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Filtering for Nonlinear Genetic Regulatory
Networks With Stochastic Disturbances

Zidong Wang, James Lam, Guoliang Wei, Karl Fraser, and
Xiaohui Liu

Abstract—In this paper, the filtering problem is investigated for non-
linear genetic regulatory networks with stochastic disturbances and time
delays, where the nonlinear function describing the feedback regulation is
assumed to satisfy the sector condition, the stochastic perturbation is in the
form of a scalar Brownian motion, and the time delays exist in both the
translation process and the feedback regulation process. The purpose of
the addressed filtering problem is to estimate the true concentrations of the
mRNA and protein. Specifically, we are interested in designing a linear filter
such that, in the presence of time delays, stochastic disturbances as well
as sector nonlinearities, the filtering dynamics of state estimation for the
stochastic genetic regulatory network is exponentially mean square stable
with a prescribed decay rate lower bound . By using the linear matrix
inequality (LMI) technique, sufficient conditions are first derived for en-
suring the desired filtering performance for the gene regulatory model, and
the filter gain is then characterized in terms of the solution to an LMI, which
can be easily solved by using standard software packages. A simulation ex-
ample is exploited in order to illustrate the effectiveness of the proposed
design procedures.

Index Terms—Decay rate, gene expression, genetic regulatory network,
stochastic disturbance, time-delay.

I. INTRODUCTION

It is well known that the encoded information contained in genes is
necessary for the organism to develop within a changing external en-
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vironment. Genetic regulatory networks are the mechanisms that have
evolved to regulate the expression of genes, where the expression level
of a gene is regulated negatively or positively by its own production
(protein). DNA microarray technology [25] has made it possible to
measure gene expression levels on a genomic scale, and has there-
fore been extensively applied to gene transcription analysis. Theoret-
ical analysis and experimental investigation on genetic regulatory net-
works (GRNs) have quickly become an attractive area of research in the
biological and biomedical sciences, and received great attention over
past decade [5], [7], [9], [13], [17]–[20], [26], [33], [36].

Recently, there has been much interest to reconstruct models for
GRNs, for example, Boolean network models [14], linear differential
equation models [4], [8], [15], [33], and a single negative feedback
loop network [9]. In biological systems or artificial genetic networks,
time delays exist due primarily to the slow processes of transcription,
translation, translocation as well as the finite switching speed of
amplifiers. It has been pointed out in [5], [28], [29] that delays
may play an important role in dynamics of genetic networks, and
mathematical models without addressing the delay effects may even
provide wrong predictions of the mRNA and protein concentrations
[28], [29]. It has also been shown in [23], by mathematically modelling
recent data, that the observed oscillatory expression and activity
of three proteins are most likely driven by transcriptional delays.
Very recently, the GRN with SUM regulatory logic has been first
introduced in [18] with the asymptotic stability being discussed,
and then subsequent research on stochastic stability and stochastic
synchronization has been carried out in [19], [20]. Delayed GRNs
have been addressed in [26] where the time delays are assumed
to be time-varying and belong to given intervals.

On the other hand, when modeling GRNs, the stochastic noise (fluc-
tuations) in real-world gene expression data is of great importance [1],
[6], [19], [20], [30], [33]. In general, the stochastic noise arises in
gene expression in one of two ways, namely, internal noise and ex-
ternal noise. The internal random fluctuations in genetic networks are
inevitable as chemical reactions are probabilistic [24] and the external
noise originates in the random variation of one or more of the externally
set control parameters [16]. Recently, in [3], a stochastic nonlinear dy-
namic model has been developed for GRNs under intrinsic fluctuation
and extrinsic noise, and a method has been proposed to determine the
robust stability under intrinsic fluctuations and identify the genes that
are significantly affected by extrinsic noises.

