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x1(0) gets bigger (i.e., the initial distance of the ball to the center of
the beam becomes larger) the quadratic term in the (11) becomes more
significant which determines the value of the regulating signal in (12).
In the case of approximate feedback linearization-based controller, we
solve a linear equation to find the input signal, thus neglecting higher
order terms, which may be the reason of losing the control power on
larger neighborhoods of the origin.

We remark that, in [12], the authors proposed a nonlinear scheme to
globally stabilize the ball and beam apparatus. In the current note, we
only extend the existing linearization-based techniques to locally stabi-
lize approximate feedback linearizable systems including the example
described above.

V. CONCLUDING REMARKS

In this note, we introduced a new control algorithm for stabilizing
nonlinear systems. The control algorithm presented in the note belongs
to the family of sampled-data controllers. At each sampling interval, the
input signal u is found by solving a polynomial equation in . The poly-
nomial coefficients are functions of the state at the sample time. The ap-
proach allows us to account for higher order terms normally neglected
in stabilizing techniques based on system linearization. We illustrated
our control scheme on the ball and beam apparatus and compared our
controller to the well known approximate feedback linearization-based
stabilizing controller.

REFERENCES

[1] A. Isidori, Nonlinear Control Systems.
Verlag, 1995.

[2] J. Hauser, S. Sastry, and P. Kokotovi¢, “Nonlinear control via approx-
imate input-output linearization: The ball and beam example,” IEEE
Trans. Autom. Control, vol. 37, no. 3, pp. 392-398, Mar. 1992.

[3] K. K. Lee and A. A. Arapostathis, “Remarks on smooth feedback sta-
bilization of nonlinear systems,” Syst. Control Lett., vol. 10, pp. 41-44,
1988.

[4] D. Aeyels, “Stabilizability of a class of nonlinear systems by a smooth
feedback control,” Syst. Control Lett., vol. 5, pp. 289-294, 1985.

[5] R. W. Brockett, Finite Dimensional Linear Systems. New York:
Wiley, 1970.

[6] E. D. Sontag, Mathematical Control Theory. New York: Springer-
Verlag, 1990.

[7]1 F. H. Clarke, Y. S. Ledyaev, E. D. Sontang, and A. I. Subbotin,
“Asymptotic controllability implies feedback stabilization,” IEEE
Trans. Autom. Control, vol. 42, no. 10, pp. 1394-1406, Oct. 1997.

[8] H. K. Khalil, “Performance recovery under output feedback sampled-
data stabilization of a class of nonlinear systems,” IEEE Trans. Autom.
Control, vol. 49, no. 12, pp. 2173-2184, Dec. 2004.

[9] R. G. Buck, Advanced Calculus. New York: McGraw-Hill, 1965.

[10] M. Tham, “Mathematics of sampled data systems,” in Study Notes
Digit. Control, Chem. Process Eng., Univ. New Castle upon Tyne,
1996.

[11] C. Aguilar and R. Hirschorn, Report on Summer NSERC Research
Project, Dept. Math. Statist., Queens Univ. Kingston, 2003, Stabiliza-
tion of an Inverted Pendulum.

[12] C. Barbu, R. Sepulchre, P. Kokotovic, and W. Lin, “Global asymptotic
stabilization of the ball-and-beam model,” in Proc. 36th IEEE Conf.
Decision and Control, Dec. 1997, pp. 2351-2355.

[13] J. Krener, “Approximate linearization by state feedback and coordinate
change,” Syst. Control Lett., vol. 5, pp. 181-185, 1984.

London, U.K.: Springer-

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 6, JUNE 2007
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Abstract—If a smooth, closed, and embedded curve is deformed along its
normal vector field at a rate proportional to its curvature, it shrinks to a
circular point. This curve evolution is called Euclidean curve shortening
and the result is known as the Gage-Hamilton-Grayson theorem. Moti-
vated by the rendezvous problem for mobile autonomous robots, we ad-
dress the problem of creating a polygon shortening flow. A linear scheme
is proposed that exhibits several analogues to Euclidean curve shortening:
The polygon shrinks to an elliptical point, convex polygons remain convex,
and the perimeter of the polygon is monotonically decreasing.

Index Terms—Curve shortening, distributed control, mobile autonomous
robots.

