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Abstract—This paper treats the problem of synthesizing anti-
windup compensators that are able to handle plant uncertainty
in addition to controller saturation. The uncertainty considered
is of the frequency-weighted additive type, often encountered in
linear robust control theory, and representative of a wide variety
of uncertainty encountered in practice. The main results show how
existing linear matrix inequality based antiwindup synthesis al-
gorithms can be modified to produce compensators that accom-
modate uncertainty better. Embedded within these results is the
ever-present performance–robustness tradeoff. A remarkable fea-
ture is that the often criticized internal model control antiwindup
solution emerges as an “optimally robust” solution. A simple ex-
ample demonstrates the effectiveness of the modified algorithms.

Index Terms—Antiwindup, constrained control, robust control.

I. INTRODUCTION

MODEL uncertainty and actuator saturation are two trou-
blesome phenomena frequently encountered by control

engineers. The problem of ensuring robustness in the presence
of model uncertainty in particular has occupied the control com-
munity for many years. Other researchers have devoted much
time to the study of actuator saturation, yet, commonly—and
remarkably—these problems have been considered in isolation
and there are few attempts in the literature to unify some of
the results (perhaps the most comprehensive account is given
in [1]). It may be argued that actuator saturation could be mod-
elled as a particular type of uncertainty, and therefore it could
be handled by standard robust control techniques. However, de-
signs based on this mantra would probably be inherently “low
gain” in nature and lead to unduly conservative designs, with
restricted small-signal performance.

Conversely, the studies of systems subject to actuator satu-
ration have typically chosen to ignore model uncertainty. This
has been the case particularly with the antiwindup community,
where the implicit assumption has been that the antiwindup
compensated constrained system will inherit the robustness of
its unconstrained counterpart. While it appears logical to require
nominal linear robustness, this appears to be more of a neces-
sary than sufficient condition to ensure robustness of the overall
antiwindup compensated nonlinear system.

The goal of this paper is to develop antiwindup compen-
sators that can be implemented in real systems, which will in-
evitably contain uncertainty, with some confidence. This paper
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takes as its inspiration the work of [1], which contains a collec-
tion of papers that treat the problem of uncertain, saturated sys-
tems in a systematic way. However, most of these papers deal
with one-step solutions—rather than the two-step antiwindup
approach—and a particular type of uncertainty. Specifically, the
uncertainty used is normally parametric or state-space uncer-
tainty, generally of the form

(1)

Although this type of parametric uncertainty is certainly useful,
in practice it is quite limited in scope and is not very useful
for capturing unmodelled dynamics, which can be more of an
obstacle than their modelled, but uncertain, counterparts.

This paper is based on [2] and continues the work of [3] in
a logical way, with more focus on constructive algorithms for
antiwindup synthesis. It is important to remark that the motiva-
tion for this paper, and also for that of [3], is practical: in our
experience in the aerospace and hard-disk control fields, it has
really been the unmodelled dynamics that have caused the most
difficulty in appropriate controller synthesis and, while present,
the parametric uncertainty has played a less prominent role (it
is often easily countered by large enough low frequency gain).

The aims of this paper are twofold. First, it aims to bring ro-
bustness to the fore in antiwindup compensation, where, except
for [4], it has had little prominence. Secondly, it aims to pro-
mote the use of a type of uncertainty closer to that often used in
practice (and close to that used in linear robust control theory,
which has shown itself to be successful in recent years).

The notation used in this paper is standard. In particular, we
define the induced norm, or finite gain, of an operator

as , where

is the norm of the vector and is its
Euclidean norm. The norm for a (stable) linear operator
is defined as , where denotes the
maximum singular value and is the frequency response
matrix associated with the linear operator . We do not explic-
itly distinguish between a linear operator and its transfer func-
tion. Equivalently, the norm may be defined as

. We denote an asymptotically stable, rational transfer
function/linear operator by . A feedback system
is said to be “well posed” when there exists a unique solution to
the feedback equations. For linear systems, a simple condition
for this can be found in, for example, [5].

II. A GENERAL ANTIWINDUP FRAMEWORK

It is convenient to study the robustness of antiwindup (AW)
compensators in a framework similar to that proposed in [6] (see
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Fig. 1. Conditioning with M(s).

also [7]). This scheme is shown in Fig. 1, where is the
transfer function matrix of the plant and is the transfer
function matrix of the controller, which have state-space real-
izations

(2)

(3)

For the analysis here, it is convenient to split the plant function
as , where
is the transfer function from the disturbance to the
measured output and is
the transfer function from the plant input to the
output. In operator form, we have

Similarly, the controller is partitioned as
, where represents

the feedforward part of the controller due to the reference
and represents the

feedback part of the controller due to . Thus the “linear”
control signal is determined by

Such plant and controller partitions are not necessary but they
do clarify the fact that the disturbance feedforward part of the
plant and the reference feedforward part of the controller play
no role in the antiwindup performance or robustness problem, as
defined here. Obviously, this partition assumes that con-
tains only the same unstable (normally integral modes) as
to ensure stability of the system. We would normally assume
similarly that contains only the same unstable modes as

, but for reasons of global stability, we make the stronger
assumption that .

