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Delay-dependent Exponential Stability of Neutral
Stochastic Delay Systems

Lirong Huang and Xuerong Mao

Abstract— This paper studies stability of neutral stochastic
delay systems by linear matrix inequality (LMI) approach. Delay-
dependent criterion for exponential stability is presented and
numerical examples are conducted to verify the effectiveness of
the proposed method.

Index Terms— stochastic systems, neutral systems, time delay,
exponential stability, LMIs.

I. INTRODUCTION

Many dynamical systems are described with neutral func-
tional differential equations that include neutral delay differen-
tial equations. These systems are called neutral-type systems or
neutral systems. Motivated by chemical engineering systems
as well as theory of aero elasticity, studies on deterministic
neutral systems have been of research interest over the past
decades (see, e.g., [3]-[11]). As stochastic modelling has come
to play an important role in many branches of science and in-
dustry, neutral stochastic delay systems have been intensively
studied over recent year (see, e.g., [10]-[17]). Mao ([14]-[17])
initiated the study of exponential stability of neutral stochastic
functional equations, developed the Razumikhin-type theorems
further for exponential stability of neutral stochastic func-
tional equations and studied asymptotic properties of neutral
stochastic delay differential equations. More recently, Luo et
al. ([12]) proposed new criteria on exponential stability of
neutral stochastic delay differential equations while Chen et
al. ([2]) studied delay-dependent stability of neutral stochastic
delay systems. However, the stability result in ([2]) employed
an assumption on the difference operator matrix, which is also
assumed in other results (see, e.g., [4] and [18]) but may be
restrictive in many cases (see Examples 1 and 2). As is known,
delay-independent results may be conservative when the size
of time delay is small. This paper studies problem of delay-
dependent stability of neutral stochastic delay systems. An
exponential stability criterion is established by linear matrix
inequality (LMI) approach. Numerical examples are conducted
to verify the effectiveness of our proposed method.

II. PROBLEM STATEMENT

Throughout the paper, unless otherwise specified, we will
employ the following notation. Let (Ω,F , {Ft}t≥0, P) be a
complete probability space with a natural filtration {Ft}t≥0
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and E[·] be the expectation operator with respect to the
probability measure. Let w(t) be a scalar Brownian motion
defined on the probability space. If A is a vector or matrix,
its transpose is denoted by AT . If P is a square matrix,
P > 0 (P < 0) means that P is a symmetric positive
(negative) definite matrix of appropriate dimensions while
P ≥ 0 (P ≤ 0) is a symmetric positive (negative) semidef-
inite matrix. I stands for the identity matrix of appropriate
dimensions. Denote by λM (·) and λm(·) the maximum and
minimum eigenvalue of a matrix respectively. Let | · | denote
the Euclidean norm of a vector and its induced norm of a
matrix. Unless explicitly specified, matrices are assumed to
have real entries and compatible dimensions. Let h ≥ 0 and
C([−h, 0];Rn) denote the family of all continuous Rn-valued
functions ϕ on [−h, 0] with the norm ‖ϕ‖ = sup{|ϕ(θ)| :
−h ≤ θ ≤ 0}. Let Cb

F0
([−h, 0];Rn) be the family of all F0-

measurable bounded C([−h, 0];Rn)-valued random variables
ξ = {ξ(θ) : −h ≤ θ ≤ 0}.

Let us consider an n-dimensional neutral stochastic delay
system

d
[
x(t)− Cx(t− h1)

]
= [A0x(t) + A1x(t− h1) + A2x(t− h2)] dt

+ [H0x(t) + H1x(t− h1) + H2x(t− h2)] dw(t)(1)

on t ≥ 0 with initial data x0 = {x(θ) : −h ≤ θ ≤ 0} =
ξ ∈ Cb

F0
([−h, 0];Rn), where x(t) ∈ Rn is the state vector;

positive scalar constants h1, h2 are time delays of the system
and h = max{h1, h2}; C, Ai and Hi, i = 0, 1, 2, are known
matrices.