I. INTRODUCTION

This note studies the rendezvous problem for mobile autonomous
robots, in which the goal is to develop a local control strategy that
will drive each robots’s state (usually its position) to a common value.
Research on this problem has been performed in both discrete time
[1]-[7] and continuous time [8], [9]. The discrete time research can be
split into synchronous systems [1]-[5] (i.e., each robot moves only at
global clock ticks), and asynchronous systems [6], [7] (i.e., no global
clock is present). In the synchronous case, there have been several pa-
pers on circumcenter algorithms [1]-[3], in which each robot moves to-
wards the center of the smallest circle containing itself and every robot
it sees. In both the continuous and discrete time cases, the research has
assumed fixed communication topologies—the sensors are omnidirec-
tional and have a range larger than their environment, allowing each
robot to see all others—and time-varying or state-dependent commu-
nication topologies—the sensors have limited range; the sensors are
directional; or, communication links may be dropped or added.

In this note, we look at the rendezvous problem from a different per-
spective. We are concerned with the shape of the formation of robots
as they converge to their meeting point. We would like the formation
to become more “organized,” in some sense, as time evolves. We use
a simple model, numbering the robots from 1 to n, and consider a
fixed communication topology in continuous time. We then view the
robot’s positions as the vertices of a polygon, and, motivated by the
Gage—Hamilton—Grayson theorem described below, we seek to create
an analogous polygon shortening flow.

To introduce the Gage—Hamilton-Grayson theorem, consider a
smooth, closed curve x(p, t) evolving in time: p € [0, 1] parameter-
izes the curve; t > 0 is time; and x(p,#) € R?. We can evolve this
curve along its inner normal vector field N(p, ) at a rate proportional
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Fig. 1. Euclidean curve shortening flow.

to its curvature k(p,t) (curvature is the inverse of the radius of the
largest tangent circle to the curve at x(p, t), on the concave side)

%—j(p,t) = k(p. )N(p,1). ey
This curve evolution is known as the Euclidean curve shortening flow
[10], and is depicted in Fig. 1. Let L(t) and A(¢) denote respectively
the length and enclosed area of the curve at time t. Gage [11]-[13],
Hamilton [13], and Grayson [14], [15] showed that a smooth, closed
and embedded curve evolving according to (1) remains embedded and
shrinks to a circular point. The term “circular point” means that the
curve collapses to a point and, if we zoom in on the curve as it is
collapsing, the curve is becoming circular. Throughout the evolution,
A(t) = —27 and L(t) is monotonically decreasing. In [15] it is also
stated that under (1), “the curve is shrinking as fast as it can using only
local information.” This notion will be clarified later.

There has been prior work in creating polygon shortening flows. Mo-
tivated by the curve shortening theory and applications in computer vi-
sion, Bruckstein et al. [16] study the evolution of planar polygons in
discrete time. A scheme is proposed that shrinks polygons to elliptical
points (the vertices collapse to a point, and if we zoom in on the col-
lapsing polygon, the vertices are converging to an ellipse). In addition,
[16] discusses a polygon shortening scheme based on the Menger—Mel-
nikov curvature [17]. In [18], this scheme is studied and it is shown that
most quadrilaterals shrink to circular points. In [19], a flow is formu-
lated such that the area enclosed by the polygon shrinks at a rate of 27
and the perimeter of the polygon is monotonically decreasing.

In this note, we study a planar polygon in the complex plane, with

vertices zi, ..., Zn, as it evolves according to
. 1 1 .
zZi = §(Zi+l —Zi)+§(2i71_zi)7 i=1,....n @)

where the indices are evaluated modulo n. Thus, vertex ¢ pursues the
centroid (center of mass) of its two neighboring (according to num-
bering) vertices. A discrete-time version of (2) is studied in [16], and
it is shown that the polygon shrinks to an elliptical point. The contri-
butions of this note are as follows. We introduce the curve shortening
theory and its relation to the rendezvous problem. We also demonstrate
the importance of studying the shape of the formation of robots as they
rendezvous. We then show the following under (2): 1) if vertices are ar-
ranged in a star formation about their centroid, they remain in a star for-
mation for all time (in particular, the robots will not collide), 2) convex
polygons remain convex, and 3) the perimeter of the polygon mono-
tonically decreases to zero. Finally, we derive the optimal direction for
shortening the perimeter of a polygon.

II. POLYGON SHORTENING

We consider n robots in the plane to be the vertices of an n-sided
polygon. In this section, we formally define a polygon and introduce
two polygon shortening schemes.
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Fig. 2. Circumcenter for three points on the curve x(p).

