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On Synchronous Robotic Networks—Part II:
Time Complexity of Rendezvous

and Deployment Algorithms
Sonia Martínez, Member, IEEE, Francesco Bullo, Senior Member, IEEE, Jorge Cortés, Senior Member, IEEE, and

Emilio Frazzoli, Member, IEEE

Abstract—This paper analyzes a number of basic coordination
algorithms running on synchronous robotic networks. We provide
upper and lower bounds on the time complexity of the move-to-
ward-average and circumcenter laws, both achieving rendezvous,
and of the centroid law, achieving deployment over a region of in-
terest. The results are derived via novel analysis methods, including
a set of results on the convergence rates of linear dynamical systems
defined by tridiagonal Toeplitz and circulant matrices.

Index Terms—Circumcenter and centroid laws, coordination al-
gorithms, deployment, rendezvous, robotic networks, time com-
plexity.

I. INTRODUCTION

A. Problem Motivation

RECENT YEARS have witnessed the emergence of nu-
merous coordination algorithms for networked mobile

systems. Despite remarkable progress, fundamental limits in
terms of achievable performance, energy consumption, and
operational time remain largely unknown. This is partially
explained by the inherent difficulty in integrating the various
sensing, computing, and communication aspects of problems
involving groups of mobile agents. In this paper, we analyze
the performance of several coordination algorithms achieving
rendezvous and deployment. To achieve this goal, we rely on
the general framework proposed in the companion paper [1] to
formally model the behavior of robotic networks. Our research
effort aims at developing tools and results to assess to what
extent coordination algorithms are scalable and implementable
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in large networks of mobile agents. Ultimately, we aim to
characterize the minimum amount of communication, sensing,
and control that is necessary to reliably perform a desired task,
and we aim to design algorithms that achieve those limits.

B. Literature Review

A description of the literature on cooperative mobile robotics
and on control and communication issues is given in the com-
panion paper [1]. Specific topics related to the present treat-
ment include rendezvous [2]–[5], cyclic pursuit [6], [7], deploy-
ment [8], [9], swarm aggregation [10], gradient climbing [11],
flocking [12], [13], vehicle routing [14], and consensus [15],
[16].

C. Statement of Contributions

The companion paper [1] proposes a general framework to
model robotic networks and formally analyze their behavior.
In particular, [1] defines notions of time and communication
complexity aimed at capturing the performance and cost of the
execution of coordination algorithms. Here, we focus on es-
tablishing time complexity estimates for basic algorithms that
achieve rendezvous and deployment.

The time complexity of an algorithm is the minimum number
of communication rounds required by the agents to achieve the
task. This is a classical notion in the study of distributed algo-
rithms for networks with fixed communication topology, e.g.,
see [17]. From a controls perspective, the notion of time com-
plexity is related to concepts such as settling time and speed of
convergence. For a robotic network, it is natural to expect that
these notions will depend on the number of agents. In this paper,
we provide asymptotic characterizations of the time complexity
of various coordination algorithms as the number of agents of
the network grows. Arguably, this characterization serves as a
measure of the scalability properties of the cooperative strate-
gies under study.

We start by analyzing a simple averaging law for a network
of locally connected agents moving on a line. This law is re-
lated to the widely known Vicsek’s model; see [12] and [18].
We show that the averaging law achieves rendezvous (without
preserving connectivity) and that its time complexity belongs to

and . Second, for a network of locally connected
agents moving on a line or on a segment, we show that the
well-known circumcenter algorithm by [2] has time complexity
of order . (This algorithm achieves rendezvous while pre-
serving connectivity with a communication graph with

0018-9286/$25.00 © 2007 IEEE
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links.) We then consider a network based on a different commu-
nication graph, called the limited Delaunay graph, which arises
naturally in computational geometry and in the study of wire-
less communication topologies. For this less dense graph with

communication links, we show that the time complexity
of the circumcenter algorithm grows to . Intuitively,
this tradeoff between the number of links in the communication
graph and time complexity makes sense, as robotic networks
where agents receive less information from their neighbors will
need more communication rounds to achieve the desired task.
For a network of agents moving on (with a certain commu-
nication graph), we introduce a novel “parallel-circumcenter al-
gorithm” and establish its time complexity of order . Third,
for a network of agents in a one-dimensional environment, we
show that the time complexity of the deployment algorithm in-
troduced in [8] is . To obtain these complexity esti-
mates, we develop some novel analysis methods and build on the
convergence results presented in [1]. An important observation
is that the time complexity results presented here for the one-di-
mensional case induce lower bounds on the time complexity of
the algorithms considered when executed in higher dimensions.