Denote

f(t) = A0x(t) + A1x(t− h1) + A2x(t− h2) ,

g(t) = H0x(t) + H1x(t− h1) + H2x(t− h2)
(2)

for all t ≥ 0. One can observe that

|f(t)|2 ≤ Kf ||xt||2 , |g(t)|2 ≤ Kg||xt||2 (3)

for all t ≥ 0, where xt = {x(t + θ) : −h ≤ θ ≤ 0},
Kf = 3

∑2
i=0 |Ai|2 and Kg = 3

∑2
i=0 |Hi|2. This implies that

both f(ϕ, t) and g(ϕ, t) satisfy the local Lipschitz condition
and the linear growth condition. It is easy to verify, by the
way of induction proposed in the proof of Theorem 3.1, p208,
[16], that there exists a unique continuous solution denoted by
x(t; ξ) to neutral stochastic delay differential equation (1).

The objective of this paper is to establish sufficient condi-
tions for robust exponential stability of system (1). It should
be pointed out that, for simplicity only, we do not consider
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uncertainties in our models. The proposed method can be eas-
ily extended to those cases with norm-bounded uncertainties
in parameters Ai and Hi. The method can also be applied to
systems with multiple and distributed delays.

At the end of this section, let us introduce the following
definitions and lemmas that are useful for the development of
our results.

Definition 1: ([16]) The neutral stochastic delay system
(1) is said to be exponentially stable in mean square if there
is a positive constant λ such that

lim sup
t→∞

1
t

log E|x(t; ξ)|2 ≤ −λ . (4)

Definition 2: ([16]) The neutral stochastic delay system
(1) is said to be almost surely exponentially stable if there
is a positive constant λ such that

lim sup
t→∞

1
t

log |x(t; ξ)| ≤ −λ . (5)

Lemma 1: ([20]) For any constant matrix M ∈ Rq×l,
inequality

2uT Mv ≤ ruT MGMT u +
1
r
vT G−1v , u ∈ Rq , v ∈ Rl

holds for any pair of symmetric positive definite matrix G ∈
Rl×l and positive number r > 0.

Lemma 2: ([6]) For any pair of symmetric positive definite
constant matrix G ∈ Rl×l and scalar r > 0, if there
exists a vector function v : [0, r] → Rl such that integrals∫ r

0
vT (s)Gv(s)ds and

∫ r

0
v(s)ds are well defined, then the

following inequality holds

r

∫ r

0

vT (s)Gv(s)ds ≥
(∫ r

0

v(s)ds

)T

G

(∫ r

0

v(s)ds

)
.

III. DELAY-DEPENDENT EXPONENTIAL STABILITY

Delay-dependent stability of neutral deterministic delay
systems has been intensively studied over recent years (see,
e.g., [3]-[5], [8], [11], [18]). However, relatively little is known
about delay-dependent stability of neutral stochastic delay
systems. Denote Ā0 = A0, Ā1 = A0C + A1, Ā2 = A2,
H̄0 = H0, H̄1 = H0C + H1, H̄2 = H2, Ā =

∑2
i=0 Āi

and H̄ =
∑2

i=0 H̄i. Sufficient conditions for delay-dependent
exponential stability of system (1) are proposed as follows.

Theorem 1: The neutral stochastic delay system (1) is
mean-square exponentially stable and is also almost surely
exponentially stable provided that there exist matrices P11 >
0, Qk > 0, Rk > 0, S > 0, Tk > 0, P21, P22, P23, P31, P32,
P33 and k = 1, 2 such that LMI (6) (on the top of next page)
holds,

where

Γ11 = PT
21Ā + ĀT P21 + PT

31H̄ + H̄T P31 + S + T1 + T2 ,

Γ12 = ĀT P22 + H̄T P32 + P11 − PT
21 ,

Γ13 = ĀT P23 + H̄T P33 − PT
31 , Γ18 = (S + T1 + T2)C ,

Γ22 = −PT
22 − P22 + h1Q1 + h2Q2 , Γ23 = −P23 − PT

32 ,

Γ33 = −PT
33 − P33 + P11 + h1R1 + h2R2 ,

Γ88 = −S + CT (S + T1 + T2)C ,

L11 = PT
21Ā1 + PT

31H̄1 , L12 = PT
21Ā2 + PT

31H̄2 ,

L21 = PT
22Ā1 + PT

32H̄1 , L22 = PT
22Ā2 + PT

32H̄2 ,

L31 = PT
23Ā1 + PT

33H̄1 , L32 = PT
23Ā2 + PT

33H̄2 ,

and entries denoted by ∗ can be readily inferred from symme-
try of the matrix.