A. Definition of an n-Gon

Following [20], we introduce the definitions of a polygon and
a simple polygon in R* (or equivalently C). An n-gon (n-sided
polygon) is a (possibly intersecting) circuit of n line segments
., Zn %1, joining consecutive pairs of n distinct points
z1, %2, ..., %n. The segments are called sides and the points are called
vertices. A simple n-gon is one that is nonself-intersecting. We denote
the counterclockwise internal angle between consecutive sides z; z; 41
and z;_ z; of an n-gon as g, (as always, indices are modulo n). For a
simple n-gon, these angles satisfy Y. | 4; = (n — 2)w. Ann-gon is
convex (strictly convex) if it is simple and its internal angles all satisfy
0< 3 <7 (0< B <)

212242223, ..

B. Shortening by Menger—Melnikov Curvature

We now briefly describe the polygon shortening scheme studied in
[16] and [18], and our reasons for not following this approach. Let
x(p),p € [0, 1] be a smooth curve. Consider a set of parameter values
p1 < p2 < --+ < pn and the corresponding discrete points x(p;).
By connecting these points, we create an n-gon. As n — oc and if
the parameter values {p; } become dense in [0, 1], the n-gon converges
to the smooth curve x(p). The idea is to create a polygon shortening
scheme so that as n — oo, the scheme tends to (1).

If three consecutive points X(p;—1),X(p:),X(pi+1) are not
collinear, there exists a unique circle (the circumcircle) that passes
through them. Denote the radius of the circle by R(p;) and the center
of this circle by C'(p;), as shown in Fig. 2. The quantity 1/R(p;) is
called the Menger—Melnikov curvature and has the property that

1
i = |k i)l
Pifl-,PliIfrllﬂpi R(pi> | (p )|
In addition, as the points x(p; 1) and X(p;11) approach x(p;), the
quantity (C'(pi) — x(pi))/R(pi) approaches N(p;) if k(p;) > 0 and
—N(p,) if k(p;) < 0. Therefore, we have

lim
Pi—15Pi+1—7Pi

Clp) =xpi) _ 50 \Ng(o
TRy k(pi)N(p:).

The Menger—Melnikov flow is then given by

. C Pi) — X\p: .
x(pi) = % t=1,...,n.

This flow was studied in [16] and [18]. However, due to the complexity
of the system, the results are quite limited [16]. In [18], it is shown that
a simple n-gon collapses to a point in finite time, and for n = 4, most
quadrilaterals tend to regular polygons. However, when n is small, this
flow may yield a poor approximation of the inner normal vector. In fact,
for a convex n-gon, the approximation to the normal vector may not
even point into the interior of the n-gon. Also, as the polygon collapses,
the velocities of the vertices approach infinity, which is not ideal for our
application. In light of these remarks, we propose the scheme presented
next.



1156

%6

Fig. 3. Counterclockwise star formation.

C. Linear Scheme

The linear polygon shortening scheme is given by (2). Defining the
aggregate state = = (z1,..., 2, ), where z; € C, we get the simple
form Z = Az. By exploiting the circulant structure of the matrix A,
one can easily show the following properties.

Lemma 1: The polygon shortening scheme in (2), which can be
written in the form Z = Az, has the following properties.

1) The eigenvalues of A are real, with one eigenvalue at zero, and all

others on the negative real line.

2) The centroid Z := """, z;/n is stationary throughout the evolu-

tion.

3) The robots asymptotically converge to this stationary centroid.

The following theorem characterizes the geometrical shape of the
points z; (¢) as they converge to their centroid and is proved for discrete
time in [16], and for general circulant pursuit in [21].

Theorem 2: Consider n points, z1(t),...,z.(t) evolving ac-
cording to (2). As t — oo these points converge to an ellipse. That is,
z1(t), ..., zs(t) collapse to an elliptical point.

III. INVARIANCE OF FORMATIONS

We now examine two classes of robot formations, star formations
and convex formations, and show they are invariant under (2).

A. Star Formations Stay Star Formations

Consider our system of n robots, whose positions, not all collinear,
are denoted by z1.,..., z,. Let Z be the centroid of these positions and
r; be the distance from the centroid to z;. Let «; denote the counter-
clockwise angle from Zz; to Zz;41 for: = 1,...,n, modulo n. Then
a star formation can be defined as follows.