D. Organization

Section II briefly reviews the general approach to the mod-
eling of robotic networks proposed in [1], presenting the no-
tions of control and communication law, coordination tasks, and
time complexity. Sections III and IV define the rendezvous and
deployment coordination tasks, respectively, and present var-
ious coordination algorithms that achieve them. For both prob-
lems, we establish the asymptotic correctness of the proposed
algorithms and characterize their time complexity. Finally, we
present our conclusions in Section V. In the Appendix, we re-
view some basic computational geometric structures employed
along the discussion.

E. Notation

We let . We let
denote the Cartesian product of sets . We let
and denote the strictly positive and nonnegative real num-
bers, respectively. We let and denote the natural numbers
and the nonnegative integers, respectively. For , we let

and denote the Euclidean and the -norm of ,
respectively (we also recall ). For

and , we let and denote the
open and closed ball in centered at of radius , respec-
tively. We let be the standard orthonormal basis of

. We define the vectors and
in . For , we say that (respectively,

) if there exist and such that
for all (respectively,

for all ). If and , then we use the
notation . We refer the reader to the Appendix for
some useful geometric concepts. Finally, we will use the nota-
tion , and to refer to
various tridiagonal Toeplitz and circulant matrices as introduced
in [1].

II. SYNCHRONOUS ROBOTIC NETWORKS

The companion paper [1] proposes a formal model for robotic
networks and defines notions of control and communication
laws, coordination tasks, and time and communication com-
plexity. To render this paper self-contained, we present here
simplified versions of these notions.

Definition II.1 (Robotic Networks): A uniform network of
robotic agents (or robotic network) is a tuple
consisting of the following:

1) is called the set of unique identifiers
(UIDs);

2) , with , is a set of
identical control systems called physical agents;

3) is a map from to the subsets of called
the communication edge map.

Definition II.2 (Control and Communication Law): A con-
trol and communication law for consists of the sets

(an increasing sequence of time instants,
called communication schedule) and (the communication al-
phabet), and of the maps (called mes-
sage-generation function) and (called con-
trol function).

In the language of the companion paper [1], the control and
communication law in Definition II.2 is a static, uniform, data-
sampled, and time-independent law.

Definition II.3 (Evolution): The evolution of from
initial conditions , is the collection of curves

, satisfying

where and .
Here, the curve (describing the messages received
by agent ) has th component ,

if , and ,
otherwise.

When the messages interchanged among the network
agents are just the agents’ states, the corresponding alphabet
is , and the message generation function

is , referred to as the
standard message-generation function. Next, let us introduce
some useful examples of robotic networks.

Example II.4 (Locally Connected First-Order Agents in
): Consider agents in , obeying

. These are identical agents of the form
. Assume each agent can

communicate to any other agent within distance , that is,
adopt - (defined in the Appendix) as the communication
edge map. These data define the uniform robotic network

- - .
Example II.5 (LD-Connected First-Order Agents in ):

Consider the set of physical agents defined in the previous
example. For , adopt the -limited Delaunay map

- defined by - if and only if
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where is the Voronoi partition of generated
by ; see the Appendix. These data define the uni-
form robotic network - - .

Example II.6 (Locally -Connected First-Order Agents in
): Consider the set of physical agents defined in the previous

two examples. For , define the proximity edge map
- by - if and only if

These data define the uniform robotic network -
- .

Next, we define the notion of coordination task and of task
achievement by a robotic network.

Definition II.7 (Coordination Task): Let be a robotic
network. A coordination task for is a map
BooleSet. The control and communication law achieves

if, for all initial conditions , the corre-
sponding evolution has the property that there exists

with for all .
In the language of the companion paper [1], the coordination

task in Definition II.7 is a static task. The notion of time com-
plexity describes the performance of a law while achieving a
coordination task.