In practice, for the ultimate goal of identifying genes of interest
and designing drugs, biologists would be interested in knowing the
steady-state values of the actual network states, that is, the concentra-
tions of the mRNA and protein. Unfortunately, due to the inherent state
delay and state-dependent noises, the actual network measurements are
far from the true network states, and any subsequent analysis based only
on the network measurements would probably have little value in appli-
cation. This gives rise to the following ‘filtering’ research issue: given a
gene regulatory network that contains both transmission delays and in-
trinsic fluctuations, how to estimate the network states such that the es-
timation error could exponentially converge to zero in the mean square
sense? Such a filtering issue has been addressed in [35] for a linear
GRN with stochastic disturbances in terms of the variance-constrained
index, where the time delay and regulation nonlinearities have been ig-
nored. It should be pointed out that, up to now, most existing literature
has dealt with the dynamical behaviors of various GRNs, but the im-
portant filtering problem for GRNs has been largely overlooked despite
its practical significance. Although the filtering problem has been ex-
tensively studied in the control and signal processing communities (see
[11], [12], [31], [32], [34] and references therein), the filtering problem
for GRNs of specific structures still remains challenging, which con-
stitutes the main focus of this paper.

This paper is concerned with the filtering problem for a class of
nonlinear genetic regulatory networks with state-dependent stochastic
disturbances as well as state delays. The feedback regulation is de-
scribed by a sector-like nonlinear function, the stochastic perturbation
is a scalar Brownian motion, and the time delays enter into both the
translation process and the feedback regulation process. We aim to es-
timate the true concentrations of the mRNA and protein by designing
a linear filter with guaranteed exponential stability of the filtering aug-
mented systems. By using the linear matrix inequality (LMI) technique,
sufficient conditions are first derived for ensuring the exponentially
mean square stable with a prescribed decay rate lower bound � for the
gene regulatory model, and then the filter gain is characterized in terms
of the solution to an LMI, which can be easily solved by using avail-
able software packages. A simulation example is illustrated for a gene
expression model.

Notation: Throughout this paper, � denotes the � dimensional Eu-
clidean space. ������� is the space of square-integrable vector func-
tions over �����; � � � refers to the Euclidean norm in �, and � � ��
stands for the usual ������� norm. � denotes the identity matrix of
compatible dimension. The notation � � � (respectively, � � � )
where � and � are symmetric matrices, means that � � � is posi-
tive semi-definite (respectively, positive definite). For a matrix	 ,	�

represents its transpose and �	� denotes its spectral norm. When 	
is real symmetric, 
����	� (respectively, 
����	�) stands for its
maximum (respectively, minimum) eigenvalue. ���� � ���	�� �
� is
a complete probability space with a filtration ���	�� satisfying the
usual conditions (i.e., the filtration contains all � -null sets and is right
continuous). ��	 stands for the expectation of stochastic variable �.
The shorthand ���	�	�� 
 
 
 �	�	 denotes a block diagonal matrix
with diagonal blocks 	�� 
 
 
 �	� and the notation ���	��	 is em-
ployed to stand for ���	�� 
 
 
 � 	 with � blocks of . In symmetric
block matrices, the symbol � is used as an ellipsis for terms induced by
symmetry. Matrices, if not explicitly stated, are assumed to have com-
patible dimensions.

II. PROBLEM FORMULATION

In this paper, we consider the following nonlinear time-delay genetic
regulatory networks [5], [18], [26] with state-dependent stochastic dis-
turbances:

��� �

������  ��������� ��� ������ ����� ��

�������������

������  ��������� ������� ���� ��

�������������

�����  �������

�����  �������

�����  ������ �����  ������ ��  ����� ��

(1)

where �����  ������� ������ � � � �������
�  �, ����� 

������� ������ � � � �������
�  �; ������ and ������ ��  �� 
 
 
 � ��

denote the concentrations of mRNA and protein of the �th node at time
�, respectively; �����  ������� ������ � � � �������

�  � , ����� 
������� ������ � � � �������

�  � ; ��	��� and ��	��� ��  �� 
 
 
 � ��
represent the expression levels of mRNA and protein of the �th node at
time �, respectively; �����,����� are the initial functions of ����� and
�����, respectively; and �����������  �������������� ���������
���� � � � ��������� �����

�  � with the function ����� representing
the feedback regulation of the protein on the transcription, which is
generally a nonlinear function but has a form of monotonicity with each
variable [1]. Both ����� and ����� are scalar Brownian motions with
zero mean value and unit variance, and they are mutually uncorrelated.
The constants �� � �, �� � � denote, respectively, the translation
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delay and the feedback regulation delay. Let � � ������� ���. The
matrix � � ����� �

��� is defined as follows:

���

� �� if transcription factor � is an
activator of gene �;

� �� if there is no link from node � to �;
� �� if transcription factor � is a

repressor of gene �.

(2)

The matrices 	� � �	�
�
��� 
��� � � � � 
���, 	� �
�	�
����� ���� � � � � ���� and � � �	�
��� �� � � � � �� are
diagonal matrices with 
��, ���, � �� � �� � � � � �� being the rate
of degradation of mRNA, the rate of degradation of protein and the
translation rate of the �th node, respectively. 	�, 	�, �, ��, ��, �,
� and � are all constant matrices with appropriate dimensions.

Assumption 1: The function ����� satisfies the following sector con-
dition

� � ������ �
������

��
� ��� ��� � � �� �� �� ���

����� � �� ����� � �� � � �� � � � � �� (3)

which is equivalent to

�
� ��� ��������� � � (4)

where � � �	�
���� ��� � � � � ��� � �.
Remark 1: By Assumption 1, the GRN (1) can be regarded as a

kind of Lur’e systems with stochastic disturbances, in which the fruitful
Lur’e system method in control theory [17] could be applied. Notice
that the sector-like nonlinear function ����� has been used to model the
structure and regulation mechanism of the genetic networks in many
references. For example, as a monotonic increasing or decreasing reg-
ulatory function, ����� is usually of the Michaelis-Menten or Hill form
[17], which can easily be transformed to a nonlinear function satisfying
the sector condition.

Remark 2: For presentation simplicity, the noise intensity functions
in model (1) are assumed to be linear. We point out that our main results
can be easily extended to the case when the noise intensity functions
��������� ���� � ���� and ��������� ���� � ���� are nonlinear and
satisfy the following bounding conditions

�
�
� ������� ����� ������ ������� ����� ����

� 	�������	� � 	������� ���	
�

�
�
� ������� ����� ������ ������� ����� ����

� 	�������	
� � 	������� ���	

�
�

where ��, ��, ��, �� are known constant matrices.
The main aim of this paper is to estimate the concentrations of

mRNA and protein through their expression level. The linear filter
adopted is of the form

���� 
������ � �	�������� ��������

������ � ���������� ��������

������ � ������ ������ � ������ �� � ����� ��

(5)

where ������ � � and ������ �
� are the estimates for ����� and

�����, respectively; ����� and ����� are the initial functions of ������
and ������, respectively; and �	, ��, �� and �� are filter parameters to be
determined.

By defining

������ �
�����

������
� ������ �

�����

������

���� �
����� ���

������ ���
� ���� �

����� ���

������ ���
�

and combining ��� and ����, we obtain the augmented filtering dy-
namics as follows:

��	�
������� �	�������� ��������� ��� ��������������

������� ���������� ������� �� ��������������
(6)

where
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����

�	
� �� �
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�

�

�� �
�	� �
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� � � �� ���

For presentation convenience, we let

����� � �	������ � ��� ������ �

����� � �������� � �������

(7)

and then ��	� in (6) can be rewritten as

������ � ������� ��������������

������ � ������� ���������������
(8)

Before formulating the problem to be investigated, we first introduce
the following stability concept for the augmented system (6).