Proof: To simplify the expression, we define

η(t) = x(t)− Cx(t− h1) (7)

for all t ≥ 0. With notations (2) and (7), we can rewrite the
unforced system (1) as

dη(t) = f(t)dt + g(t)dw(t) (8)

on t ≥ 0 with initial data ξ.
So we have

η(t2)− η(t1) =
∫ t2

t1

f(s)ds + g(s)dw(s) (9)

for all t2 ≥ t1 ≥ 0.
By (2) and (9), we can observe that

f(t) =
2∑

i=0

Āiη(t)−
2∑

i=1

Āi

[
η(t)− η(t− hi)

]
+

2∑
i=1

ĀiCx(t− h1 − hi)

= Ā η(t)−
2∑

i=1

Āi

∫ t

t−hi

f(s)ds + g(s)dw(s)

+
2∑

i=1

ĀiCx(t− h1 − hi), (10)

g(t) = H̄η(t)−
2∑

i=1

H̄i

∫ t

t−hi

f(s)ds + g(s)dw(s)

+
2∑

i=1

H̄iCx(t− h1 − hi) (11)

for all t ≥ h. Choose a Lyapunov-Krasovskii functional
candidate for system (8) as follows

V (t) =
5∑

j=1

Vj(t) , t ≥ h (12)

where

V1(t) = ηT (t)P11η(t) ,

V2(t) =
2∑

i=1

∫ t

t−hi

(s− t + hi)fT (s)Qif(s)ds ,

V3(t) =
2∑

i=1

∫ t

t−hi

(s− t + hi)gT (s)Rig(s)ds ,

V4(t) =
∫ t

t−h1

xT (s)Sx(s)ds ,

V5(t) =
2∑

i=1

∫ t

t−h1−hi

xT (s)Tix(s)ds .
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Γ =



Γ11 Γ12 Γ13 h1L11 h2L12 L11 L12 Γ18 L11C L12C
∗ Γ22 Γ23 h1L21 h2L22 L21 L22 0 L21C L22C
∗ ∗ Γ33 h1L31 h2L32 L31 L32 0 L31C L32C
∗ ∗ ∗ −h1Q1 0 0 0 0 0 0
∗ ∗ ∗ 0 −h2Q2 0 0 0 0 0
∗ ∗ ∗ 0 0 −R1 0 0 0 0
∗ ∗ ∗ 0 0 0 −R2 0 0 0
∗ 0 0 0 0 0 0 Γ88 0 0
∗ ∗ ∗ 0 0 0 0 0 −T1 0
∗ ∗ ∗ 0 0 0 0 0 0 −T2


< 0 , (6)

By Itô’s lemma, we have

dV (t) = LV (t)dt + σ(t)dw(t) , (13)

where

LV (t) =
5∑

j=1

LVj(t) = 2ηT (t)P11f(t) + gT (t)P11g(t)

+
5∑

j=2

V̇j(t) ,

σ(t) = 2ηT (t)P11g(t) .

(14)

Denote

y(t) =

η(t)
f(t)
g(t)

 and P =

P11 0 0
P21 P22 P23

P31 P32 P33

 . (15)

By equalities (10) and (11), we have

2ηT (t)P11f(t)

= yT (t)(PT A + AT P )y(t)− 2yT (t)
2∑

i=1

PT
[
0 ĀT

i H̄T
i

]T
·
(∫ t

t−hi

f(s)ds + g(s)dw(s) + Cx(t− h1 − hi)
)

,

(16)
where

A =

 0 I 0
Ā −I 0
H̄ 0 −I

 ,

PT A + AT P =

PA1 PA2 PA3

∗ −PT
22 − P22 −PT

32 − P23

∗ ∗ −PT
33 − P33


with PA1 = PT

21Ā+ĀT P21+PT
31H̄+H̄T P31, PA2 = ĀT P22+

H̄T P32 + P11 − PT
21, PA3 = ĀT P23 + H̄T P33 − PT

31 and
PT
[
0 ĀT

i H̄T
i

]T =
[
LT

1i LT
2i LT

3i

]T
for i = 1, 2.