Definition II.8 (Time Complexity): Let be a robotic net-
work, let be a coordination task for , and let be a control
and communication law for . The time complexity to achieve

with from is

for all

where is the evolution of from . The time
complexity to achieve with is

III. RENDEZVOUS

In this section, we introduce rendezvous coordination tasks
and analyze various coordination algorithms that achieve them,
providing upper and lower bounds on their time complexity.
Along the section, we will consider the networks - and

- presented in Examples II.4 and II.5, respectively.

A. Rendezvous Tasks

First, let be a uniform robotic network.
The (exact) rendezvous task for
is the static task defined by if
and only if

for all

Second, let be a uniform robotic network
with agents’ state space . Examples of networks of
this form are - (see Examples II.4 and III.B) and -
(see Example II.5). For , the -rendezvous task -

Fig. 1. Evolution of a robotic network under the move-toward-average control
and communication law in Section III-B implemented over the r-disk graph,
with r = 1:5. The vertical axis corresponds to the elapsed time and the hor-
izontal axis to the positions of the agents in the real line. The 51 agents are
initially randomly deployed over the interval [�15; 15].

for is defined by - if
and only if

for all , where computes the average of a finite point
set in , that is, ,
and where we let . In other
words, - is at if, for all is
at distance less than from the average of its own position with
the position of its -neighbors.

B. Rendezvous Without Connectivity Constraint Via the
Move-Toward-Average Control and Communication Law

From Example II.4, consider the uniform network - of
locally connected first-order agents in . We now define a con-
trol and communication law that we refer to as the move-to-
ward-average law and that we denote by . We loosely de-
scribe it as follows.

[Informal description] Communication rounds take
place at each natural instant of time. At each communi-
cation round each agent transmits its position. Between
communication rounds, each agent moves towards and
reaches the point that is the average of its neighbors’
positions; the average point is computed including the
agent’s own position.

Note that this law is related to the Vicsek’s model discussed
in [12] and [18], where, however, different communication
topologies are adopted and where the coordination task is
that of heading alignment rather than rendezvous. Next, we
formally define the law as follows. First, we take
and we assume that each agent operates with the standard
message-generation function, i.e., we set and

. Second, we define the control
function by

is a nonnull message in

In summary, we set . An imple-
mentation of this control and communication law is shown in
Fig. 1 for . Note that, along the evolution, the following
are true: 1) several agents rendezvous, i.e., agree upon a common
location, and 2) some agents are connected at the simulation’s
beginning and not connected at the simulation’s end.

Our main objective here is to characterize the complexity of
this law.
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Theorem III.1 (Time Complexity of Move-Towards-Average
Law): For , the network - , the law , and
the task satisfy and

.
Proof: One can easily prove that, along the evolution of the

network, the ordering of the agents is preserved, i.e., if
, then . However, links between

agents are not necessarily preserved (see, e.g., Fig. 1). Indeed,
connected components may split along the evolution. However,
merging events are not possible. Consider two contiguous con-
nected components and , with to the left of . By
definition, the rightmost agent of and the leftmost agent of

are at a distance strictly bigger than . Now, by executing
the algorithm, they can only but increase that distance, since the
rightmost agent of will move to the left and the leftmost agent
of will move to the right. Therefore, connected components
do not merge.

Consider first the case of an initial configuration of the net-
work for which the communication graph remains connected
throughout the evolution. Without loss of generality, assume that
the agents are ordered from left to right according to their iden-
tifier, that is, . Let

have the property that agents are
neighbors of agent 1, and agent is not. (If instead all agents
are within an interval of length , then rendezvous is achieved
in one time instant, and the statement in theorem is easily seen
to be true.) Note that we can assume that agents
are also neighbors of agent . If this is not the case, then those
agents that are neighbors of agent 1 and not of agent ren-
dezvous with agent 1 at the next time instant. At the time instant

, the new updated positions satisfy

where “ ” denotes a certain unimportant point. Now, we show

(1)

Let us first show the inequality for . Note that the fact
that the communication graph remains connected implies that
agent 2 is still a neighbor of agent 1 at the time instant .
Therefore, , and from here, we
deduce

Let us now proceed by induction. Assume that inequality (1)
is valid for and let us prove it for . Consider first the
possibility when at the time instant , the agent is still a

neighbor of agent 1. In this case, ,
and from here, we deduce

which, in particular, implies (1). Consider then the case when
agent is not a neighbor of agent 1 at the time instant