Definition 3: (Lin et al. [8]): The n points are arranged in a coun-
terclockwise star formation if r; > 0 and a; > 0, foralli = 1,...,n,
and ) " | «; = 2m. They are arranged in a clockwise star formation if
ri > 0and o; < 0,foralli =1,...,n,and > | a; = —2m.

This formation is shown in Fig. 3. In what follows, we will consider
only counterclockwise star formations, since the treatment for clock-
wise star formations is analogous. Also, the case n = 2 is trivial, so it
is omitted.

To determine whether a group of robots is in a star formation, we
require a tool for measuring angles. This tool is given in Lemma 4. For
z € C,let R{z}, I{z} and z denote the real part, imaginary part, and
complex conjugate of z, respectively.

Lemma 4 (Lin et al. [8]): Let z, z2, and z3 be three points in the
complex plane, as shown in Fig. 4. Let 1 := |21 — 22|, 72 := |23 — 22|
and

F = ;\5{(21 - 22)(23 - Zg)}

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 6, JUNE 2007

Fig. 4. Setup for the definition of the function F'.

Then 1) 0 < o« < 7,71 > 0,and ro > 0 if and only if F* > 0; 2)
7 <« < 2w, > 0,and r2 > 0 if and only if F' < 0; 3) the points
are collinear if and only if F* = 0.

We are now ready to state the main theorem of this section.

Theorem 5: Suppose that n distinct points, with o > 2, are initially
arranged in a counterclockwise star formation. If these points evolve
according to (2), they will remain in a counterclockwise star formation
for all time.

The proof uses the following two results.

Lemma 6 (Lin et al. [8]): Suppose that n distinct points, z1, . . ., Zx,
withn > 2, are in a counterclockwise star formation. Then «; < 7, Vi.

Lemma 7 (Linetal. [8]): If n points, z1,..., z, evolving according
to (2) are collinear at some time £, then they are collinear for all ¢ < #;
and t > 1.

Proof of Theorem 5: We begin by considering the function

Fi(t) = S{(z:(t) — 2)(zit1(t) — 2)} = ririgr sin(ay).

By the definition of a counterclockwise star formation we have r; (0) >
0 and 0 < «;(0) < ,Vi. Hence, by Lemma 4, F;(0) > 0,Vi. We
want to show that F;(¢) > 0, Vi and V¢, which by Lemma 4 shows that
the vertices are in a counterclockwise star formation for all time.

Suppose by way of contradiction that ¢; is the first time that some
F; becomes zero. We can select i = m such that F,,,(¢;) = 0 and
Foy1(t1) > 0, for if all the F;’s are zero at 1, then the points
are collinear, which by Lemma 7 is a contradiction. Hence, we have
Fi(t) > Oforallt € [0,t1)andalli, F,,,(t1) = 0,and F,41(t1) > 0.

Taking the _time derivative of F,,, and noting that =0 (see Lemma
1), we have Fry = S{Zm (2m+1 — 2) + (2m — Z)Zmt1 -

By adding and subtracting Z in each term in (2) we can write (2) as

. 1 - 1 -
L= gz =)+ 5l =)+ (= 2)

Using this expression for Zm and Z,,41 and simplifying, we obtain
F,, = —2F,, + G,., where

—

Gm = _S{(zru—l - E)(Zm-‘,-l -

)+ (2m = 2)(Zmt2 — 2)}

=N

= §(rrrz—lrrrL+l Sin(azrz—l + Oé‘m)

+ rmPma2 sin(am + @mi1)). 3

Now, if F\, (t1) = 0, by Lemma 4, one of the following four conditions
must hold: 2) av,, (t1) = mand v, (81), Pimt1(t1) > 0;2) (1) = 0
and 7’,,L(t1),'rm+1(t1) > 0;3) T,,l(tl) =0;4) Tm.t,.l(tl) =0.

Condition 4) cannot hold since Fy,+1(t1) > 0. Condition 1) cannot
hold, for if it did, all points would lie on, or to one side of, the line
formed by z,,4+1 and z,,, a contradiction by either Lemma 6 or 7. As-
sume that condition 2) holds. Then a.(t1) = 0, and from (3), we
obtain

1 . .
Gm (fl) - 5(7’mfl7’m+1 s111(@mfl) + T"mTm+2 Slll((lm,+1))

1 (rm T T'm
:—<’ Jrlmel(fl)-i- !
+1

2 Tm Tm

Fm+1(f1)) .
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Fig. 5. Position of the points z,,_1, Zm, and z,,41 att = t;.

