3.20)
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4 Linearization

In Section 3 we have given the Frisch algorithm for estimating the parameter vector
ϑ. Here we will examine how the estimate ϑ̂ deviates from the true value ϑo for
large data sets (large N). The technique for doing so is to linearize the equations
(3.7), (3.10) and (3.18) for large N . We assume that ϑ̂ is close to ϑo and seek
relations of the type

Aθ(θ̂ − θo) + Ay(λ̂y − λo
y) + Au(λ̂u − λo

u) ≈ As (4.1)

where As is a random term, of zero mean and with a covariance matrix of order
O(1/N). We shall linearize the three equations one by one in the subsequent
subsections.

4.1 Linearization of (3.10)

We have the following result.

Lemma 4.1. Linearizing (3.10) leads to

Rϕo(θ̂ − θo)−
(

ao

0

)
(λ̂y − λo

y)−
(

0
bo

)
(λ̂u − λo

u)

≈ 1

N

N∑
t=1

ϕ(t)ε(t, θo) +

(
λo

yao

λo
ubo

)
, (4.2)

where
ε(t, θo) = Ao(q

−1)ỹ(t)−Bo(q
−1)ũ(t). (4.3)

Proof. See Appendix B.

Corollary. It follows that at the true parameter values the sensitivity derivatives
are

dθ̂

dλ̂y

= R−1
ϕo

(
ao

0

)
, (4.4)

dθ̂

dλ̂u

= R−1
ϕo

(
0
bo

)
. (4.5)

4.2 Linearization of (3.7)

We have the following result.

Lemma 4.2. Linearizing (3.7) leads to

aT
o ao(λ̂y − λo

y) + bT
o bo(λ̂u − λo

u) ≈
1

N

N∑
t=1

ε2(t, θo)− Eε2(t, θo) (4.6)

where ε(t, θo) is as in (4.3).
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Proof. See Appendix B.

Corollary. It follows that for the true parameter values the sensitivity derivative
is at the true parameter values

dλ̂y

dλ̂u

= −bT
o bo

aT
o ao

. (4.7)

4.3 Linearization of (3.18)

We now introduce the conventions

ao
i =

{
1 i = 0
0 i > na, i < 0

, (4.8)

bo
i = 0 i > nb, i ≤ 0, (4.9)

which will be used in the sequel.

We then have the following result.

Lemma 4.3. Introduce the vector

γ = Wβ, (4.10)

where the vector β is given elementwise as

βk = −
∑

i

bo
i b

o
i+k +

∑
i

ao
i a

o
i+k

bT
o bo

aT
o ao

, k = 1, . . . , m. (4.11)

Then linearizing (3.18) gives

m∑

k=1

γk

∑
i

ao
i a

o
i+k

(
λ̂y − λo

y

)
+

m∑

k=1

γk

∑
i

bo
i b

o
i+k

(
λ̂u − λo

u)
)

≈
m∑

k=1

γk

[
1

N

N∑
t=1

ε(t, θo)ε(t + k, θo)− λo
y

∑
i

ao
i a

o
i+k − λo

u

∑
i

bo
i b

o
i+k

]
(4.12)

Proof. See Appendix B.

5 Asymptotic distribution

The main result is as follows.

Theorem 5.1. Under the given assumptions of Section 2.2 the parameter esti-
mates ϑ̂ are asymptotically Gaussian distributed

√
N(ϑ̂− ϑo)

dist−→ N (0, P ), (5.1)
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where
P = R−1QR−T (5.2)

and

R =




Rϕo

( −ao

0

) (
0

−bo

)

0 aT
o ao bT

o bo

0
∑m

k=1 γk

∑
i a

o
i a

o
i+k

∑m
k=1 γk

∑
i b

o
i b

o
i+k


 , (5.3)

Q =




Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


 . (5.4)

The blocks in the symmetric matrix Q are as follows

Q11 =
∑

τ

Rϕo(τ)rε(τ) +
∑

τ

[
Rϕ̃(τ)rε(τ) + rϕ̃ε(τ)rT

ϕ̃ε(−τ)
]
, (5.5)