. Let such that agent is a neighbor of
agent 1 at , but agent is not. Since , we have by
induction . From here, we deduce

that .
It is clear that after , we could again consider two

complementary cases (either agent 1 has all others as neighbors
or not) and repeat the same argument once again. In that way,
we would find such that the distance traveled by agent 1 after

rounds would be lower bounded by . Repeating this
argument iteratively, the worst possible case is one in which
agent 1 keeps moving to the right and there is always another
agent which is not a neighbor. Since , in
the worst possible situation, there exists some time such that

. This implies that .
Now, we can upper bound the total convergence time by

, where we have used that for all
. From here, we see that and

hence, we deduce that in time instants there cannot
be any agent which is not a neighbor of the agent 1. Hence, all
agents rendezvous at the next time instant. Consequently

Finally, for a general initial configuration , because there is
a finite number of agents, only a finite number of splittings (at
most ) of the connected components of the communication
graph can take place along the evolution. Therefore, we con-
clude .

Let us now prove the lower bound. Consider an initial config-
uration where all agents are positioned in increasing
order according to their identity, and exactly at a distance
apart, say . Assume,
for simplicity, that is odd—when is even, one can reason
in an analogous way. Because of the symmetry of the initial
condition, in the first time step, only agents 1 and move. All
the remaining agents remain in their position because it coin-
cides with the average of its neighbors’ position and its own.
At the second time step, only agents , and move,
and the others remain still because of the symmetry. Applying
this idea iteratively, one deduces the time step when agents
and move for the first time is lower bounded by . Since
both agents have still at least a neighbor (agent ), the task

has not been achieved yet at this time step. Therefore,
and the result follows.
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C. Rendezvous With Connectivity Constraint via Circumcenter
Control and Communication Laws

Here, we define the circumcenter control and communication
law for both networks - and - . This is a
static, uniform, data-sampled, time-independent law originally
introduced by [2] and later studied in [4] and [5]. The circum-
center of a point set is the center of the smallest radius sphere
that encloses the set. Loosely speaking, the evolution of the net-
work under the law can be described as follows.

[Informal description] Communication rounds take
place at each natural instant of time. At each communica-
tion round, each agent performs the following tasks: 1) it
transmits its position and receives its neighbors’ positions;
2) it computes the circumcenter of the point set comprised
of its neighbors and of itself; and 3) it moves toward
this circumcenter while maintaining connectivity with its
neighbors.

Let us present this description in more formal terms. We set
and . We

define the control function in three steps. First, given an agent
state and an array of messages , define the point

for all nonnull

where is the circumcenter of the set of
points ; see definition in the Appendix. This definition
is well posed because the nonnull messages received
by the agent at any time are the positions of its
neighbors. Second, connectivity is maintained by restricting
the allowable motion of each agent in the following appropriate
manner. If agents and are neighbors at time , then we
require their subsequent positions to belong to

If an agent has its neighbors at locations at time
, then its constraint set is

Third, we define a function that encodes the desire to move from
a first point to a second point while remaining inside a convex
set. For and in , and for a convex closed set
with , define the “from to inside” function by

if
if

where denotes the closed segment with endpoints and
. With these three ingredients, we are now ready to define

the last ingredient of . We define the control function
by

for all nonnull

(2)

Fig. 2. Parallel circumcenter control and communication law in . The
target point for the agent i is plotted in light gray and has coordinates
(Circum (� (M ));Circum (� (M ))).

Evolving under this control law, each agent moves during the
interval from the point towards the point

as much as possible while remaining in-
side an appropriate connectivity set.

Next, we consider the network - of locally -con-
nected first-order agents in ; see Example II.6. For this net-
work, we define the parallel circumcenter law - by
designing decoupled circumcenter laws running in parallel on
each coordinate axis of . As before, this law is static, uniform,
data-sampled, and time-independent. We set

, and . We define the control
function by

(3)

where for all nonnull and
where denote the canonical projections of

onto . See Fig. 2 for an illustration of this law in .
Asymptotic Behavior and Complexity Analysis: The fol-

lowing theorem summarizes the results known in the literature
about the asymptotic properties of the circumcenter law.

Theorem III.2 (Correctness of the Circumcenter Laws): For
, and , the following statements hold:

1) on the network - , the law achieves the
exact rendezvous task ;

2) on the network - , the law achieves the
-rendezvous task - ;

3) on the network - , the law - achieves
the exact rendezvous task ;

4) the evolutions of - , of
- , and of - -

have the property that, if two agents belong to the same
connected component of the communication graph
at , then they continue to belong to the same
connected component for all subsequent times .
Proof: The results on - appeared originally in [2].