Since Tm (fl), ’I‘m+1(t1) > 0, Fn1+1(t1) > 0, and Fm71(t1) 2 0,
it follows that G, (t1) > 0. By continuity of G, there exists 0 <
to < t1 such that G, (t) > 0 forall ¢ € [to, ¢1]. Also, by assumption,
Fo(t) > 0fort € [0,t). Therefore, Fyn(t) = —2Fn + Gm >
—2F,, forallt € [ty,t). Integrating this and using the continuity of
F,., we obtain F,,,(t;) > e 2"t 10 F_(#3) > 0, a contradiction.

Finally, suppose condition 3) holds and r,,(t1) = 0. Then 2z, (t1)
is positioned at the centroid, Z. Assume without loss of generality that
Z = 0. Notice that if z;(¢1) = 0, the angle 6;(¢1) is not defined. We
now establish that if z;(t1) = 0 and Z;(¢1) # 0, then lim, ¢, 8;(¢) is
well defined. Expanding z; about t; we have z;(t1) = z;(t1 — h) +
hi:(t1) + O(h?), where O(h?)/h — 0 as h — 0.If z;(#,) = 0 then
zi(tit — h) = —hi;(t1) + O(hz). Hence, limj,—o zi(t1 — h)/h =
—Z;(t1). Therefore, the limiting motion of z;(¢) as ¢ T ¢ is along the
ray defined by —Z; (¢1 ). Because of this, we can define

ri(ti) >0

0;(t1), if
Oilt) = arctan (73};’83{) , i ri(t) = 0. )

With this definition, we can talk about #;(¢;), and «;(t1), when
ri(t1) = 0.

Suppose that by a rotation of the coordinate system, if necessary, the
vector Zp,41(t1) + zm—1(t1) lies on the negative real axis. Then we
can write

Zmt1(t1) + zZm—1(t1) _
2

—r, wherer > (. (®)]

We have r > 0 for if » = 0, then zm—1(t1), Zm (1), Zms1(t1) all
lie on a line through the centroid, and all other points must lie either
on or to only one side of this line, implying that O is not the centroid,
or all the points are collinear, both contradictions. Since zm (t1) = 0,
from (2) and (5), we have Z,,(¢1) = —r, as shown in Fig. 5. If n = 3
then z,, (t1) = 0 and the centroid of z,,,+1(t1) and z,,,—1(¢1) is at —r,
implying that O is not the centroid of the three points—a contradiction.

Therefore, we need only consider n > 3. Since Z,, (t1) = —r, from
(4), we obtain

0, (t1) = 0. (6)

To obtain a contradiction for n > 3 we will show that (5) and (6) cannot
both be satisfied. To do this, we consider two cases, 7,,—1 (¢1) = 0 and
rm—1(t1) > 0. Since the points are in a star formation until 1, we
know that Vi, a;(t) € (0,m) for t € [0,%1). Hence, if 6;(t1) and
6,41 (1) are defined via (4), then by continuity, «; (t1) € [0, 7].

If ro—1(t1) = 0, then from (5), we have zp41(t1) = —2r. There-
fore, 0,,+1(t1) = =, and from (6), #,,(t1) = 0. However, this im-
plies that all other #; (¢1)’s that are defined must lie in [—, 0]. Hence,
S{zi(t1)} < 0 Vi, which implies that all points are collinear, or that 0
is not the centroid, both contradictions.
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Fig. 6. Required geometry such that 6,,_1(t1) € [—7,0],0,+1(¢t1) €
[0, 7], and zym41(t1) + Zm—1(t1) = —2r. All points lie either on or to one
side of the dotted line.

Fig.7. Evolution of a polygon whose vertices are in a star formation about their
centroid *. The dashed lines show the trajectories of each vertex.

If 7—1(t1) > 0 then from (6), and since o (t1), am—1(t1) €
[0, 7], we have that 6,,,41(¢1) € [0, 7] and 6,,,— (1) € [—,0]. So
I{zm11(t1)} > 0and S{zm1(t1)} < 0. Because of this, as can be
verified in Fig. 6, for (5) to be satisfied either zy,—1(t1) and zm+1(t1)
are both real, in which case 8,41 (¢t1) — 6,,—1(t1) = m, or neither
is real and 041 (1) — @m—1(t1) > . However, this implies that all
points lie on, or to one side of, the line formed by z,,_1(t1). Thus, all
points are collinear, or 0 is not the centroid, both contradictions. [

Fig. 7 shows the evolution of a polygon that is in a star formation
about its centroid. Notice that the polygon remains in a star formation,
becomes convex, and collapses to an elliptic point.