The control signal produced by the controller and, if active,
the antiwindup compensator is , which may differ
to the actual plant input due to the satura-
tion nonlinearity between the two signals. The antiwindup com-
pensator is described by the transfer function matrix

and features a copy of the known feed-
back portion of the plant and a free parameter—

Fig. 2. Equivalent representation of Fig. 1.

. It generates two signals , which are fed to
the controller output, and a further signal , which is
fed to the controller input, i.e.,

The antiwindup compensator is driven by the difference be-
tween the controller output and plant input and thus,
assuming zero initial conditions, remains inactive until satura-
tion occurs. When saturation does occur, the antiwindup com-
pensator becomes active and thus the controller output and one
of the controller inputs are modified to

(4)

(5)

When and, assuming zero initial conditions for
the antiwindup compensator, , we say
the system exhibits nominal behavior. Parameterizing the an-
tiwindup compensator in the above way allows Fig. 1 to be re-
drawn as the equivalent scheme shown in Fig. 2, where we have
used the relationship

(6)

where

...
... (7)

and and
. Also .

As noted in [7], the architecture of the AW scheme in Fig. 2
reveals a more lucid representation of the AW problem. In par-
ticular, under the logical assumption that the nominal, unsat-
urated, feedback combination of and is asymptot-
ically stable, then providing that , the non-
linear stability problem in Fig. 1 is simply translated to picking

such that the nonlinear loop in Fig. 2 is asymp-
totically stable. Moreover, from Fig. 2, it can be seen that the
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Fig. 3. Antiwindup with uncertainty.

performance of the antiwindup compensator is intimately re-
lated to the mapping : if the norm of this map-
ping is small, then the antiwindup compensator is successful at
keeping performance close to linear (which we assume is the
desired performance). In [8], it was shown how the gain
of could be minimized using a system of linear matrix in-
equalities and, furthermore, how could be chosen such
that it corresponded to static or low-order antiwindup compen-
sators (discrete and sampled-data versions of this can be found
in [9]–[11]). It was demonstrated, using suitable examples, in
[8] that direct minimization of was central to good anti-
windup performance and compensators designed according to
the ideas in [8] seemed to perform at least as well as, and often
better than, most other antiwindup compensators. Furthermore,
in [7], it was shown that most antiwindup schemes can be in-
terpreted as certain choices of , and therefore
schemes such as the Hanus conditioning scheme [12], the high
gain approach [13], [14], and such like can be analyzed in terms
of Fig. 1, or, equivalently, Fig. 2.

A. Plant Uncertainty

Consider the configuration in Fig. 3, where is the true plant
given by , where

is the model of the plant with which we work and
is additive uncertainty to the feedback part.1 We

assume that the uncertainty comprises a “known
part” , which typically is a crude model of its
frequency response, and an unknown part , where

(8)

This is a reasonably generic type of uncertainty, although we
do not use the representation , as this complicates
the small gain argument we use later in this paper. Other types
of uncertainty such as output-multiplicative uncertainty, where

, and input-multiplicative uncertainty
could be used instead, of course.

However, it is easy to see that both these uncertainties can be
captured by additive uncertainty ( or

), although the converse is not always true (unless is
invertible), so we prefer to work with additive uncertainty.

1It is likely that there will also be a perturbation of the disturbance feedfor-
ward portion of the plant G , although this will have no bearing on global sta-
bility results, so for simplicity we do not consider it.

Fig. 4. Equivalent representation of Fig. 3.

When uncertainty is present in the system, the appealing de-
coupled structure of the original scheme is lost. Fig. 4 shows an
equivalent representation of Fig. 3. All signals have the same
meaning as before, and the additional signals

and represent the effect of the uncertainty
on the “linear loop.” It is important to mention that the term

destroys the decoupling of the linear
system and nonlinear loop; the “linear loop” is no longer linear.

B. Assumptions

We make the following assumptions.
1) The open-loop plant is asymptotically stable. In order

to obtain global finite-gain stability results for constrained
input systems, this assumption is vital.

2) The (linear) uncertainty is asymptotically
stable. This mirrors the case in standard control theory
where the perturbations are assumed stable. This greatly
simplifies the work and is necessary for the small-gain ap-
proach we take.

3) The nominal linear closed-loop system is robustly asymp-
totically stable and well posed. By this, we mean that, when
the saturation nonlinearity is replaced by the identity oper-
ator, the closed-loop system is stable and furthermore can
tolerate a certain amount of uncertainty ( ,
where ) before becoming
unstable. This essentially amounts to assuming that the de-
sign of the linear controller is “good” in the sense
that it robustly stabilizes the system. We also assume that
the nominal linear closed loop is well posed. These two as-
sumptions can be summarized as

(9)

and exists. Note that the uncertainty model
is somewhat less restrictive than the used in [2], as it
does not require the transfer function to
be small across all frequencies.