The proof for the results on - is provided in [5]. We post-
pone the proof for - to the proof of Theorem III.3.

Next, we analyze the time complexity of . We pro-
vide complete results for the case . As we see next, the
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Fig. 3. Definition of � 2 f3; . . . ; ng for an initial network configuration.

complexity of differs dramatically when applied to
the two robotic networks with different communication graphs.

Theorem III. 3 (Time Complexity of Circumcenter Laws): For
and , the following statements hold:

1) for , on the network -
;

2) for , on the network -
;

3) for , on the network -
- .

Proof: Let . Throughout the proof, we let
denote the subset of nonnull messages in .

Fact 1) Let us show that, for , the connectivity con-
straints on each agent imposed by the constraint set

are superfluous, i.e., the control function in (2)
equals . To see this, assume that agents and
are neighbors in the -disk graph at time instant , define
as , and let us show that

belongs to . Without loss of generality, let

. Let denote the positions of the
leftmost and rightmost agents among the neighbors of agent .
Note that and

. Then,

as claimed. Therefore, we have that
. Likewise, one can deduce
, and therefore, the order of the agents is pre-

served.
Consider the case when - is connected. Without

loss of generality, assume that the agents are ordered from left
to right according to their identifier, that is,

. Let have the property
that agents are neighbors of agent 1, and agent

is not. (If instead all agents are within an interval of length ,
then rendezvous is achieved in 1 time instant, and the statement
in theorem is easily seen to be true.) See Fig. 3 for an illustra-
tion of these definitions. Note that we can assume that agents

are also neighbors of agent . If this is not the
case, then those agents that are neighbors of agent 1 and not of

agent , rendezvous with agent 1 at the next time instant. At the
time instant , the new updated positions satisfy

for . These equalities imply that
. Analogously, we de-

duce , and therefore

(4)

On the other hand, from
(where the symbol “ ” represents a certain unimportant point in

), we deduce

(5)

Inequalities (4) and (5) mean that, after at most two time in-
stants, agent 1 has traveled an amount larger than . In turn,
this implies that

If - is not connected, note that along the network
evolution, the connected components of the -disk graph do not
change. Therefore, using the previous characterization on the
amount traveled by the leftmost agent of each connected com-
ponent in at most two time instants, we deduce
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Note that the connectedness of each
implies that , and therefore,

. Moreover, for
such that ,
we have , and therefore,

. We conclude that

Fact 2) In the -limited Delaunay graph, two agents on the
line that are at most at a distance from each other are neigh-
bors if and only if there are no other agents between them. Also,
note that the -limited Delaunay graph and the -disk graph
have the same connected components (cf. [9]). Using an argu-
ment similar to the one previously mentioned, one can show
that the connectivity constraints imposed by the constraint sets

are again superfluous.
Consider first the case when - is connected. Note

that this is equivalent to - being connected. Without
loss of generality, assume that the agents are ordered from left
to right according to their identifier, that is,

. The evolution of the network under
can then be described as the discrete-time dynamical

system

...

Note that this evolution respects the ordering of the agents.
Equivalently, we can write , where is the

matrix given by

...
. . .

. . .
. . .

...

Note that as defined in [1]. Reference [1,
Theorem A.4, Case 1)] implies that, for , we
have that , and that the maximum time
required for (over all
initial conditions ) is . (Note that this
also implies that agents rendezvous at the location given by the
average of their initial positions. In other words, the asymptotic

rendezvous position for this case can be expressed in closed
form, as opposed to the case with the -disk communication
graph.)

Next, let us convert the contraction inequality on 2-norms into
an appropriate inequality on -norms. Note that

because - is connected. Therefore

For of order , we use this bound
on and the basic inequalities

for all , to obtain

This means that -rendezvous is achieved for
, that is, in time . Next,

we show the lower bound. Consider the unit-length eigen-

vector of

corresponding to the largest singular value
. For , we then define the initial

condition . One can show that

for , that , and
that . Using [1,
Lemma A.5] and because for all

, we compute

The trajectory , therefore, satisfies

Therefore, is larger than so long as

, that is, so long as

The rest of the proof is analogous to the case 1) of Theorem A.3
in [1] for the lower bound result.

