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Finite time observers: application to secure

communication

Wilfrid Perruquetti, Thierry Floquet and Emmanuel Moulay

Abstract

In this paper, control theory is used to formalize finite time chaos synchronization as a nonlinear

finite time observer design issue. This paper introduces a finite time observer for nonlinear systems that

can be put into a linear canonical form up to output injection. The finite time convergence relies on

the homogeneity properties of nonlinear systems. The observer is then applied to the problem of secure

data transmission based on finite time chaos synchronization and the two-channel transmission method.

Index Terms

Finite time observers, finite time synchronization, two-channel transmission, secure communication.

I. INTRODUCTION

A lot of encryption methods involving chaotic dynamics have been proposed in the literature

since the 90’s. Most of them consists of transmitting informations through an insecure channel,

with a chaotic system. The synchronization mechanism of the two chaotic signals is known as

chaos synchronization and has been developed for instance in [1]. The idea is to use the output of

the drive system to control the response system so that they oscillate in a synchronized manner.
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Since the work [2], the synchronization can be viewed as a special case of observer design

problem, i.e the state reconstruction from measurements of an output variable under the assump-

tion that the system structure and parameters are known. This approach leads to a systematic

tool which guarantees chaos synchronization of a class of observable systems. Different observer

based methods were developed: adaptive observers [3], backstepping design [4], Hamiltonian

forms [5] or sub-Lyapunov exponents [1]. Nevertheless, during the chaos synchronization of

continuous systems, the convergence of the error is always asymptotic as in [6]. Instead of

attempting the construction of an asymptotic nonlinear observer for the transmitter or coding

system, a finite time chaos synchronization for continuous systems (in the sense that the error

reaches the origin in finite time) can be developed. Finite time observers for nonlinear systems

that are linearizable up to output injection have been proposed in [7] and [8] using delays

or in [9] and [10] using discontinuous injection terms. Recently, an algebraic method (using

module theory and non-commutative algebra) leading to the non asymptotic estimation of the

system states has been developed in [11] and applied to chaotic synchronization in [12]. In

this work, an homogeneous finite time observer is introduced. This observer yields the finite

time convergence of the error variables without using delayed or discontinuous terms. Then, it is

applied to the finite time synchronization of chaotic systems and combined with the conventional

cryptographic method called two-channel transmission in order to design a cryptosystem. The

technique of two channel transmission has been proposed in [13]. Other cryptography techniques

for secure communications exist such as the parameter modulation developed in [14].

The paper is organized as follows. The problem statement and some definitions are given in

Section II. An homogeneous finite time observer is developed in Section III. On the basis of

this observer, a two-channel transmission cryptosystem is built and is applied in Section IV to

the Chua’s circuit that is relevant to secure communications (see e.g. [15] and [16]).

II. PROBLEM STATEMENT AND DEFINITIONS

Let us consider a nonlinear system of the form:

ẋ = η (x, u) (1)

y = h(x) (2)
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where x ∈ R
d is the state, u ∈ R

m is a known and sufficiently smooth control input, and

y(t) ∈ R is the output. η : R
d × R

m → R
d is a known continuous vector field. It is assumed

that the system (1)-(2) is locally observable [17] and that there exist a local state coordinate

transformation and an output coordinate transformation which transform the nonlinear system

(1)-(2) into the following canonical observable form:

ż = Az + f(y, u, u̇, ..., u(r)) (3)

y = Cz (4)

where z ∈ R
n is the state, r ∈ N>0 and

A =





















a1 1 0 0 0

a2 0 1 0 0
...

...
...

. . .
...

an−1 0 0 0 1

an 0 0 0 0





















,

C =
(

1 0 ... 0
)

. (5)

The transformations involved in such a linearization method for different classes of systems

with n = d can be found in [18], [19], [20], [21]. One can have n > d in the case of system

immersion [22], [23].

Then, the observer design is quite simple since all nonlinearities are function of the output

and known inputs. Asymptotic stability can be obtained using a straightforward generalization

of a linear Luenberger observer. Finite time sliding mode observers have already been designed

for system (3)-(4) (see e.g. [9], [10]). However, they rely on discontinuous output injections and

on a step-by-step procedure that can be harmful for high order systems. In this paper, a finite

time observer based on continuous output injections is introduced.

Notions about finite time stability and homogeneity are recalled hereafter.