4) The nominal linear closed loop yields desirable perfor-
mance. As is common in the antiwindup literature, it is
assumed that the linear closed loop yields desired perfor-
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mance and the performance of the antiwindup compensator
can be measured against the deterioration of this perfor-
mance when the control signals saturate. This is related to
the foregoing point in the sense that we also assume that
the linear closed-loop yields desirable robustness proper-
ties and therefore the performance of the antiwindup com-
pensator can also be assessed against its preservation of the
linear system’s robustness properties.

On the basis of these assumptions, three features are evident
from Fig. 4.

1) If is small in some sense, then the robustness of the
antiwindup scheme is similar to that of the nominal, un-
constrained linear system (via a small-gain argument).

2) If the mapping from is small, again, the ro-
bustness of the antiwindup system is similar to that of the
nominal linear system (again using a small-gain argument).

3) The robustness of the system with antiwindup com-
pensation can never be better than the robustness
of the linear system. Denoting the map from
to as (the nonlinear loop),
the “modified” uncertainty can be represented as

, where is given by the ex-
pression .
From this it can be noted (see the Appendix) that

and therefore reten-
tion of the linear system’s robustness properties can be
considered as an optimal property. This will be discussed
in more detail later.

In what follows, we shall make these notions of robustness more
precise, and algorithms will be proposed that ensure our system
with antiwindup is asymptotically stable for all in the set

(10)

In particular we shall be interested in minimizing to ensure
that the uncertainty set is as large as possible. Note that,
as indicated already, the robustness of the antiwindup scheme
cannot be better than the nominal linear robustness, and it will
be seen that , where is an gain parameter introduced
later.

III. SPECIAL CASE: IMC ANTIWINDUP

Before we explore the consequences of uncertainty in an-
tiwindup further, it is interesting to consider a special case:
the much-maligned internal model control (IMC) antiwindup
scheme. IMC antiwindup was introduced in [15] as an anti-
windup methodology, but many examples in the literature have
shown it to be poor (e.g., [16]). This can be easily seen by
viewing IMC antiwindup in Fig. 2: to obtain IMC antiwindup,
we simply choose . The nonlinear “loop” becomes
simply the dead-zone operator and the disturbance filter
becomes the open-loop plant . Hence the IMC perfor-
mance will be poor if the open-loop plant has slow, lightly
damped poles or nonminimum phase zeros.

As is often the case in linear robust control theory, there is
a tradeoff between performance and robustness, and this seems

Fig. 5. IMC antiwindup with uncertainty.

to extend to antiwindup compensation. Consider uncertain an-
tiwindup in Fig. 4 and choose ; then again the nonlinear
loop degenerates to the dead-zone function and the troublesome
term, which destroys the decoupling of the linear and nonlinear
parts of the system, simply becomes the uncertainty . For
convenience, this scenario is redrawn in Fig. 5. For consistency,
we have retained the notation and , although it should
be understood that these signals are no longer generated by a
purely linear system.

Now, nominally, assuming no saturation, simple small gain
analysis shows that we have stability robustness against all input
additive uncertainty

(11)

where . Similarly, a small gain
analysis of Fig. 5 reveals that stability is maintained providing
that the “modified” nonlinear uncertainty
satisfies

(12)

But as

(13)

stability robustness is ensured for all uncertainty satisfying (11),
that is, all uncertainty within the ball . However, as

, then . In other words, the IMC an-
tiwindup scheme is guaranteed to be robustly stable for the same
class of additive uncertainties as the nominal linear system. Re-
call that it is not possible for an antiwindup scheme to be more
robust than the nominal linear system because much of the anti-
windup scheme’s time is spent operating as a linear system (see
Appendix I). So, for the uncertainty class considered here, re-
tention of the linear system’s robustness properties is optimal.
Hence, although IMC schemes can be criticized for their per-
formance, they are in fact optimally robust as far as stability is
concerned. A similar observation was made in [17].
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Fig. 6. Robustness optimization for general antiwindup schemes: graphical
representation of T .

IV. GENERAL CASE

A. A Stability Robustness Criterion

From Fig. 4, we have that

(14)

where, as before, is the map from to . Carrying out
a small gain analysis, we see that the system is robust against all
additive perturbations such that

(15)

So nominal robustness is retained if .
However, as around (as it contains the
dead zone), can never be strictly less than
unity. Again this conclusion coincides with our prior discussion,
as we could not expect an antiwindup scheme to yield greater
robustness margins than the linear system upon which it is con-
structed. This also serves as justification for the IMC scheme, al-
though it is unlikely to be the unique compensator that achieves
this optimality.