If - is not connected, along the network evolution,
the connected components do not change. Therefore, the pre-
vious reasoning can be applied to each connected component.
Since the number of agents in each connected component is
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strictly less that , the time complexity can only but improve.
Therefore, we conclude that

Fact 3) Finally, we prove the statements regarding -
and - in Fact 3) and in the previous Theorem III.2.
By definition, agents and are neighbors at time if and
only if , which is equivalent to

Recall from the proof of Fact 1) that the connectivity con-
straints of on each agent are trivially satisfied in
the one-dimensional case. This fact has the following im-
portant consequence: from the expression for the control
function in - , we deduce that the evolution under

- of the robotic network - (in -dimen-
sions) can be alternatively described as the evolution under

of robotic networks - in . The correctness
and the time complexity results now follow from the analysis
of at .

Remark III.4 (Analysis in Higher Dimensions): The results
in cases 1) and 2) of Theorem III.3 induce lower bounds on the
time complexity of the circumcenter law in higher dimensions.
Indeed, we have the following:

1) for , on the network -
;

2) for , on the network - -
.

We have performed extensive numerical simulations for the case
and the network - . We run the algorithm starting

from generic initial configurations (where, in particular, agents’
positions are not aligned) contained in a bounded region of

. We have consistently obtained that the time complexity to
achieve with starting from these initial con-
figurations is independent of the number of agents. This leads
us to conjecture that initial configurations where all agents are
aligned (equivalently, the one-dimensional case) give rise to the
worst possible performance of the algorithm. In other words, we
conjecture that, for .

Remark III.5 (Congestion Effects): As discussed in [1, Re-
mark II.9], one way of incorporating congestion effects into the
network operation is to assume that the parameters of the phys-
ical components of the network depend upon the number of
robots. For instance, it is common to assume that the communi-
cation range decreases with the number of robots. Theorem III.3
presents an alternative, equivalent way of looking at congestion:
the results hold under the assumption that the communication
range is constant, but allow for the diameter of the initial net-
work configuration (the maximum interagent distance) to grow
unbounded with the number of robots.

IV. DEPLOYMENT

In this section, we introduce the deployment coordination
task and analyze a coordination algorithm that achieves it, pro-
viding upper and lower bounds on its time complexity. Along

the section, we consider the uniform robotic network -
presented in Example II.5 with parameter . Given a
convex polytope , with an integrable density function

, we assume that the initial positions of the agents
belong to and we intend to design a control law that keeps
them in for subsequent times.

A. Deployment Task

By optimal deployment on the convex polytope with
density function , we mean the following objec-
tive: place the agents on so that the expected square Euclidean
distance from a point in to one of the agents is minimized. To
define this task formally, let us review some known preliminary
notions; we will require some computational geometric notions
from the Appendix. We consider the following network objec-
tive function :

This function and variations of it are studied in the facility lo-
cation and resource allocation research literature; see [19] and
[8]. It is convenient [9] to study a generalization of this function.
For , define the saturation function by

if and , otherwise. For ,
define the objective function - by

-

Note that if , then - . Let
be the Voronoi partition of associated with

. The partial derivative of the cost function takes
the following meaningful form (see [9]):

-

Mass

Centroid

(Here, as in the Appendix, Mass and Centroid are,
respectively, the mass and the centroid of .) Clearly,
the critical points of - are network states where

Centroid . We call such configura-
tions -centroidal Voronoi configurations. For ,
they coincide with the standard centroidal Voronoi configura-
tions on . Fig. 4 illustrates these notions.

Motivated by these observations, we define the following de-
ployment task. For , define the - -deployment task

- - by - - if
and only if

Centroid for all
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Fig. 4. Centroidal and (r=2)-centroidal Voronoi configurations. The den-
sity function � is depicted by a contour plot. For each agent i, the set
V \ �B(x ; r=2) is plotted in light gray.

Roughly speaking, - - is for those network con-
figurations where each agent is sufficiently close to the cen-
troid of its dominance region .

B. Centroid Law

To achieve the - -deployment task discussed in
Section IV-A, we define the centroid control and communi-
cation law . This is a static, uniform, data-sampled,
time-independent law studied in [8] and [9]. Loosely speaking,
the evolution of the network under the centroid control and
communication law can be described as follows.