Q12 = 2
∑

τ

rϕ̃ε(τ)rε(τ), (5.6)

Q13 =
m∑

k=1

γk

{∑
τ

[rϕ̃ε(τ)rε(τ − k) + rϕ̃ε(τ − k)rε(τ)]

}
, (5.7)

Q22 = 2
∑

τ

r2
ε(τ), (5.8)

Q23 = 2
m∑

k=1

γk

∑
τ

[rε(τ)rε(τ − k)] , (5.9)

Q33 =
m∑

k=1

m∑
j=1

γkγj

∑
τ

[rε(τ)rε(τ + k − j) + rε(τ − j)rε(τ + k)] . (5.10)

The covariance elements satisfy

rε(k) =

{
λo

y

∑
i a

o
i a

o
i+k + λo

u

∑
i b

o
i b

o
i+k |k| ≤ max(na, nb− 1)

0 elsewhere
, (5.11)

rϕ̃ε(k) = −




λo
y




ao
1−k
...

ao
na−k




λo
u




bo
1−k
...

bo
nb−k







. (5.12)

Note that here the conventions (4.8) and (4.9) are applied. The summations over
τ in (5.5) – (5.10) are over all values making the terms nonzero. Due to the con-
dition in (5.11), each sum will have only a modest number of nonzero terms.

Proof: See appendix C.
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6 Numerical illustration

We first illustrate the findings in the paper by comparing the theoretical expres-
sions of the covariance matrix with simulations. Next, we compare the theoretical
expressions with the Cramer-Rao lower bound.

We will consider two systems.

System S1. This system is of first order and given by

(1− 0.8q−1)yo(t) = 2.0q−1uo(t). (6.1)

Further, the noise-free input is assumed to be an ARMA(1,1) process

(1− 0.5q−1)uo(t) = (1 + 0.7q−1)e(t), Ee(t)e(s) = δt,s. (6.2)

The noise levels are
λo

u = 1, λo
y = 1, (6.3)

resulting in signal-to-noise ratios on the input and output sides, respectively

SNRu = 5.82 dB, SNRy = 10.55 dB (6.4)

System S2. This system is of second order, given by

(1− 1.5q−1 + 0.7q−2)yo(t) = (2.0q−1 + 1.0q−2)uo(t), (6.5)

and the noise-free input uo(t) is still assumed to be described by (6.2). The noise
levels are

λo
u = 1, λo

y = 4 (6.6)

resulting in signal-to-noise ratios on the input and output sides, respectively

SNRu = 5.82 dB, SNRy = 14.40 dB. (6.7)

Example 1. We first compare the theoretical expression (5.2) for the covariance
matrix with sample covariance matrices obtained from a Monte Carlo simulation,
In this study the number of data points was N = 10000, and we used M = 100
realizations. We used m = 1 in the criterion (3.20), and hence W has no signifi-
cance in this particular case. The following results were obtained.

For System S1, the theoretical normalized covariance matrix is

P =




0.105
0.68 7.4
−1.6 −16 53
0.55 5.7 −16 8.4


 . (6.8)

The corresponding result from simulations was

Psim =




0.106
0.75 8.7
−1.8 −20 64
0.64 6.7 −17 8.2


 . (6.9)
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As can be seen, there is a good agreement between theory and simulations. Ac-
cording to Appendix B.9 of [10] a deviation of 20-20 % is certainly reasonable when
Psim is based on 100 realizations.

The procedure was repeated for system S2. Then the results were

P =




0.43
−0.33 0.27
−2.5 1.7 46
4.4 −3.2 −53 73
−0.3 0.3 −20 12 92
0.1 −0.1 6 −4 −10 7.5




,

Psim =




0.41
−0.30 0.24
−2.9 1.8 54
4.7 −3.1 −61 82
0.1 −0.1 −27 18 86
−0.2 0.1 9 −7 −9 7.6




.

Again, the agreement between theory and simulation is fairly good.

Example 2. In this example we compare the theoretical covariance expressions
with the Cramer-Rao lower bound. The latter gives a lower bound on the covari-
ance matrix, that seems only achievable with a full maximum likelihood approach,
that is quite costly computationally.