B. Stability Robustness Optimization

In order to preserve as much robustness as possible, we would
like to minimize , preferably
making it as close to unity as possible. Diagrammatically, this
can be shown as Fig. 6, where we want to minimize the gain
from to , where is the signal feeding
into the uncertainty, as shown in Fig. 4. If we can guarantee
that , small gain analysis of Fig. 4 then shows
that the system will be asymptotically stable providing that the
nonlinear loop is asymptotically stable

and the uncertainty . Note that when
and robust stability equal to that of the linear

system is obtained. Thus the goal of our optimization procedure
should be to minimize , making it as close to unity as possible.
As mentioned in [8], this optimization is typically a difficult op-
timization problem to solve, so instead we shall be content to
ensure a certain gain bound holds for the map .

We shall consider robustness optimization using full-order
antiwindup compensators. As suggested in [7], we choose

to be part of a right-coprime factorization of
(this in fact is a dual result to that

of [18], where antiwindup is described as a left coprime fac-
torization of the controller) and attempt to choose a particular
factorization such that robustness is optimized. Given the plant
realization , all full-order right
coprime factorizations (up to multiplication by an invertible
matrix) can be described [7] as

(16)

where is chosen such that is a Hurwitz matrix.
This choice of coprime factorization prevents implicit equa-
tions (algebraic loops) from appearing in the nonlinear loop
(as depicted in Figs. 2 and 4, for example) as is
strictly proper. The coprime factor representation implies that

, so, in order to guarantee robust
stability for all , it suffices to ensure that
(for ) and the nonlinear loop is well posed. This
will indeed be the case if the following inequality holds for suf-
ficiently small :

(17)

where is the state vector associated with the realization of
and is some positive definite symmetric

matrix. As shown in, for example, [19] and [8], this ensures that
the gain from to is less than and that the system in
Fig. 6 is asymptotically stable.

As the dead-zone nonlinearity belongs to Sector (see
[20, ch. 10]), we make use of the inequality

(18)

where the “multiplier” matrix diag is
chosen diagonal as (18) is in fact scalar inequalities—see,
for example, [21, ch. 12]. This can be adjoined to (17) using the
S-procedure to obtain the modified function

(19)

If , this implies that . Evaluating
in a similar manner to [8] (see also [9] and [10] for the dis-

crete and sampled data cases) yields the following linear matrix
inequality (LMI):

(20)

in the variables
diag .

Satisfaction of this LMI means that (19) is satisfied and
hence that the gain from to is less than and
a suitable choice of is given by . A small
gain analysis of Fig. 4 reveals that, as and
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, then our system will be asymp-
totically stable for all .

Note from the lower right 2 2 block of the LMI (20)

that, as anticipated earlier, the gain can be no less than unity,
which is achieved for the IMC scheme.

C. Optimization for Robustness and Performance

The primary goal of antiwindup compensation is to provide
performance improvement during saturation, but optimizing the
LMI (20) alone does not guarantee this. Indeed, there is little
point in optimizing (20) when an optimal solution can be found
by inspection as the IMC antiwindup solution. The real use of
(20) and the arguments of the previous subsection is to use them
in conjunction with performance optimization, the goal being to
optimize performance and robustness together, although there
will often be a tradeoff.

In [8], it was argued that , the map from to was
central to the “true goal” of antiwindup compensation: if the in-
duced norm of this operator was minimized, the deviation of the
system’s nonlinear behavior during and after saturation would
be minimized. This paper [8] solved this problem with ,
in the sense, for static and low-order compensators (similar
treatments for discrete-time AW compensators were given in [9]
and [10]).

More realistically, we would really like to optimize some
weighted combination of and . This can be accomplished
by ensuring that

(21)

where and are weighting matrices that reflect the relative
importance of performance and robustness, respectively, and are
chosen by the designer. Taking advantage of the sector bound
(18), we are sure that (21) holds if

(22)

As before, this inequality holds if the LMI as shown in (23)
at the bottom of the page (in the variables
diag ) is satisfied The derivation of
this LMI is carried out in a similar way to that of the previous

section, in the spirit of that done in [8]. Again the matrix is
recovered through . The presence of the weighting
matrix ensures that and hence that
asymptotic stability of Fig. 4 (and hence Fig. 3) is guaranteed
for all perturbations , where

(24)

and . Obviously, if .
Remark 1: Note that satisfaction of LMI (23) ensures that,

with no uncertainty , the nonlinear loop in Fig. 4 is
globally asymptotically stable and is finite gain stable.
Thus as Figs. 4 and 3 are mathematically equivalent, this ensures
global asymptotic and finite gain of the overall saturated
system. Similarly, when , satisfaction of the LMI (23)
ensures that the system in Fig. 3 is globally asymptotically stable
with finite gain providing that .
Thus providing (for example, if and ),
the saturated system with AW is robust against a similar class
of uncertainties to the nominal linear system.