[Informal description] Communication rounds take
place at each natural instant of time. At each communica-
tion round, each agent performs the following tasks: 1) it
transmits its position and receives its neighbors’ positions;
2) it computes the centroid of its dominance region (the
intersection between the agent’s Voronoi cell and a closed
ball centered at its position of radius ), and 3) it moves
toward this centroid.

Let us present this description in more formal terms. We set
, and . We

define the control function by

Centroid

where and

is the half-space . One can
show that is a positively invariant set for this control law.

The following theorem on the centroid control and communi-
cation law summarizes the known results about the asymptotic
properties and the novel results on the complexity of this law. In
characterizing complexity, we assume is independent
of , and . As for the circumcenter law, we provide complete
time-complexity results for the case .

Theorem IV.1 (Time Complexity of Centroid Law): For
and , consider the network - with initial con-

ditions in . The following statements hold:
1) for , the law achieves the

- -deployment task - - ;

2) for and - -
.

Proof: Fact 1) is proved in [9] for ; the same
proof technique can be generalized to any dimension. In what
follows, we sketch the proof of Fact 2). For is a com-
pact interval on , say .

We start with a brief discussion about connectivity. In the
-limited Delaunay graph, two agents that are at most at a

distance from each other are neighbors if and only if there
are no other agents between them. Additionally, we claim
that, if agents and are neighbors at time instant , then
Centroid Centroid . To see this,

assume without loss of generality that . Let
us consider the case where the agents have neighbors on both
sides (the other cases can be treated analogously). Let
(respectively, ) denote the position of the neighbor of
agent to the left (respectively, of agent to the right). Now,

Centroid

Centroid

Therefore, Centroid Centroid
.

This implies that agents and belong to the same connected
component of the -limited Delaunay graph at time instant

.
Next, let us consider the case when - is connected.

Without loss of generality, assume that the agents are ordered
from left to right according to their identifier, that is,

. We distinguish the following
three cases depending on the proximity of the leftmost and right-
most agents 1 and , respectively, to the boundary of the envi-
ronment: case (a) both agents are within a distance of ;
case (b) none of the two is within a distance of ; case (c)
only one of the agents is within a distance of . Here is
an important observation: from one time instant to the next one,
the network configuration can fall into any of the cases described
previously. However, because of the discussion on connectivity,
transitions can only occur from case (b) to either case (a) or (c)
and from case (c) to case (a). As we show in the following, for
each of these cases, the network evolution under can
be described as a discrete-time linear dynamical system which
respect to agents’ ordering.

Let us consider case (a). In this case, we have

...
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Equivalently, we can write , where
the -matrix and the vector are given by

...
. . .

. . .
. . .

...

...

Note that the only equilibrium network configuration re-
specting the ordering of the agents is given by

and note that this is a -centroidal Voronoi configura-
tion (under the assumption of case (a)). We can, therefore,
write . Now, note that

. Reference [1, Theorem A.4, Case 2)]
implies that and that the maximum
time required for (over all ini-
tial conditions ) is . It is not obvious,
but it can be verified, that the initial condition providing the
lower bound in the time complexity estimate does indeed have
the property of respecting the agents’ ordering; this fact holds
for all three cases (a)–(c).

The case (b) can be treated in the same way. The network
evolution takes now the form ,
where the -matrix and the vector are given by

...
. . .

. . .
. . .

...

...

In this case, a (nonunique) equilibrium network configuration
respecting the ordering of the agents is of the form

Note that this is a -centroidal Voronoi configuration [under the
assumption of case (b)]. We can, therefore, write

. Now, note that . We
compute . With this calcula-
tion, [1, Theorem A.4, Case 1)] implies that

, and that the maximum time required for
(over all ini-

tial conditions ) is .
Case (c) needs to be handled differently. Without loss of gen-

erality, assume that agent 1 is within distance of and agent
is not (the other case is treated analogously). Then, the net-

work evolution takes now the form ,
where the -matrix and the vector are given by

...
. . .

. . .
. . .

...

...