For the two given systems S1 and S2 the covariance matrices P , given by (5.2)
and the Cramer-Rao bound PCRB were evaluated numerically. The Cramer-Rao
bound can be computed using either a polynomial-based framework, see [5], or
using a state-space based formalism, with details given in [8]. (Both approaches
give identical results).

As an illustration, we show in Figures 2 and 3 how the true transfer function as
well as its theoretical standard deviations for the Frisch scheme and the Cramer-
Rao lower bound vary with frequency. More precisely, we plotted the normalized
relative error

σG

|G| =

√
E|∆G|2
|G| (6.10)

versus angular frequency ω. In (6.10) the error ∆G is defined as

∆G = G(eiω, θ̂)−G(eiω, θo) (6.11)

and is assumed to be small. Note that the relative error is obtained by dividing
the expression (6.10) with

√
N . It is seen that the statistical error when the Frisch

scheme is used is indeed larger than the Cramer-Rao lower bound, but the differ-
ence is rather small, in particular for low frequencies.

Example 3. We next examined how the parameter variances vary with the signal-
to-noise-ratio. More specifically, we varied λo

v and thereby the variance of the
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Figure 2: Frequency response of the transfer function (dotted) for System S1,
standard deviation of the normalized relative error using the Frisch scheme (solid)
and the Cramer-Rao lower bound (dashed).
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Figure 3: Frequency response of the transfer function (dotted) for System S2,
standard deviation of the normalized relative error using the Frisch scheme (solid)
and the Cramer-Rao lower bound (dashed).

unperturbed input, Eu2
o(t). We show in Figures 4 and 5 how the diagonal elements

of P varies with λo
v. Again, the results confirm that the Frisch scheme gives

estimates are less accurate than the Cramer-Rao bound. The difference can be
significant for low values of λo

v, that is for low signal-to-noise ratios, and is typically
quite small for large values of λo

v.
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Figure 4: Normalized variances of â and b̂, System S1: the Frisch scheme (solid)
and the Cramer-Rao lower bound (dashed). (The true variances are obtained after
division by N .)
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Figure 5: Normalized variances of â1, â2, b̂1 and b̂2, System S2: the Frisch scheme
(solid) and the Cramer-Rao lower bound (dashed). (The true variances are ob-
tained after division by N .)

7 Conclusions

The Frisch approach for identifying error-in-variables systems has been analysed.
In particular, the asymptotic covariance matrix of the parameter estimates has
been derived. This matrix has also been compared to the Cramer-Rao lower bound,
and it has been shown that the differences are small when the signal-to-noise ratio
is high.
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A Proofs for Section 3

A.1 Proof of Lemma 3.1

Using Lemma A.3 in [10], the matrix C in (3.8) is positive semidefinite with one
eigenvalue in the origin precisely when the matrix

C = R̂ϕy
− λ̂yIna+1 − R̂ϕyϕu

(
R̂ϕu − λ̂uInb

)−1

R̂ϕuϕy

is positive semidefinite with one eigenvalue in the origin. However, by construction

λmin(C) = −λ̂y + λmin

(
R̂ϕy

− R̂ϕyϕu

(
R̂ϕu − λ̂uInb

)−1

R̂ϕuϕy

)
= 0.

Hence, the smallest eigenvalue of C is in the origin. We need also to check that
the variance estimate λ̂y is nonnegative. However,

λ̂y ≥ 0 ⇔
R̂ϕy

− R̂ϕyϕu

(
R̂ϕu − λ̂uInb

)−1

R̂ϕuϕy
positive semidefinite ⇔

(
R̂ϕy

R̂ϕyϕu

R̂ϕuϕy

(
R̂ϕu − λ̂uInb

)
)

positive semidefinite ⇔

R̂ϕu − λ̂uInb − R̂ϕuϕy
R̂−1

ϕy
R̂ϕyϕu positive semidefinite,

which is true due to the given bound (3.6) on λ̂u. This completes the proof.