Direct computations with Lemma 2 and equation (7) give

V̇2(t) ≤
2∑

i=1

[
fT (t)hiQif(t)−

∫ t

t−hi

1
hi

fT (s)ds · (hiQi)

·
∫ t

t−hi

1
hi

f(s)ds
]
, (17)

V̇3(t) =
2∑

i=1

[
gT (t)hiRig(t)−

∫ t

t−hi

gT (s)Rig(s)ds

]
,

(18)

V̇4(t) =
[

η(t)
x(t− h1)

]T [
S SC

CT S −S + CT SC

] [
η(t)

x(t− h1)

]
,

(19)

V̇5(t) =
2∑

i=1

 η(t)
x(t− h1)

x(t− h1 − hi)

T  Ti TiC 0
CT Ti CT TiC 0

0 0 −Ti


·

 η(t)
x(t− h1)

x(t− h1 − hi)

 . (20)

By isometry property, for i = 1, 2, we have

E
[∫ t

t−hi

gT (s)Rig(s)ds

]
=
∫ t

t−hi

E
[
gT (s)Rig(s)

]
ds

= E
[∫ t

t−hi

gT (s)dw(s)Ri

∫ t

t−hi

g(s)dw(s)
]

.

Therefore, substituting inequalities (16)-(20) into (14) and
taking expectation on the both sides of (14) yield

ELV (t) ≤ E
[
zT (t)Γz(t)

]
, (21)

where zT (t) =
[
ηT (t) fT (t) gT (t) 1

h1

∫ t

t−h1
fT (s)ds

1
h2

∫ t

t−h2
fT (s)ds

∫ t

t−h1
gT (s)dw(s)

∫ t

t−h2
gT (s)dw(s)

xT (t− h1) xT (t− 2h1) xT (t− h1 − h2)
]T

.
By LMI (6), we have

ELV (t) ≤ −λΓE|z(t)|2 ≤ −λΓE
[
|η(t)|2 + |x(t− h1)|2

]
(22)

with λΓ = λm(−Γ) and

CT SC − S < 0 . (23)

For any κ ∈ (0, 1), equation (7), inequalities (22)-(23) and
Lemma 1 give

ELV (t)

≤ −(1− κ)λΓE|η(t)|2 − κλΓ(E|η(t)|2 +
1
κ

E|x(t− h1)|2)

≤ −(1− κ)λΓE|η(t)|2 − κλΓ

λM (S)
E
[(

x(t)− Cx(t− h1)
)T

S

·
(
x(t)− Cx(t− h1)

)
+

1
κ

xT (t− h1)Sx(t− h1)
]

≤ −(1− κ)λΓE|η(t)|2 − κλΓ

λM (S)
E
[
xT (t)Sx(t)

− 2xT (t)SCx(t− h1) +
1 + κ

κ
xT (t− h1)CT SCx(t− h1)

]
≤ −(1− κ)λΓE|η(t)|2 − κλΓλm(S)

(1 + κ)λM (S)
E|x(t)|2 .

≤ −λ0E
[
|η(t)|2 + |x(t)|2

]
,
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where λ0 = min
{
(1− κ)λΓ, κλΓλm(S)[(1 + κ)λM (S)]−1

}
> 0 .
It is obvious from the definition of V (t) that

α0|η(t)|2 ≤ V (t) ≤ α1|η(t)|2 + α2

∫ t

t−2h

|x(s)|2ds , (24)

where α0 = λm(P11), α1 = λM (P11), α2 =∑2
i=1 hi[λM (Qi)Kf +λM (Ri)Kg]+λM (S)+

∑2
i=1 λM (Ti).

Choose ε > 0 such that

max{εα1, 2hεα2e
2hε} ≤ λ0 and e2hεCT SC − S < 0.

(25)
By Itô’s lemma, we have

d
[
eεsV (s)

]
= eεs

[
εV (s)+LV (s)

]
ds+eεsσ(s)dw(s), ∀s ≥ 0.