Note that the only equilibrium network configuration re-
specting the ordering of the agents is given by

and note that this is a -centroidal Voronoi configuration (under
the assumption of case (c)). In order to analyze , we recast
the -dimensional discrete-time dynamical system as a -di-
mensional one. To do this, we define a -dimensional vector
by

and (6)

Now, one can see that the network evolution can be alternatively
described in the variables as a linear dynam-
ical system determined by the -matrix .
Using [1, Theorem A.4, Case 2)], and exploiting the chain of
equalities (6), we can infer that, in case (c), the maximum time
required for (over all initial
conditions ) is .

In summary, for all three cases a)–c), our calculations show
that, in time , the error 2-norm satisfies the
contraction inequality .
We convert this inequality on 2-norms into an appro-
priate inequality on -norms as follows. Note that

.
For of order , we have
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This means that - -deployment is achieved for
, that is, in time .

Up to here, we have proved that, if the graph -
is connected, then - -

. If - is not connected,
note that along the network evolution there can only be a finite
number of time instants, at most , where a merging of two
connected components occurs. Therefore, the time complexity
is at most .

Remark IV.2 (Congestion Effects): Note that the proof of
Theorem IV.1 holds verbatim if, motivated by wireless con-
gestion considerations, we take the communication range to
be a monotone nonincreasing function of the
number of robotic agents .

V. CONCLUSION

Building on the framework for robotic networks proposed
in the companion paper [1], we have formalized various
motion coordination algorithms as follows: 1) the move-
toward-average law and the circumcenter laws that achieve
the rendezvous task and 2) the centroid law that achieves
the deployment task. We have computed the time complexity
of these algorithms, providing upper and lower bounds as the
number of agents grows. To obtain these complexity estimates,
we have relied on analysis methods involving linear dynamical
systems defined by tridiagonal Toeplitz and circulant matrices.
These results demonstrate the usefulness of the proposed
formal model.

The complexity bounds reported in this and the companion
paper are of low polynomial order and are comparable to
those found in the literature on distributed algorithms and
on stochastic matrices, e.g., see [17], [20], and [21]. None
of the algorithms has an exponential complexity. From a
practical viewpoint, what level of complexity (logarithmic,
linear, polynomial) is acceptable will depend on the specific
application considered and we leave this question to future
work.

The analysis presented in this paper is useful for robotic
network applications because it provides a rigorous assess-
ment of the performance of the aforementioned coordination
algorithms. Given a desired task, our vision is that the com-
bination of coordination algorithms with the best scalability
properties will enable the synthesis of efficient cooperative
strategies. Once a catalog of example coordination tasks and
algorithms have been carefully understood, one could envision
the design of more complex strategies building on this knowl-
edge. It is also our hope that the kind of analysis performed
here will help characterize the complex tradeoffs between
computation, communication, and motion control in robotic
networks.

A number of research avenues look now promising including
the following: 1) time complexity analysis in higher dimensions,
2) communication complexity analysis for unidirectional and
omnidirectional models of communication, 3) analysis of other
known algorithms for flocking, cohesion, formation, and motion

Fig. 5. The r-disk and r-limited Delaunay graphs in .

planning, and 4) complexity analysis results for coordination
tasks, as opposed to for algorithms.

APPENDIX

BASIC GEOMETRIC NOTIONS

Here, we present various geometric concepts used throughout
this paper. Let , be compact. The circumcenter
of , denoted by , is the center of the smallest radius
sphere in enclosing . Given an integrable function

, the mass of is Mass , and the centroid
of is

Centroid
Mass

A partition of is a collection of subsets of with disjoint
interiors and whose union is . Given a set of distinct
points in , the Voronoi partition of

generated by (with respect to the Euclidean norm)
is the collection of sets defined by

for all .
We usually refer to as . For a detailed treatment of
Voronoi partitions, we refer to [22] and [19].

For and , a proximity edge
map is a map of the form . For

, we define the -disk proximity edge map
- and the -limited Delaunay prox-

imity edge map - as follows. An edge
belongs to - if and only if

and . An edge belongs to
- if and only if and

where is the Voronoi partition of generated
by . Illustrations of these concepts are given in
Fig. 5.

As proved in [9], the -limited Delaunay graph and the -disk
graph have the same connected components. Additionally, the
-limited Delaunay graph is “computable” on the -disk graph

in the following sense: any node in the network can compute the
set of its neighbors in the -limited Delaunay graph if it is given
the set of its neighbors in the -disk graph. This implies that any
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control and communication law for a network with communica-
tion graph - can be implemented on a analogous network
with communication graph - .
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