A.2 Proof of Lemma 3.2

Straightforward calculations give

r̂ε(0) =
1

N

N∑
t=1

ε2(t, θ̂)

=
1

N

∑[
ϕT θ̂

]2

= θ̂
T

R̂ϕθ̂

and

r̂εo(0) = λ̂2
yâ

T
â + λ̂2

ub̂
T b̂

= θ̂
T

(
λ̂yIna+1 0

0 λ̂uInb

)
θ̂.

It now follows from (3.9) that

r̂ε(0)− r̂εo(0) = θ̂
T

(
R̂ϕ −

(
λ̂yIna+1 0

0 λ̂uInb

))
θ̂ = 0.

This concludes the proof.
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B Proofs for Section 4

B.1 Proof of Lemma 4.1

Starting with (3.10), straightforward calculations give

θ̂ − θo =

(
R̂ϕ −

(
λ̂yIna 0

0 λ̂uInb

))−1 (
r̂ϕy −

(
R̂ϕ −

(
λ̂yIna 0

0 λ̂uInb

))
θo

)

≈ R−1
ϕo

(
r̂ϕy − R̂ϕθo +

(
λ̂yao

λ̂ubo

))

= R−1
ϕo

(
1

N

N∑
t=1

ϕ(t)[Ao(q
−1)y(t)−Bo(q

−1)u(t)] +

(
λo

yao

λo
ubo

)

+

(
(λ̂y − λo

y)ao

(λ̂u − λo
u)bo

) )

= R−1
ϕo

(
1

N

N∑
t=1

ϕ(t)[Ao(q
−1)ỹ(t)−Bo(q

−1)ũ(t)] +

(
λo

yao

λo
ubo

)

+

(
(λ̂y − λo

y)ao

(λ̂u − λo
u)bo

) )

which is easily rewritten as (4.2).

B.2 Proof of Lemma 4.2

To perform the linearization we will utilize the following result. Let C and C̃ be
some symmetric matrices, and assume that C is positive semidefinite. Let C have
one distinct smallest eigenvalue λmin(C), and the corresponding eigenvector be x.
We seek an expression of how the smallest eigenvalue is changed when the small
term εC̃ is added to C, and will look for modifications that are linear in the small
number ε. Then, see [11],

λmin(C + εC̃) = λmin(C) + ε
xT C̃x

xT x
+ O(ε2). (B.1)

From (3.8) and (3.9) we have for the case of exact covariance matrices and exact
noise variances, cf (3.3),

(
Rϕy

− λo
yIna+1 −Rϕyϕu

−Rϕuϕy
Rϕu − λo

uInb

) (
ao

bo

)
= 0. (B.2)

From the lower part of (B.2) we get

bo = (Rϕu − λo
uInb)

−1 Rϕuϕy
ao. (B.3)

Inserting this in the upper part of (B.2) then leads to

(
Rϕy

− λo
yIna+1 −Rϕyϕu (Rϕu − λo

uInb)
−1 Rϕuϕy

)
ao = 0. (B.4)

17



Now applying the result (B.1) to the definition (3.7) of λ̂y gives with

C = Rϕy
−Rϕyϕu (Rϕu − λo

uInb)
−1 Rϕuϕy

C̃ = R̂ϕy
− R̂ϕyϕu

(
R̂ϕu − λ̂uInb

)−1

R̂ϕuϕy

−Rϕy
+ Rϕyϕu (Rϕu − λo

uInb)
−1 Rϕuϕy

neglecting higher order terms

λ̂y − λo
y ≈ 1

aT
o ao

aT
o

[
R̂ϕy

− R̂ϕyϕu

(
R̂ϕu − λ̂uInb

)−1

R̂ϕuϕy
(B.5)

−Rϕy
+ Rϕyϕu (Rϕu − λo

uInb)
−1 Rϕuϕy

]
ao

=
1

aT
o ao

aT
o

[
R̂ϕy

−Rϕy

]
ao − 1

aT
o ao

aT
o Xao, (B.6)

where

X =
(
R̂ϕyϕu −Rϕyϕu

)
(Rϕu − λo

uInb)
−1 Rϕuϕy

+Rϕyϕu (Rϕu − λo
uInb)

−1
(
R̂ϕuϕy

−Rϕuϕy

)