B. Convex Stays Convex

We now turn to the case where the formation is initially a convex
n-gon.

Theorem 8: Consider a strictly convex n-gon at time ¢ = 0, whose
vertices z;, ¢ = 1,...,n, are numbered counterclockwise. If these
vertices evolve according to (2), the n-gon will remain strictly convex
for all time.

The proof of this theorem is similar to that of Theorem 5; the reader
may refer to [22] for a sketch or [23] for a full proof. Theorem 8 is anal-
ogous to convex curves remaining convex under (1), which is shown in
[11].

A straightforward consequence of the theorem is the following.

Corollary 9: Consider an n-gon that is convex at ¢ = 0. If the
vertices evolve according to (2), then for any ¢ > 0, the n-gon will
be strictly convex.

Fig. 8 shows the evolution of an initially convex n-gon.

IV. OPTIMAL CONTROL LAW FOR PERIMETER SHORTENING

In [15], it is stated that a curve evolving according to (1) is shrinking
as fast as it can using only local information. To see why and in
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Fig. 8. Evolution of a convex n-gon. The solid lines show the trajectories of
each vertex.

what sense this is true, reparametrize the curve in terms of its Eu-
clidean arc-length s, defined via the differential arc-length element
ds := ||0x/8p||dp. With this we can write the length of a curve as

L(t) = /OL(L) ds = /01

To take the time derivative of this expression we differentiate ||0x/9p||

and obtain
L1 ox oox
" 10x/p|| \dp’ dp Ot /°

Substituting this into d L /dt and integrating by parts, we obtain

drL L dx
E__./o <LN W>ds. ®)

Therefore, the direction of dx/dt in which L(t) is decreasing most
rapidly is 9x/0t = kN, which is the Euclidean curve shortening rule
(1). Note that this flow is optimal only in the sense that the velocity of
the curve at each point always points in the direction that maximizes
the rate of decrease of L(t).

We now give an analogous result for the discrete polygon case. Given
an n-gon we can write its perimeter as

ox

% dp. (@)

ox

ap

9
ot

|- (C)]

=1

To take the time derivative of P(t) consider taking the derivative of

|ziv1 — 2| = {ziv1 — 2, 2ig1 — ) (foru,v € C™, {u,v) = u™v,
where * denotes complex conjugate transpose). This yields

d o d

d Zi| = E(szﬂ — Zis Zi4l — Zi)

= Q‘R {<2i+1 - Z,‘,,,‘Z,j+1 - Z,)}

but also, (d/(lt) Zi+1 — Z,j|2 = — Z,jl((l/dt) Zi41 — Z,j|. Com-
bining these two expressions and letting 2; = u;, we obtain

PN =)
<141 _/-l|

Since all indices are evaluated modulo n, this can be rewritten as

SR(e I e
zi |zig1 — =i

=1 |~zfl - ‘41|
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(10)

To maximize the rate of decrease of P(¢), u; should point in the direc-
tion of (z;—1—z;)/|zic1—zi|+ (zit1—2:) /|2 z;|. This direction
bisects the internal angle 3; of the n-gon. In general, neither the linear
scheme (2) nor the shortening by Menger—Melnikov curvature points in
this direction. However, this direction does not ensure that the polygon
becomes circular (nor elliptical); in simulation, adjacent vertices may
capture each other and the polygon may collapse to a line.

Using (10) and (2), we can determine (). For P(t) to be defined
we require that adjacent vertices be distinct. This is ensured, for ex-
ample, if the vertices start in a star formation about their centroid. The
following result is analogous to the result in [11] that under (1), the
length of the curve monotonically decreases.

Theorem 10: Consider an n-gon whose distinct vertices evolve ac-
cording to (2). If adjacent vertices remain distinct, the perimeter P(t)
of the n-gon monotonically decreases to zero.