Remark 2: Another advantage of using LMI (23) to synthe-
size full-order compensators is that it tends to prevent fast poles
appearing in the compensator dynamics. If a robustness weight

were not included in the optimization—or if were only
chosen small—the poles of the antiwindup compensator would
tend to be rather fast, lying far to the left of the imaginary axis.
Obviously this would require a very high sampling frequency
for implementation, which is not always possible in practice.
However, when simultaneously optimizing performance and ro-
bustness using (23), the poles are placed in regions more com-
parable to that of the controller. To see this, note that LMI (23)
equivalent to the matrix inequality (25), as shown at the bottom
of the next page, is satisfied.

A necessary condition for this to hold is obtained from the (1,
1) term, which with is

(26)

Note that when (i.e., robustness is not included), the
matrix is not constrained in magnitude, but when ,
it must be sufficiently “small” to ensure that (26) holds. This
feature is reminiscent of solving “singular” problems with
LMIs, where poles tend to get placed far from the imaginary
axis. Of course in the Riccati-based methods, these singular
problems are not solvable, which normally prevents the appear-
ance of these large poles.

(23)
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D. Stability Robustness of the Work in [9]

The work in [9] and [8] advocates only the optimization of an-
tiwindup performance, that is, the minimization of the gain
of the operator . By setting and solving the LMI (23),
we obtain a full-order compensator that only optimizes this per-
formance. This approach is the continuous-time counterpart to
the discrete-time approach of [9] . As argued in [8] and [9], this
operator is central to obtaining desirable antiwindup behavior.
It is interesting to examine whether this approach has any in-
trinsic robustness properties.

Suppose now that we consider output multiplicative un-
certainty instead of additive uncertainty, that is,

, or, equivalently, that
. Here,

represents the “known” part of the output multiplicative uncer-
tainty and represents the unknown but bounded part.2

In this case, our expression for becomes

(27)

We are sure that the system is robustly stable when ,
as this is a property of the nominal linear system. Therefore, the
smaller we can make the extra term , the
closer to nominal robustness we shall be. We can do nothing
about , so the logical approach is to make

(28)

as small as possible, where the last inequality is a consequence
of the gain of a saturated system being bounded from below
by that of the open-loop plant—see [19] and [8] for details. Note
that as in [9], because is a right co-
prime factorization of the plant , the quantity in (28) is
exactly our performance operator norm . Therefore the
minimization of not only leads to desirable antiwindup
performance but also endows the saturated system with some
indirect robustness when the uncertainty is of the output mul-
tiplicative type. Note that the robustness is not guaranteed to
approach that of the linear system and that multiplicative uncer-
tainty is a narrower class of uncertainty than the additive type
we have been considering heretofore.

Nevertheless, it does appear to explain some of the results of
[22], where a discrete-time version of the results of [8] was im-
plemented on a hard-disk system. In that work, few robustness
problems were encountered, and the above analysis goes some
way to explaining this.

2In terms of our additive uncertainty, observe that we now have two “known”
parts either side of the unknown part, i.e.,W (s) ~� (s)G (s), unless some of
these transfer function matrices commute.

Fig. 7. Structure of static antiwindup scheme.

V. ROBUST STATIC ANTIWINDUP SYNTHESIS

Static antiwindup compensators are probably the most com-
monly used form of antiwindup compensator; they are simple
and computationally efficient to implement. However, it is well
known that static antiwindup compensators are not able to
achieve global quadratic stability for all plant-controller com-
binations (see [19], for example). Thus, it is obvious that even
if a static compensator existed for the nominal plant, without
uncertainty present, there is no guarantee that one would exist
for the uncertain plant. Therefore, it is more difficult to study
the robust stability of static antiwindup compensators from the
outset.

A. A Decoupled Representation

In line with the results presented earlier, to study the robust-
ness of static antiwindup compensators, we first interpret them
in the decoupled structure of [7]. Consider Fig. 7, where

is the static antiwindup compensator. Comparing this
to Fig. 1, it follows that in order to realize this compensator in
decoupled form, this is equivalent to choosing [8] as

(29)
This is exactly the same approach taken in [8], where only per-
formance was considered. Indeed, to combine performance ob-
jectives with robustness objectives, we need to consider Fig. 4
and attempt to find the that minimizes and , in the
same manner as before except with restricted to the struc-
ture given in (29).

As in [8], one can find a realization of the key transfer func-
tions to be considered as

(30)

where the state-space matrices can be found in Appendix II.