−Rϕyϕu (Rϕu − λo
uInb)

−1
(
R̂ϕu −Rϕu − (λ̂u − λo

u)Inb

)

× (Rϕu − λo
uInb)

−1 Rϕuϕy
. (B.7)

Applying (B.3) will now give

aT
o ao(λ̂y − λo

y) ≈ aT
o

[
R̂ϕy

−Rϕy

]
ao − aT

o

(
R̂ϕyϕu −Rϕyϕu

)
bo

−bT
o

(
R̂ϕuϕy

−Rϕuϕy

)
ao + bT

o

[
(R̂ϕu −Rϕu)− (λ̂u − λo

u)Inb

]
bo.

(B.8)

Next noting that

ϕy(t)
Tao = Ao(q

−1)y(t), ϕu(t)
Tbo = Bo(q

−1)u(t) (B.9)

we find

aT
o ao(λ̂y − λo

y) ≈ −bT
o bo(λ̂u − λo

u) +

[
1

N

N∑
t=1

[Ao(q
−1)y(t)−Bo(q

−1)u(t)]2

−E[Ao(q
−1)y(t)−Bo(q

−1)u(t)]2

]

= −bT
o bo(λ̂u − λo

u) +

[
1

N

N∑
t=1

ε2(t, θo)− Eε2(t, θo)

]
. (B.10)
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B.3 Proof of Lemma 4.3

When linearizing (3.18), it is useful to use the representation (3.14) of the loss
function VN . We can easily rewrite (3.18) as

δT Wβ = 0 (B.11)

where β = δ′ is the derivate of δ with respect to λ̂u.

To proceed we need to analyse the vectors δ and β = δ′ in some details. Note that
δ, but not β will be small. This will be taken into account when searching for the
linearization.

For an arbitrary component of δ, (3.20), we have (1 ≤ k ≤ m)

dδk

dλ̂u

=
∂δk

∂λ̂u

+
∂δk

∂λ̂y

∂λ̂y

∂λ̂u

+
∂δk

∂θ̂

(
∂θ̂

∂λ̂u

+
∂θ̂

∂λ̂y

∂λ̂y

∂λ̂u

)
. (B.12)

We now apply the conventions (4.8) and (4.9). Invoking the derivatives (4.4), (4.5),
(4.7) leads to (at the true parameters)

dδk

dλ̂u

= −
∑

i

bo
i b

o
i+k −

∑
i

ao
i a

o
i+k

−bT
o bo

aT
o ao

+
∂δk

∂θ
R−1

ϕo

((
0
bo

)
+
−bT

o bo

aT
o ao

(
ao

0

))
. (B.13)

Using the expression (4.3) for ε(t, θo), we find by direct differentiation

∂δk

∂a |ϑ̂=ϑo

= − 1

N

N∑
t=1

ϕT
y (t)ε(t + k, θo)− 1

N

N∑
t=1

ε(t, θo)ϕ
T
y (t + k)

−λo
y

(
ao

1+k ao
2+k . . . ao

na+k

)

−λo
y

(
ao

1−k ao
2−k . . . ao

na−k

)

→ −EϕT
ỹ (t)Ao(q

−1)ỹ(t + k)− EAo(q
−1)ỹ(t)ϕT

ỹ (t + k)

−λo
y

(
ao

1+k ao
2+k . . . ao

na+k

)

−λo
y

(
ao

1−k ao
2−k . . . ao

na−k

)

= 0. (B.14)

In the same fashion it can be proved that

∂δk

∂b
= 0, (B.15)

and hence
∂δk

∂θ
= 0. (B.16)

Thus (B.13) simplifies to (for the true parameter vector, and in the limiting case
when N →∞)

βk =
dδk

dλ̂u

= −
∑

i

bo
i b

o
i+k +

∑
i

ao
i a

o
i+k

bT
o bo

aT
o ao

, k = 1, . . . , m (B.17)
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which is (4.11).

Next we evaluate an arbitrary element of the vector δ, again in the asymptotic
case. It follows from (B.16) that there will be no terms proportional to θ̂ − θ.