Proof: Substituting (2) into (10) and expanding we obtain

1 T
1‘)252‘5}3{— zi = zim1| = |zig1 — 2
=1
s S
<|ZL'—ZI'_1|/ 41 [

Zit1 — %
+ {5~z .
|zig1 — 2

Each term in this summation has the form R{—|u| — |v]
(uflu],v) + {v/|v|],u)}. From the Cauchy-Schwarz inequality
we have R{{u/|u]|,v}} < |v|,R{{v/|v|,u)} < |u|, and, thus,
R{—|u| — |v| + (u/|u],v) + (v/|v].u)} < 0. Therefore, P(t) < 0.
Equality is achieved if and only if u/|u| = v/|v| for each term in the
summation; that is, if and only if

Zi — zi1 Zig1 — % ,
Vi.

an

lzi = zica| 2 — 2]’
However, assume by way of contradiction that (11) is satisfied. Rotate
the coordinate system such that z; and z» lie on the real axis and 2z, —
z1 > 0. Setting ¢ = 2 in (11) we have z3 — z2 > 0, setting i = 3 we
have z4 — z3 > 0, and so on. Hence, z;41 — z; > 0,Vi =1,...
1, which implies that z, > z;. However, setting ¢ = n in (11) we
have z; — z,, > 0, a contradiction. Therefore, (11) cannot be satisfied,
P (t) < 0, and since the vertices converge to their stationary centroid,
P(t) monotonically decreases to zero. g

,n—

V. LIMITATIONS OF THE LINEAR SCHEME

There are two ways in which the linear scheme does not mimic
Euclidean curve shortening. First of all, if an embedded curve is
evolved via Euclidean curve shortening, its area is monotonically
decreasing. However, for the linear scheme, in general, the area of a
simple polygon is not monotonically decreasing. The second way in
which the linear scheme does not mimic Euclidean curve shortening is
in its effect on simple n-gons. If an embedded curve evolves according
to the Euclidean curve shortening flow, it remains embedded. In
contrast, a simple n-gon can become self-intersecting under the linear
scheme. This topic is discussed in more detail in [23].

VI. CONCLUSION

In summary, under the simple distributed linear control law (2), the
robots rendezvous and also become more organized, in the sense that
the polygon becomes elliptical. Furthermore, star formations remain
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s0, convex polygons remain so, and the perimeter of the polygon de-
creases monotonically. These results are intended as a possible starting
point for more useful behavior. As an example scenario, consider a
number of mobile robots initially placed at random, and which should
self-organize into a regular polygon (circle) for the purpose of forming
a large-aperture antenna. Distributed control laws for this goal would
have to be nonlinear. Research on this front is on-going.

Another topic for future research is to look at polygon shortening
flows for wheeled robots which are subject to nonholonomic motion
constraints.

Finally, drawing upon the results on curve shortening flows, there
has been a similar development of curve expanding flows—If a smooth,
closed, and embedded curve is deformed along its outer normal vector
field at a rate proportional to the inverse of its curvature, it expands
to infinity, and the limiting shape is circular [24]. Thus, a scheme for
deployment of a fleet of mobile robots could be achieved by creating
the analogous polygon expanding flow.

REFERENCES

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “Distributed memo-
ryless point convergence algorithm for mobile robots with limited vis-
ibility,” IEEE Trans. Robot. Autom., vol. 15, no. 5, pp. 818-828, May
1999.

[2] J. Cortés, S. Martinez, and F. Bullo, “Robust rendezvous for mobile au-
tonomous agents via proximity graphs in arbitrary dimensions,” IEEE
Trans. Autom. Control, to be published.

[3] J. Lin, A. S. Morse, and B. D. O. Anderson, “The multi-agent ren-
dezvous problem,” in Proc. IEEE Conf. Decision and Control, Maui,
HI, Dec. 2003, pp. 1508-1513.

[4] L. Moreau, “Stability of multiagent systems with time-dependent
communication links,” IEEE Trans. Autom. Control, vol. 5, no. 2, pp.
169-182, Feb. 2005.

[5] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
Autom. Control, vol. 48, no. 6, pp. 988—1001, Jun. 2003.

[6] L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro, “Election and
rendezvous in fully anonymous networks with sense of direction,”
Theory Comput. Syst., 2005.

[7] P.Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, “Gathering of
asynchronous mobile robots with limited visibility,” Theoret. Comput.
Sci., vol. 337, pp. 147-168, 2005.

[8] Z.Lin, M. Broucke, and B. Francis, “Local control strategies for groups
of mobile autonomous agents,” IEEE Trans. Autom. Control, vol. 49,
no. 4, pp. 622-629, Apr. 2004.