(26)
Let t0 = h, then integrating from t0 to t and taking expectation
on (26) give

eεtEV (t)− eεt0EV (t0)

= E
∫ t

t0

eεs
[
εV (s) + LV (s)

]
ds

≤ E
∫ t

t0

eεs
[
εα1|η(s)|2 + εα2

∫ s

s−2h

|x(v)|2dv

− λ0(|η(s)|2 + |x(s)|2)
]
ds

≤ E
∫ t

t0

eεs
[
εα2

∫ s

s−2h

|x(v)|2dv − λ0|x(s)|2
]
ds (27)

Since∫ t

t0

eεsds

∫ s

s−2h

|x(v)|2dv ≤
∫ t

t0−2h

|x(v)|2dv

∫ v+2h

v

eεsds

≤ 2he2hε

∫ t

t0−2h

|x(s)|2eεsds

≤ 2he2hε

∫ t

t0

|x(s)|2eεsds + 2he2hε

∫ t0

t0−2h

|x(s)|2ds ,

it follows

α0e
εtE|η(t)|2 ≤ eεtEV (t) ≤ α0Ch or E|η(t)|2 ≤ Che−εt,

(28)
where Ch = αh sup−h≤θ≤h E|x(θ)|2 with αh = α−1

0 eεh[α1+
2hα2(1 + 2hεe2hε)] ≥ 1. Since neutral stochastic delay
differential equation (1) has a unique continuous solution, Ch

is a nonnegative finite number for any 0 ≤ h < ∞.
Since e2εhCT SC < S, there exists a number µ ∈ (0, 1) such
that

e2εhCT SC < µS < S . (29)

Note that ηT (t)Sη(t) = xT (t)Sx(t)− 2xT (t)SCx(t− h1) +
xT (t − h1)CT SCx(t − h1) for all t ≥ 0. By Lemma 1, we
have

eεtxT (t)Sx(t) ≤ eεt

1− µ
ηT (t)Sη(t)

+
eεt

µ
xT (t− h1)CT SCx(t− h1).

(30)

Let ρ be any nonnegative real number. For all 0 ≤ t ≤ ρ, we
have

eεtE
[
xT (t)Sx(t)

]
≤ 1

1− µ
sup

0≤t≤ρ
E
[
eεtηT (t)Sη(t)

]
+

1
µ

sup
0≤t≤ρ

E
[
eεtxT (t− h1)CT SCx(t− h1)

]
≤ 1

1− µ
λM (S) sup

0≤t≤ρ
E[eεt|η(t)|2]

+
eεh1

µ
sup

−h1≤t≤ρ
E
[
eεtxT (t)CT SCx(t)

]
≤ 1

1− µ
λM (S)Ch + e−εh sup

−h≤t≤ρ

{
eεtE

[
xT (t)Sx(t)

]}
.

But this holds for all −h ≤ t ≤ ρ. So

sup
−h≤t≤ρ

{
eεtE

[
xT (t)Sx(t)

]}
≤ λM (S)Ch

(1− e−εh)(1− µ)
. (31)

Since ρ is an arbitary nonnegative number, we have

E|x(t)|2 ≤ λM (S)Che−εt

(1− e−εh)(1− µ)λm(S)
, ∀ t ≥ −h . (32)

The mean-square exponential stability has been proven.
Now let us proceed to discuss the almost sure exponential

stability. Let γ ∈ (0, ε) be arbitrary. We claim that there is a
finite positive number th such that for all t ≥ th

|η(t)|2 ≤ e−(ε−γ)t a.s. (33)

Therefore, for all t ≥ th, inequality (30) implies

e(ε−γ)txT (t)Sx(t)

≤ λM (S)e(ε−γ)t

1− µ
+

e(ε−γ)t

µ
xT (t− h1)CT SCx(t− h1) a.s.

Using the similar reasoning as above and letting γ → 0, we
have |x(t)|2 ≤ λM (S)e−εt[(1 − e−εh)(1 − µ)λm(S)]−1 a.s.
for all t ≥ th − h. This implies immediately

lim sup
t→∞

1
t

log |x(t)| ≤ −ε

2
a.s.