δk =
1

N

N∑
t=1

[Â(q−1)y(t)− B̂(q−1)u(t)][Â(q−1)y(t + k)− B̂(q−1)u(t + k)]

−λ̂y

∑
i

âiâi+k − λ̂u

∑
i

b̂ib̂i+k (B.18)

When simplifying this expression, we allow that terms that are one magnitude
smaller may be added or subtracted. For example, we write

(λ̂y − λo
y)

∑
i

âiâi+k = (λ̂y − λo
y)

∑
i

ao
i a

o
i+k

+(λ̂y − λo
y)

(∑
i

âiâi+k −
∑

i

ao
i a

o
i+k

)

≈ (λ̂y − λo
y)

∑
i

ao
i a

o
i+k. (B.19)

Here we applied the conventions (4.8) and (4.9) also to â and b̂. The rea-
son why the second term can be dropped is that both the terms λ̂y − λo

y and(∑
i âiâi+k −

∑
i a

o
i a

o
i+k

)
converge to zero, so this term is negligible compared to

the first term. Proceeding in this way, we have

δk =
1

N

N∑
t=1

[Â(q−1)y(t)− B̂(q−1)u(t)][Â(q−1)y(t + k)− B̂(q−1)u(t + k)]

−(λ̂y − λo
y)

∑
i

âiâi+k − (λ̂u − λo
u)

∑
i

b̂ib̂i+k

−λo
y

∑
i

âiâi+k − λo
u

∑
i

b̂ib̂i+k

≈ −(λ̂y − λo
y)

∑
i

ao
i a

o
i+k − (λ̂u − λo

u)
∑

i

bo
i b

o
i+k

+
1

N

N∑
t=1

[Ao(q
−1)ỹ(t)−Bo(q

−1)ũ(t)][Ao(q
−1)ỹ(t + k)−Bo(q

−1)ũ(t + k)]

−λo
y

∑
i

ao
i a

o
i+k − λo

u

∑
i

bo
i b

o
i+k

= −(λ̂y − λo
y)

∑
i

ao
i a

o
i+k − (λ̂u − λo

u)
∑

i

bo
i b

o
i+k

+
1

N

N∑
t=1

ε(t, θo)ε(t + k, θo)− λo
y

∑
i

ao
i a

o
i+k − λo

u

∑
i

bo
i b

o
i+k. (B.20)

We next note that (B.11) can be written as

γT δ =
m∑

k=1

γkδk = 0. (B.21)
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Inserting the derived expression (B.20) for δ into (B.21) finally gives the result
(4.12).

C Proof of Theorem 5.1

It follows directly from Lemmas 4.1, 4.2 and 4.3 that

R(ψ̂ − ψo) =




T1

T2

T3


 (C.1)

where the stochastic components in the right hand side are

T1 =
1

N

N∑
t=1

ϕ(t)ε(t, θo) +

(
λo

yao

λo
ubo

)
, (C.2)

T2 =
1

N

N∑
t=1

ε2(t, θo)− Eε2(t, θo), (C.3)

T3 =
m∑

k=1

γk

[
1

N

N∑
t=1

ε(t, θo)ε(t + k, θo)− λo
y

∑
i

ao
i a

o
i+k

−λo
u

∑
i

bo
i b

o
i+k

]
. (C.4)

The asymptotic Gaussian distribution of the estimates then follows with standard
arguments, see [6], [10]. What remains is find the asymptotic covariance matrix
of the Ti variables, or more precisely to evaluate

Q =




Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


 = lim

N→∞
NE




T1

T2

T3


 (

T1 T2 T3

)
. (C.5)

We first make some general observations.

1. The Ti variables all have zero mean,

ETi = 0, i = 1, 2, 3.

2. To make the notations more compact, we will in the proof use the abbrevi-
ation

εt = ε(t, θo) (C.6)

3. The residual εt is an MA process. Its covariance function satisfies

rε(k) = Eεt+kεt =

{
λo

y

∑
i a

o
i a

o
i+k + λo

u

∑
i b

o
i b

o
i+k |k| ≤ max(na, nb− 1)

0 elsewhere
(C.7)

which verifies (5.11).