[9] S. L. Smith, M. E. Broucke, and B. A. Francis, “A hierarchical cyclic
pursuit scheme for vehicle networks,” Automatica, vol. 41, no. 6, pp.
1045-1053, 2005.

[10] K.-S. Chou and X.-P. Zhu, The Curve Shortening Problem. New
York: Chapman & Hall, 2001.

[11] M. E. Gage, “An isoperimetric inequality with applications to curve
shortening,” Duke Math. J., vol. 50, no. 3, pp. 1225-1229, 1983.

[12] M. E. Gage, “Curve shortening makes convex curves circular,” Inven-
tiones Math., vol. 76, pp. 357-364, 1984.

[13] M. E. Gage and R. S. Hamilton, “The heat equation shrinking convex
plane curves,” J. Diff. Geom., vol. 23, pp. 69-96, 1986.

[14] M. A. Grayson, “The heat equation shrinks embedded plane curves to
round points,” J. Diff. Geom., vol. 26, pp. 285-314, 1987.

[15] M. A. Grayson, “Shortening embedded curves,” Ann. Math., vol. 129,
pp. 71-111, 1989.

[16] A.M. Bruckstein, G. Sapiro, and D. Shaked, “Evolution of planar poly-
gons,” Int. J. Pattern Recognit. Artif. Intell., vol. 9, no. 6, pp. 991-1014,
1995.

[17] M. S. Mel’nikov, “Analytic capacity: Discrete approach and curvature
of measure,” Sbornik: Math., vol. 186, no. 6, pp. 827-846, 1995.

[18] T.Jecko and J.-C. Leger, “Polygon shortening makes (most) quadrilat-
erals circular,” Bull. Kor. Math. Soc., vol. 39, no. 1, pp. 97-111, 2002.

[19] K. Nakayama, H. Segur, and M. Wadati, “A discrete curve-shortening
equation,” Meth. Appl. Anal., vol. 4, no. 2, pp. 162-172, 1997.

[20] H.S.M. Coxeter, Regular Polytopes,3rded. New York: Dover, 1973.

1159

[21] J. A. Marshall, “Coordinated autonomy: Pursuit formations of mul-
tivehicle systems,” Ph.D. dissertation, Univ. Toronto, Toronto, ON,
Canada, 2005.

[22] S. L. Smith, M. E. Broucke, and B. A. Francis, “Curve shortening and
its application to multi-agent systems,” presented at the IEEE Conf.
Decision and Control, Dec. 2005.

[23] S. L. Smith, M. E. Broucke, and B. A. Francis, Curve shortening and
the rendezvous problem for mobile autonomous robots 2006 [Online].
Available: http://arxiv.org/abs/cs.RO/0605070, preprint. Available
electronically at

[24] B. Chow and D. Tsai, “Geometric expansion of convex plane curves,”
J. Diff. Geom., vol. 44, no. 2, pp. 312-330, 1996.

Frequency Response Functions for
Nonlinear Convergent Systems

Alexey Pavlov, Nathan van de Wouw, and
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Abstract—Convergent systems constitute a practically important class
of nonlinear systems that extends the class of asymptotically stable linear
time-invariant systems. In this note, we extend frequency response func-
tions defined for linear systems to nonlinear convergent systems. Such non-
linear frequency response functions for convergent systems give rise to non-
linear Bode plots, which serve as a graphical tool for performance analysis
of nonlinear convergent systems in the frequency domain. The results are
illustrated with an example.

Index Terms—Convergent systems, differential inclusions, frequency re-
sponse functions, nonlinear systems, performance analysis.

[. INTRODUCTION

A common way to analyze the behavior of a (closed-loop) dynam-
ical system is to investigate its responses to harmonic excitations at
different frequencies. For linear time invariant (LTI) systems, the in-
formation on responses to harmonic excitations, which is contained in
frequency response functions, allows one to identify the system and an-
alyze its properties such as performance and robustness. There exists
a vast literature on frequency domain identification, analysis, and con-
troller design methods for linear systems, see, e.g., [17] and [23]. Most
(high-performance) industrial controllers, especially for motion sys-
tems, are designed and tuned based on these methods, since they allow
one to analyze the performance of the closed-loop system. The lack of
such methods for nonlinear systems is one of the reasons why nonlinear
systems and controllers are not popular in industry. Even if a (non-
linear) controller achieves a certain control goal (e.g., tracking), which
can be proved, for example, using Lyapunov stability methods, it is
very difficult to conclude how the closed-loop system would respond to
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