We complete the proof by showing that inequality (33) is true.
Note that

E|f(t)|2 ≤ Kf sup
−h≤θ≤0

E|x(t− θ)|2

and
E|g(t)|2 ≤ Kg sup

−h≤θ≤0
E|x(t− θ)|2

for all t ≥ 0. For any integer k ≥ 1, by Hölder’s inequality
and Burkholder-Davis-Gundy inequality, one can derive that

E
[

sup
0≤θ≤h

|η(kh + θ)|2
]

≤ 3

[
E|η(kh)|2 + h

∫ (k+1)h

kh

E|f(s)|2ds

+ E

(
sup

0≤θ≤h

∣∣∣∣∣
∫ kh+θ

kh

g(s)dw(s)

∣∣∣∣∣
)]

≤ βhe−khε, (34)
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where βh = 3Ch(1 + Kfh2ehε + 4Kghehε). But, by Cheby-
shev’s inequality, this implies

P
{

ω : sup
0≤θ≤h

|η(kh + θ)|2 > e−(ε−γ)kh

}
≤ βhe−γkh.

By Borel-Cantelli lemma, there is a finite integer k0 such that

sup
0≤θ≤h

|η(kh + θ)|2 ≤ e−(ε−γ)kh a.s.

for all k ≥ k0. Therefore, inequality (33) holds with th ≥ k0h.

Remark 1: From the proof of Theorem 1, it is ob-
served that, letting zT (t) =

[
ηT (t) fT (t) gT (t)

1
h1

∫ t

t−h1
fT (s)ds 1

h2

∫ t

t−h2
fT (s)ds

∫ t

t−h1
gT (s)dw(s)∫ t

t−h2
gT (s)dw(s) xT (t− h1) xT (t− 2h1)CT xT (t− h1 −

h2)CT
]T

, we can have a corollary derived from Theorem 1
with [

−Ti CT Wi

WiC −Wi

]
≤ 0, i = 1, 2 (35)

where Wi > 0. This corollary can be easily applied to
problems of stabilization by the approach of LMIs.

IV. EXAMPLES

Example 1. Let us look at the following neutral stochastic
delay system

d[x(t)− Cx(t− h)] = [A0x(t) + A1x(t− h)]dt

+ [H0x(t) + H1x(t− h)]dw(s) (36)

with

C =
[
−0.2 0

1 0.2

]
, A0 =

[
0.5 0
0 0.3

]
, A1 =

[
−1 0
−1 −1

]
,

H0 =
[
0.2 0
0 0.2

]
, H1 =

[
0.3 0
0 0.3

]
.

It is easy to verify that the existing results (see [2], [10], [12]-
[17]) do not work. But, by Theorem 1, the upper bounds of
time delay for exponential stability of system (36) is hmax =
0.35.
Example 2. Deterministic systems may be regarded a special
class of stochastic systems, e.g., the following deterministic
neutral system is exactly system (1) with A0 = A, A1 = B
and A2 = H0 = H1 = H2 = 0, i.e.,

ẋ(t)− Cẋ(t− h) = Ax(t) + Bx(t− h) (37)

for all t ≥ 0, where

A =
[
−0.9 0.2
0.1 −0.9

]
, B = −

[
1.1 0.2
0.1 1.1

]
, C =

[
−0.2 γ
0.2 −0.1

]
and γ is a constant real number.
The case of γ = 0 has been studied by many works (see,
e.g., [4], [8] and [11]). However, results of [2], [4], [9], [11]
and [18] are not (conveniently) applicable when |γ| ≥ 1. For
γ ≥ 2, the criterion in [5] does not work, but the upper bounds
hmax for exponential stability of (37) by other methods are
listed in Table I, which shows that the results obtained by the

methods proposed in this paper are less conservative in these
cases.

Table I : hmax by different methods
γ = 2.0 γ = 2.2 γ = 2.4

[3] 0.29 0.25 0.21
[8] 0.40 0.32 0.25

Theorem 1 0.46 0.39 0.30

V. CONCLUSION

In this paper, delay-dependent criterion for stability of neu-
tral stochastic delay systems has been presented by approach
of LMIs. Numerical examples have been given to verify the
effectiveness of the method proposed in this paper. Particu-
larly, Example 2 demonstrates that our result developed for
stochastic systems is competitive even when it is specialized
to the deterministic cases.
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