Finite time stability

Consider the following ordinary differential equation:

ẋ = g (x) , x ∈ R
n. (6)

Note φx0(t) a solution of the system (6) starting from x0 at time zero.
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Definition 1: The system (6) is said to have a unique solution in forward time on a neigh-

bourhood U ⊂ R
n if for any x0 ∈ U and two right maximally defined solutions of (6),

φx0 : [0, Tφ[ → R
n and ψx0 : [0, Tψ[ → R

n, there exists 0 < Tx0 ≤ min {Tφ, Tψ} such that

φx0 (t) = ψx0(t) for all t ∈ [0, Tx0 [.

Let us consider the system (6) where g ∈ C0 (Rn), g(0) = 0 and where g has a unique solution

in forward time. Let us recall the notion of finite time stability involving the settling-time function

given in [24, Definition 2.2] and [25].

Definition 2: The origin of the system (6) is Finite Time Stable (FTS) if:

1) there exists a function T : V \ {0} → R+ (V is a neighbourhood of the origin) such that

for all x0 ∈ V \ {0}, φx0(t) is defined (and unique) on [0, T (x0)), φx0(t) ∈ V \ {0} for all

t ∈ [0, T (x0)) and lim
t→T (x0)

φx0(t) = 0.

T is called the settling-time function of the system (6).

2) for all ǫ > 0, there exists δ (ǫ) > 0 such that for every x0 ∈ (δ (ǫ)Bn \ {0})∩V , φx0(t) ∈

ǫBn for all t ∈ [0, T (x0)).

The following result gives a sufficient condition for system (6) to be FTS (see [26], [27] for

ODE, and [28] for differential inclusions):

Theorem 3: Let the origin be an equilibrium point for the system (6), and let r be a continuous

function on an open neighborhood V of the origin. If there exist a Lyapunov function V : V → R+

and a function r : R+ → R+ such that

V̇ (x) ≤ −r(V (x)), (7)

along the solutions of (6) and ε > 0 such that
∫ ε

0

dz

r(z)
< +∞, (8)

then the origin is FTS.

The interested reader can find more details on finite time stability in [29], [30], [31], [32],

[33], [34].

Homogeneity

Definition 4: A function V : R
n → R is homogeneous of degree d with respect to the weights

(r1, . . . , rn) ∈ R
n
>0 if

V (λr1x1, . . . , λ
rnxn) = λdV (x1, . . . , xn)
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for all λ > 0.

Definition 5: A vector field g is homogeneous of degree d with respect to the weights (r1, . . . , rn) ∈

R
n
>0 if for all 1 ≤ i ≤ n, the i−th component gi is a homogeneous function of degree ri + d,

that is

gi (λ
r1x1, . . . , λ

rnxn) = λri+dgi (x1, . . . , xn)

for all λ > 0. The system (6) is homogeneous of degree d if the vector field g is homogeneous

of degree d.

Theorem 6: [25, Theorem 5.8 and Corollary 5.4] Let g be defined on R
n and be a continuous

vector field homogeneous of degree d < 0 (with respect to the weights (r1, . . . , rn)). If the origin

of (6) is locally asymptotically stable, it is globally FTS.

III. A CONTINUOUS FINITE TIME OBSERVER

Assume that the system (1)-(2) can be put into the observable canonical form (3)-(4). An

observer for this system is designed as follows











dẑ1

dt

...
dẑn

dt











= A















z1

ẑ2

...

ẑn















+ f(y, u, u̇, ..., u(r)) −















χ1 (z1 − ẑ1)

χ2 (z1 − ẑ1)
...

χn (z1 − ẑ1)















(9)

where the functions χi will be defined in such a way that the observation error e = z − ẑ tends

to zero in finite time. Set e =
[

e1 e2 · · · en

]T

. The observation error dynamics is given

by






































ė1 = e2 + χ1 (e1)

ė2 = e3 + χ2 (e1)
...

ėn−1 = en + χn−1 (e1)

ėn = χn (e1)

(10)

Denote ⌈x⌋α = |x|α sgn (x) for all x ∈ R and for α > 0. The following result holds:
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Lemma 7: Let d ∈ R and (k1, . . . , kn) ∈ R
n
>0. Define (r1, . . . , rn) ∈ R

n
>0 and (α1, . . . , αn) ∈

R
n
>0 such that

ri+1 = ri + d, 1 ≤ i ≤ n − 1, (11)

αi =
ri+1

r1

, 1 ≤ i ≤ n − 1, (12)

αn =
rn + d

r1

, (13)

and set

χi (e1) = −ki ⌈e1⌋
αi , 1 ≤ i ≤ n.