21



4. The cross-covariance vector between the noise part of the regressor, ϕ̃(t) and
the residual ε(t, θo) = Ao(q

−1)ỹ(t)−Bo(q
−1)ũ(t) can be evaluated as follows

rϕ̃ε(k) = E




−ỹ(t + k − 1)
...

−ỹ(t + k − na)
ũ(t + k − 1)

...
ũ(t + k − nb)




(
Ao(q

−1)ỹ(t)−Bo(q
−1)ũ(t)

)

= E




−ỹ(t + k − 1)
...

−ỹ(t + k − na)
ũ(t + k − 1)

...
ũ(t + k − nb)




(
na∑
j=0

ao
j ỹ(t− j)−

nb∑
j=1

bo
j ũ(t− j)

)

= −




λo
y




ao
1−k
...

ao
na−k




λo
u




bo
1−k
...

bo
nb−k







(C.8)

which verifies (5.12).

Note that the conventions (4.8) and (4.9) are used throughout in (C.7) and
(C.8). It follows that rϕ̃ε(k) = 0 if |k| ≤ max(na, nb− 1) does not hold.

5. In the evaluation of the covariance elements, we will make use of the following
property for jointly Gaussian distributed random variables:

Ex1x2x3x4 = (Ex1x2)(Ex3x4) + (Ex1x3)(Ex2x4) + (Ex1x4)(Ex2x3). (C.9)

With these preparations, we are ready to evaluate the covariance blocks Qjk. In
the calculations below, the summations over t and s goes generally from 1 to N .
The summations over τ goes over values making the terms nonzero. This implies
that

|τ | ≤ max(na, nb− 1) (C.10)

holds. Straightforward calculations give

Q11 = lim
N→∞

NE

[
1

N

∑
t

(ϕo(t) + ϕ̃(t))εt +

(
λo

yao

λo
ubo

)]

×
[

1

N

∑
s

(ϕo(s) + ϕ̃(s))T εs +
(

λo
ya

T
o λo

ub
T
o

)
]

(C.11)
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As 1
N

∑
t(ϕo(t) + ϕ̃(t))εt has mean value −

(
λo

yao

λo
ubo

)
, it follows that

Q11 = lim
N→∞



E

1

N

[∑
t

(ϕo(t) + ϕ̃(t))εt

][∑
s

(ϕo(s) + ϕ̃(s))εs

]T

−N

(
λo

yao

λo
ubo

) (
λo

ya
T
o λo

ub
T
o

)


 . (C.12)

As ϕo(t) is independent of both ϕ̃(t′) and εt′ for all t and t′, it can be concluded
that

Q11 = lim
N→∞

E

[
1

N

∑
t

∑
s

ϕo(t)ϕ
T
o (s)εtεs +

1

N

∑
t

∑
s

ϕ̃(t)ϕ̃T (s)εtεs

− N

(
λo

yao

λo
ubo

) (
λo

ya
T
o λo

ub
T
o

)
]

. (C.13)

We further get using (C.9)

E

[
1

N

∑
t

∑
s

ϕ̃(t)ϕ̃T (s)εtεs

]
=

1

N

∑
t

∑
s

Rϕ̃(t− s)rε(t− s)

+
1

N

∑
t

∑
s

(
λo

yao

λo
ubo

) (
λo

ya
T
o λo

ub
T
o

)

+
1

N

∑
t

∑
s

rϕ̃ε(t− s)rT
ϕ̃ε(s− t). (C.14)

The first double sum in (C.13) can be evaluated by changing variables as

lim
N→∞

{
1

N

∑
t

∑
s

Rϕo(t− s)rε(t− s)

}
(C.15)

= lim
N→∞

{
1

N

N−1∑
τ=−N+1

(N − |τ |)Rϕo(τ)rε(τ)

}

= lim
N→∞

(
N−1∑

τ=−N+1

Rϕo(τ)rε(τ)

)
− lim

N→∞
1

N

N−1∑
τ=−N+1

|τ |Rϕo(τ)rε(τ). (C.16)

Recall that the covariance functions in (C.16) decay exponentially to zero, as
|τ | → ∞. The first term in (C.16) apparently converges to

∞∑
τ=−∞

Rϕo(τ)rε(τ).