(25)
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In order to ensure that the antiwindup system in Fig. 4 is ro-
bust to uncertainty within the ball , it is sufficient to ensure
that (21) holds, where as before and are some positive
definite weighting matrices and . Similarly to
the previous section, this holds if the following inequality is sat-
isfied:

(31)

After simplification, this inequality can be reposed as (32) as
shown at the bottom of the page, which is an LMI in variables

, diagonal , and matrix . If this LMI is sat-
isfied, a globally stabilizing compensator, ensuring the gain
bound (21) is satisfied, is given by . As before, this
implies that the system in Fig. 4 is globally asymptotically stable
for all . Satisfaction of this inequality also guaran-
tees well-posedness, although the details are fairly tedious [8].

B. Local Static Results

For arbitrary plant-controller combinations, the LMI (32)
may not be feasible and hence a robust, globally quadratically
stabilizing, static AW compensator will not be computable.
However, there is a small relaxation that can be made to allow
the synthesis of a locally stabilizing robust static AW compen-
sator. We therefore modify our objectives and instead seek to
ensure that our AW compensator bestows robust stability for
all , where

(33)

providing that the magnitude of the control signal satisfies the
bound

(34)

This implies we are locally robust only providing our control
signal remains sufficiently small, which can also be interpreted

Fig. 8. Reduced sector bounds.

as the states of the system’s remaining within some sufficiently
small region of the state-space.

The approach we take is essentially the same as advocated
in [23] (see also [24]), where we assume the dead-zone non-
linearity inhabits a smaller sector than the Sector , namely,
Sector . This can be interpreted as shown in
Fig. 8. First consider the scalar case: notice that the standard
dead zone inhabits Sector , as its graph lies between the gra-
dient zero and gradient one line. However, if we assume that the
control signal never exceeds a certain bound, as described by
(34), it is evident that the graph of the dead zone lies within
a narrower sector, namely, Sector , where .
For the multivariable case, we can follow a similar argument for
all elements of the dead zone and then define

diag . Thus, providing the components of
are sufficiently small, i.e., , then

Sector .
If we assume that Sector —which is equivalent to

the bound (34) holding—then it follows [20] that the following
inequality holds:

(35)

where again is some positive definite diagonal matrix.
Using this assumption, the synthesis LMI for a locally robust

static AW compensator is given by (36) as shown at the bottom
of the page, where diag

(32)

(36)
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are the LMI variables. If this LMI is satisfied, there exists a
static AW compensator that ensures and

, and therefore robust stability to all
providing that the control signal satisfied the

bound (34). As before, we can recover this static AW compen-
sator through .

Remark 3: The LMI (36) is useful in two respects. First, it
allows the synthesis of a locally performing antiwindup com-
pensator when a globally feasible one does not exist. Secondly,
the additional free parameter , which controls the size of the
sector where our results are valid, can be useful in robust syn-
thesis, as it allows us to “trade off” robustness with sector size;
often a more robust compensator can be designed at the expense
of restricting the size of control input for which that robustness
holds (that is, reducing the sector size). Note that must be
fixed for (36) to be an LMI.

Remark 4: It is even possible to go further and add another
constraint to the LMI optimization (similar to, for example, [25]
and [24]) to guarantee a region of the state-space for which
asymptotic stability is guaranteed. Indeed, it can be proved (see
Appendix III) that adding the LMI constraints (in ,
diagonal , and ) as shown in (37) at the bottom of the
page ensures that the dead zone stays within Sector for all

, where .
Thus one could choose to minimize

(38)

subject to the LMI constraints (36) and (37) to allow perfor-
mance and size region of attraction to be balanced in antiwindup
compensator design. Ultimately, the LMIs (23) and (27) can be
combined such that their simultaneous satisfaction ensures that
the system in Fig. 4 is stable for all states of the nonlinear loop

and for all .
Remark 5: In [26], a technique for antiwindup design was

proposed based on a generalized sector condition, which in
essence allows less conservative estimates of the region of at-
traction to be obtained. In principle, this generalized condition
could replace (35), enabling the derivation of alternative LMIs
to (23) and (27). Further work is needed to investigate this.

VI. EXAMPLE

To demonstrate the implications of our results we use the
academic example introduced in [27]. The example consists of
a plant with a large resonant peak and the controller used is
a two-degree-of-freedom controller with large feedback gain.
However, we shall take this plant to be the perturbed plant,
rather than our nominal plant. We shall also use a controller with
a slightly lower gain, for reasons which shall become clear later.

Fig. 9. Response of unperturbed system with no antiwindup.

A. The Unperturbed System

For our nominal plant we take the plant of [27] without the
resonant peak (i.e., the system is critically damped). Thus,

is described by the state-space
matrices

(39)

The linear controller
, which was designed for the

plant , is described by the state-space matrices

(40)

This is the same controller as in [27] but with a lower gain in
the feedback loop. The dashed line in Fig. 9 shows the response
of the linear system [i.e., the feedback interconnection of the
plant (39) and the controller (40) without saturation] to a pulse
reference of magnitude 1.2. As can be seen, the system is well
behaved with no overshoot and a fast settling time. When the
control input is saturated at 1, however, the system degrades
to that shown by the solid line in Fig. 9. Although the system
still exhibits no overshoot, the actuator saturation has impaired
the system’s ability to track its reference signal accurately and

(37)
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Fig. 10. Response of unperturbed system with optimal static antiwindup.

there appears to be a phase lag between the reference and the
output.