Then, the system (10) is homogeneous of degree d with respect to the weights (r1, . . . , rn) ∈ R
n
>0.

Proof of Lemma 7 is obvious.

Denote α1 = α.

Lemma 8: If α > 1 − 1
n−1

, the system (10) is homogeneous of degree α − 1 with respect to

the weights {(i − 1) α − (i − 2)}1≤i≤n and αi = iα − (i − 1) , 1 < i ≤ n.

Proof: Let us normalize the weights by setting r1 = 1. Then r2 = α and

d = r2 − r1 = α − 1.

From (11) and (12)-(13), one obtains recursively that:

ri = (i − 1) α − (i − 2) , 1 < i ≤ n,

αi = iα − (i − 1) , 1 < i ≤ n.

Since r1 > . . . > rn > 0, one has:

α >
n − 2

n − 1
= 1 −

1

n − 1
.

The result follows from Lemma 7.

The system (10) is then given by:






































ė1 = e2 − k1 ⌈e1⌋
α

ė2 = e3 − k2 ⌈e1⌋
2α−1

...

ėn−1 = en − kn−1 ⌈e1⌋
(n−1)α−(n−2)

ėn = −kn ⌈e1⌋
nα−(n−1)

(14)

October 4, 2007 DRAFT



7

denoted shortly

ė = ψ(α, e). (15)

Lemma 9 (Tube Lemma): Consider the product space X × Y , where Y is compact. If N is

an open set of X × Y containing the slice {x0} × Y of X × Y , then N contains some tube

W × Y about {x0} × Y , where W is a neighborhood of x0 in X .

Theorem 10: Set the gains (k1, . . . , kn) such that the matrix

Ao =





















−k1 1 0 0 0

−k2 0 1 0 0
...

...
...

. . .
...

−kn−1 0 0 0 1

−kn 0 0 0 0





















is Hurwitz. Then, there exists ǫ ∈
[

1 − 1
n−1

, 1
)

such that for all α ∈ (1 − ǫ, 1), the system (15)

is globally finite time stable.

Proof: Set

1 −
1

n − 1
< α < 1.

Homogeneity: From Lemma 8, the system (15) is homogeneous of degree α−1 < 0 with respect

to the weight {(i − 1) α − (i − 2)}1≤i≤n.

Asymptotic stability: Consider the following differentiable positive definite function

V (α, e) = yT Py (16)

where

y =



























⌈e1⌋
1
q

⌈e2⌋
1

αq

...

⌈ei⌋
1

[(i−1)α−(i−2)]q

...

⌈en⌋
1

[(n−1)α−(n−2)]q



























,

q =
n−1
∏

i=1

((i − 1) α − (i − 2)) is the product of the weights and P is the solution of the following

Lyapunov equation

AT
o P + P Ao = −I.
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As V is proper,

S = {e ∈ R
n : V (1, e) = 1}

is a compact set of R
n. Define the function

ϕ : R>0 × S → R

(α, e) 7→ 〈∇V (α, e) , ψ(α, e)〉

Since Ao is Hurwitz, the system

ė = Ao e

is globally asymptotically stable and corresponds to the system (15) with α = 1. Since ϕ is

continuous, ϕ−1 (R<0) is an open subset of Λ×S containing the slice {1}×S . Since S is compact,

it follows from the Tube Lemma 9 that ϕ−1 (R<0) contains some tube (1 − ǫ1, 1 + ǫ2)×S about

{1} × S. For all (α, e) ∈ (1 − ǫ1, 1 + ǫ2) × S

〈∇V (α, e) , ψ(α, e)〉 < 0.

Thus, the system (15) is locally asymptotically stable. It can also be shown to be globally

asymptotically stable as follows. Note that

V (α, λr1e1, . . . , λ
rnen) = λ

1
q2 V (α, e1, . . . , en)

with ri = (i − 1) α − (i − 2) for 1 ≤ i ≤ n. Thus

e 7→ V (α, e)

is homogeneous of degree 1
q2 with respect to the weights {(i − 1) α − (i − 2)}1≤i≤n. From [35],

it can be deduced that

e 7→ 〈∇V (α, e) , ψ(α, e)〉

is homogeneous of degree 1
q2 +α−1 with respect to the weights {(i − 1) α − (i − 2)}1≤i≤n and

thus is negative definite. This imply that, for α ∈ (1 − ǫ1, 1 + ǫ2),

e 7→ V (α, e)

is a Lyapunov function for the system (15).