The second term in (C.16) is bounded with some C > 0 and some α, 0 < α < 1:
∣∣∣∣∣
1

N

N−1∑
τ=−N+1

|τ |Rϕo(τ)rε(τ)

∣∣∣∣∣ ≤
∣∣∣∣∣
1

N

N−1∑
τ=−N+1

|τ |Cα|τ |
∣∣∣∣∣ ≤

2C

N

N∑
τ=0

τατ

≤ 2C

N

∞∑
τ=0

τατ ≤ 2Cα

N(1− α)2
(C.17)
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Hence the magnitude of the second term will be arbitrarily small when N → ∞,
and it will converge to zero. Applying the above techniques to the different double
sums in Q11 gives finally

Q11 =
∑

τ

Rϕo(τ)rε(τ) +
∑

τ

[
Rϕ̃(τ)rε(τ) + rϕ̃ε(τ)rT

ϕ̃ε(−τ)
]
. (C.18)

Using the same techniques the remaining blocks of the Q matrix can also be
evaluated. In brief, the derivations are as follows.

Q12 = lim
N→∞

NE

[
1

N

∑
t

(ϕo(t) + ϕ̃(t))εt +

(
λo

yao

λo
ubo

)] [
1

N

∑
s

ε2
s − Eε2

s

]

= lim
N→∞

[
E

1

N

∑
t

∑
s

ϕ̃(t)εtε
2
s −N

(
λo

yao

λo
ubo

)
Eε2

s

]

= 2
∑

τ

rϕ̃ε(τ)rε(τ), (C.19)

Q13 = lim
N→∞

NE

[
1

N

∑
t

(ϕo(t) + ϕ̃(t))εt +

(
λo

yao

λo
ubo

)]

×
[∑

k

γk

{
1

N

∑
s

εsεs+k − Eεsεs+k

}]

=
∑

k

γk lim
N→∞

{
1

N

∑
t

∑
s

Eϕ̃(t)εtεsεs+k −N

(
λo

yao

λo
ubo

)
Eεsεs+k

}

=
∑

k

γk

{∑
τ

[rϕ̃ε(τ)rε(τ − k) + rϕ̃ε(τ − k)rε(τ)]

}
, (C.20)

Q22 = lim
N→∞

NE

[
1

N

∑
t

ε2
t − Eε2

t

][
1

N

∑
s

ε2
s − Eε2

s

]

= lim
N→∞

[
E

1

N

∑
t

∑
s

ε2
t ε

2
s −N(Eε2

t )
2

]

= lim
N→∞

2

N

∑
t

∑
s

[Eεtεs]
2

= 2
∑

τ

r2
ε(τ), (C.21)

Q23 = lim
N→∞

E

[
1

N

∑
t

ε2
t − Eε2

t

][∑

k

γk

{
1

N

∑
s

εsεs+k − Eεsεs+k

}]

=
∑

k

γk

{
lim

N→∞

[
1

N

∑
t

∑
s

Eε2
t εsεs+k −N(Eε2

t )(Eεsεs+k)

]}

= 2
∑

k

γk

∑
τ

[rε(τ)rε(τ − k)] , (C.22)
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Q33 = lim
N→∞

NE

[∑

k

γk

{
1

N

∑
t

εtεt+k − Eεtεt+k

}]

×
[∑

j

γj

{
1

N

∑
s

εsεs+j − Eεsεs+j

}]

=
∑

k

∑
j

γkγj

{
lim

N→∞

[
1

N

∑
t

∑
s

Eεtεt+kεsεs+j −N(Eεtεt+k)(Eεsεs+j)

]}

=
∑

k

∑
j

γkγj

{
lim

N→∞
1

N

∑
t

∑
s

[
(Eεtεs)(Eεt+kεs+j)

+(Eεtεs+j)(Eεsεt+k)

]}

=
∑

k

∑
j

γkγj

∑
τ

[rε(τ)rε(τ + k − j) + rε(τ − j)rε(τ + k)] . (C.23)

These calculations thus verify the expressions (5.5) - (5.10), and complete the
proof.
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