To improve the behavior of the system, static antiwindup
compensation as suggested in [8] is introduced. This anti-
windup compensation minimizes the difference between the
nominal linear system’s response and the saturated system’s
response, i.e., only is minimized. The gain of
is calculated as and a static antiwindup compensator
achieving this bound is computed as

(41)

This compensator was implemented as shown in Fig. 7. Note
that the unperturbed system is quadratically stabilizable by
static antiwindup compensation, but we cannot be sure that
the perturbed system also has this desirable property (in fact
it does not). Fig. 10 shows the response of the system with
static antiwindup [i.e., the feedback interconnection of of the
plant (39) and the controller (40) with the AW compensator
(41) and saturation] and it can be seen that the performance of
the system has improved: the system output is now in phase
with the reference demand, although the infeasibility of the
reference means it is not possible for the output to track the
input with the correct magnitude. The robust and full order
antiwindup compensators introduced in the following sections
both yield a similar response to that in Fig. 10 when used on
the nominal system .

B. The Perturbed System

The true, or perturbed, plant is that
given in [27]. This has a large resonant peak and is described by
the following state-space matrices:

(42)

Fig. 11. Response of perturbed system with optimal static antiwindup.

The dashed line in Fig. 11 shows the response of this perturbed
plant using the same controller as before and no input satura-
tion [i.e., the feedback interconnection of the plant (42) and the
controller (40) without saturation]; the controller yields a sim-
ilar type of performance as before and hence can be considered
satisfactory. However, when input saturation is introduced, the
static antiwindup compensator (41), which was designed ac-
cording to the method in [8] not considering uncertainty, ac-
tually drives the system unstable, as depicted by the solid line
in Fig. 11. In fact, this static antiwindup is worse than no an-
tiwindup at all (see Fig. 13), which at least remains stable, al-
though significant phase lag and oscillations are observed. Note
that for this perturbed plant and controller, most static anti-
windup [28], [8], [19] methods3 are not feasible in a global
sense, so we cannot expect it to stabilize the system in ques-
tion for any reference input.

To overcome this problem, we choose and
and synthesize a full order robust dynamic compensator ac-

cording to the LMI (23). This yields the matrix as

(43)

In this case, we have essentially the IMC solution, as is al-
most zero. As , we can expect to recover the robustness
results of the linear system. Indeed Fig. 12 shows the system’s
response with this AW compensator [i.e., the plant (42), the con-
troller (40), and the compensator gain (43)] and we can see that
the system is stable. Although the response is not as good as for
the unperturbed system, it is substantially better than that of the
static AW compensation. It should also be mentioned that this
antiwindup compensator yields similar performance to the op-
timal static AW compensator when applied to the unperturbed
plant; that is, the AW dynamic compensator designed using (43)
and implemented on the unperturbed plant (39) gives similar
performance to the compensator (41) implemented for the same
unperturbed plant. In other words, the antiwindup compensator

3These methods all use quadratic Lyapunov functions and sector bounds.
Static methods based on alternative Lyapunov functions or “sector bounds” may,
however, be feasible.
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Fig. 12. Response of perturbed system with full-order robust antiwindup.

designed using (43) works well for both perturbed and unper-
turbed plants.

C. A Robust Static Design

The LMI (36) can be used to provide a static compensator
that is guaranteed to be locally robust to perturbations to

providing the saturation level is sufficiently low, i.e.,
, and hence, locally Sector .

Recall that because the perturbed plant considered here
is not globally quadratically stabilizable by static AW, this
motivates the use of a local result instead. In this case,
(single-input single-output system) and we found that many
choices of the free parameter could enable us to
synthesize a locally robust static antiwindup compensator.
However, a value close to unity seemed to provide few ro-
bustness improvements, as essentially, we were close to global
AW; thus although we could compute a static compensator, its
large value was indicative of poor robustness. Conversely,
a value close to zero led to a nonlinear loop close to being
ill-posed. A good compromise seemed to be , which
guaranteed robustness provided that the control law did not
exceed a magnitude of . Using with
performance and robustness weights ,
yielded the following static antiwindup compensator:

(44)

Fig. 13 shows a comparison between nominal responses, re-
sponses with uncertainty and no antiwindup, and the response
with uncertainty and robust static antiwindup (all constrained).
In contrast to the nonrobust static AW response (Fig. 11) for
this input, reasonably good performance is obtained: although
some oscillatory behavior is observed, the phase lag is minor
(compared to no AW), and stability is maintained. However,
the local nature of the results is revealed in Fig. 14, where a
larger reference demand of magnitude 2.4 causes the system
with the locally robust static AW to become unstable. Inciden-
tally, for this reference demand, equipping the system with no

Fig. 13. Response of perturbed system with robust static AW.