From Theorem 6, it follows that the system is globally finite time stable.
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IV. CRYPTOSYSTEM AND ITS APPLICATION TO THE CHUA’S CIRCUIT

Several chaotic systems, as the three-dimensional Genesio-Tesi system [36], the Lur’e-like

system or the Duffing equation [37], belong to the class of systems (3-4). Let us show that the

proposed observer can be useful to perform finite time synchronization of this class of chaotic

systems and secure data transmission. For a two-channel transmission, the system governing the

transmitter is given by:

ż = A z + f (y) (17)

y = z1 (18)

s (t) = νe (z(t),m(t)) . (19)

The first channel is used to convey the output y = z1 of the chaotic system (17). The function

νe encrypts the message m (t) and delivers the signal s (t) which is transmitted via the second

channel. The receiver gets z1 (t) on the first channel. An observer is designed as follows:











dẑ1

dt

...
dẑn

dt











= A















z1

ẑ2

...

ẑn















+ f (y) + On (y − ẑ1) (20)

where

On (y − ẑ1) =















k1 ⌈z1 − ẑ1⌋
α

k2 ⌈z1 − ẑ1⌋
2α−1

...

kn ⌈z1 − ẑ1⌋
nα−(n−1)















.

The error dynamics e = z − ẑ is given by the system (15). With a good choice of α and

{ki}1≤i≤n, Theorem (10) implies that the error dynamic e (t) converges to the origin in finite

time. As a consequence, the message m (t) can be completely recovered after the finite time

synchronization by the system


















System (20)

ŷ = ẑ1

m̂ = νd (ẑ, s)

.

where the decoding function νd is defined by νd (z (t) , s (t)) = m (t).
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The Chua’s circuit belongs to the class of chaotic systems which can be put into the observable

canonical form. (3)-(4) The equations of a Chua’s oscillator are given by:


















C1ẋ1 = 1
R

(x2 − x1) + h (x1)

C2ẋ2 = 1
R

(x1 − x2) + x3

Lẋ3 = −x2 − rx3

(21)

where L is a linear inductor, R and r two linear resistors, C1 and C2 two linear capacitors,

h (x) = G2x1 + 1
2
(G1 − G2) (|x1 + B| − |x1 − B|)

is the piecewise linear Chua’s function. The chosen output is y = x1.

Using the transformation z = Tx with

T =











1 0 0

1
C2R

+ r
L

1
C1R

0

1
C2L

(

1 + r
R

)

r
C1LR

1
C1C2R











the system (21) is transformed into the observable canonical form (17)-(18) with

A =











− 1
C1R

− 1
C2R

− r
L

1 0

− 1
L

(

r
C1R

+ r
C2R

+ 1
C2

)

0 1

−1
C1C2RL

0 0











,

f(y) =











1
C1

1
C1

(

1
C2R

+ r
L

)

1
C1C2L

(

1 + r
R

)











h (y) .

In the simulations, the numerical values of the Chua’s circuit are C1 = 10.04 nF, C2 = 102.2

nF, R = 1747 Ω, r = 20Ω, L = 18.8 mH, G1 = −0.756 mS, G2 = −0.409 mS, H = 1 V.

The gains of the observer have been set as follows: α = 0.7, k1 = 1000, k2 = 240, k3 = 24. The

observation error dynamics e = z − ẑ is then given by


















ė1 = e2 − 1000 ⌈e1⌋
0.7

ė2 = e3 − 240 ⌈e1⌋
0.4

ė3 = −24 ⌈e1⌋
0.1

. (22)

and e (t) converges to the origin in finite time (see Fig. 1 and 2). A message m (t) can be

sent and recovered after the delay due to the finite time synchronization by using the previous

algorithm (see Fig. 3).
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−1

0

1

0 1 2 3 4 5 6 7
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0

5
x 10

−3

Fig. 1. State of the system (21) and its estimate

Remark 11: It is possible to increase the security of the transmission by introducing some

observation singularities in the system (17). In this case, finite time convergence is a useful

property (see [38]).

V. CONCLUSION

In this paper, a continuous finite time observer based on homogeneity properties has been

designed for the observation problem of nonlinear systems that are linearizable up to output

injection. It does not involve any discontinuous output injections and step-by-step procedure, as

it is the case, for instance, for sliding mode observers. It has been applied to finite time chaos

synchronization and to secure data transmission using the two-channel transmission method.
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