Fig. 14. Response of perturbed system with robust static AW: large reference
demand.

antiwindup also causes instability. The conservatism of the local
sector bound should also be mentioned: although in theory the
local results only hold for , in fact they appeared to
hold for ; only when this was exceeded (as in the
case for a reference demand of 2.4) were stability problems
encountered.

D. Other Antiwindup Compensators

As discussed in Section IV-D, the full-order antiwindup com-
pensation method obtained by setting and solving
the LMI (23) can, in a certain sense, provide a robust anti-
windup solution. This type of antiwindup solution is the con-
tinuous time counterpart of the discrete-time full-order com-
pensator described in [9]. We designed a full-order antiwindup
compensator according to this approach, choosing and

and then solving the LMI (23). The optimal
gain matrix was given by

(45)
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Fig. 15. Response of perturbed system with full-order antiwindup.

Fig. 16. Response of perturbed system with high-gain antiwindup.

It is important to realize that, in this case, the guaranteed ro-
bustness margin of the system is now given by ,
although this appears to be a conservative estimate. Again note
that this places the poles of the AW compensator far into the left
half-plane and, therefore, this would require a fast sampling fre-
quency for correct implementation. Fig. 15 shows the response
of the saturated system using this compensator. The stable re-
sponse is indicative of the scheme’s intrinsic robustness proper-
ties, although it does appear to be more oscillatory than that of
the robust antiwindup compensator.

For purposes of comparison and due to its industrial popu-
larity, we also tested a high-gain antiwindup compensator [13],
[14]. In terms of Fig. 7, we chose . No formal
performance or stability guarantees accompany this scheme.
Nevertheless the response of the unperturbed system using
this antiwindup scheme is very similar to the response with
the optimal static scheme (Fig. 10). When this compensator
was tested on the perturbed plant (Fig. 16) stability was also

obtained, although we note the very oscillatory response, which
may be indicative of poor robustness. Its response was certainly
not as good as that of the robust antiwindup compensator shown
in Fig. 12, although it was obviously superior to that of the
optimal static scheme shown in Fig. 11.

VII. CONCLUSION

This paper has introduced a framework for synthesizing ro-
bust antiwindup compensators for open-loop plants subject to
additive uncertainties. The problem was posed in a similar way
to that of linear control theory, and its solution appears as
a set of LMIs of a similar type to those proposed in [8]. The
attractive feature of the proposed solution is that the class of un-
certainties considered are those that are routinely used by con-
trol practitioners, which underlines the practical relevance of
the results. As an important aside, we have also demonstrated
the optimal robustness of the much-denigrated IMC antiwindup
strategy.

We note that many of the simple antiwindup schemes also
seem to be quite robust in practice. For example, the Hanus
scheme [12], which is a particular type of static AW compen-
sator, has been the practitioners’ method of choice for some
time ([14] and [29] contain examples). Using the static results
contained in this paper, it is possible to analyze the robustness
of such a scheme, albeit typically locally. As the results here
use the framework of [7], in which most linear AW schemes
can be interpreted, the robustness results here should find wide
applicability.

Finally, it should be mentioned that recently the so-called
weakened antiwindup scheme has been introduced by Galeani
et al. (see [30]), which promises to offer improved robustness
to saturated systems but at the expense of slightly adjusting the
linear loop. This should reveal further avenues of research.

APPENDIX I
PROOF THAT LINEAR ROBUSTNESS IS OPTIMAL

In order to prove that linear robustness is optimal, we need
to prove that the induced norm of the nonlinear operator

can never be less than unity. i.e.,

(46)

To see that this is the case, assume the opposite: .
Now choose a signal such that ;
such a signal always exists for . Then it follows that

and thus that

(47)

Thus we have a contradiction and hence .

APPENDIX II
STATE-SPACE MATRICES FOR ROBUST STATIC ANTIWINDUP

Given a controller
and plant
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(51)

(52)

(53)

(54)

, the state-space matrices for the representa-
tion given in (30) are given by

where and .

APPENDIX III
GUARANTEEING A REGION OF ASYMPTOTIC STABILITY

Essentially the ideas follow from [23] and [25] or [24],
the main difference being that we consider loops with direct
feedthrough terms. First assume that is small enough
such that Sector . This implies

(48)

which is equivalent to (51). Again, because , it follows
that

(49)

Thus it follows that (51) holds for all if (52) holds, which
after rearrangement is equivalent to (53). Rewriting the sector
condition as

(50)

and using the S-procedure, a sufficient condition for (53)
to hold (and therefore for (51) to hold) is, after applying
the Schur complement, obtained as shown in (51)–(54) at

the top of the page. Using the congruence transformation
diag diag , we arrive at (37).
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