Definition 1: System (6) is said to be exponentially mean square
stable if there exist scalars  � � and ! � � such that


����� "�
� �  #
�
� ���

�������


"���
� � �"��� � ���� (9)

or, equivalently,

�	�
���

���
�

�
��
 
����� "�
� � �!�

where ����� � �������� ���� ����
�

and "��� �

�$����� ������ $�� ��� �
�
� ����

�
is the initial function of

�����.
The purpose of this paper is to design a desired filter of the form

(5) for the system ��� in (1) such that, for all admissible time delays,
nonlinearities and stochastic disturbances, the augmented system (6) is
exponentially mean square stable.

III. MAIN RESULTS

A. Filter Analysis

First, we give the following lemmas which will be used in the proofs
of our main results in this paper.

Lemma 1: [2] (Schur Complement) Given constant matrices
�������� where �� � ��

� and � � �� � ��
� . Then

�� � ��
� �
��
�

�� � � if and only if

�� ��
�

�� ���

� � ��
��� ��

��
� ��

� ��

Lemma 2: Let � � �, � � � and matrix % � �. Then, we have
�� � � �� � � ��%��� � ��%�.
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Proof: The proof follows from
����������������

�
���������������� � � immediately.

Exponential stability problems of usual stochastic differential equa-
tions have been considered in [22] through the construction of an ap-
propriate Lyapunov function. In the following theorem, a delay-depen-
dent LMI method is used to deal with the exponentially mean square
stable problem for the augmented nonlinear stochastic genetic regula-
tory model (6), and a sufficient condition is derived that ensures the
solvability of the filtering problem.

Theorem 1: Consider system (6) with given filter parameters. For
a prescribed constant � � �, if there exist matrices �� � �, diagonal
matrices �� � �, �� � �, �� � � and scalars 	� � � (
 � �, 2) such
that the linear matrix inequality, shown at bottom of the page, holds,
where

�� �� ���
�� 	 ��
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�
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�� �� ��
�� 	 ��
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���
�� (11)

then the augmented system (6) is exponentially mean square stable.
Proof: Recalling the Newton-Leibniz formula and (8), we can

write
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(12)

It is easy to know from (3) and (12) that (6) is equivalent to the fol-
lowing system:
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(13)

where

�� � ��� ��� �������� ���� � �� �������� ���� � � � � �

�	 ����	��� ����� (14)

with ������ � ��� �
 � �� �� � � � � �� denoting the 
th element of the
vector ���� , and ����� is defined in (3). Hence, we only need to confirm
that the system (13) is exponentially mean square stable.

In order to show that system (13) is exponentially mean square stable
under condition (10), we define the following Lyapunov-Krasovskii
functional candidate for system (13):
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By Itô’s differential formula [21], we have
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���������������

	�������� �����
���������������� (16)

where

�� ������
�����������������

	 �
���������� ���

��	��
����������

	 �
����������� ���

��
���������

�� � � � � ������� � �� � �� ����� �

� �� � � � � ������ � �� � �� �� ���

� � ��� � � � ������� � � � �

� � � ��� � � � � � � �

� � � � ��� ������� � � � � �

� � � � � � �

� ��
�� � � � � �

� � � � � � � �

� ��
�� � � � �

� � � � � � � ��� � � �

� � � � � � � � ��� � �

� � � � � � � � � ��� �

� � � � � � � � � � ���

! � (10)



2452 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 10, NOVEMBER 2008

� ������������� ���� ����������
����������� ���� �

�

�

���

���	�
	�

�

���

�������	�
���	�

� �
������ �������������

������ ���� ��
�
����� ���������

� �
������ ����

� �� �
�� ���������

� �������� ����� ������������
������ ����� ���

�

�

���

���	�
	�

�

���

�������	�
���	�

� �
����� ���������

�
���������

� �
�������������

�
������������

� �
����� ����� ����

�
���������

� �
������ �������

�
������������

� �
�� �

�� ��


�
�
�����

�
��������

� �
��

�

���

�
�
��	��

�
������	�
	

� �
�� �

�� ��


�
�
� ����

�
��������

� �
��

�

���

�
�
� �	��

�
������	�
	

� ���
�� �

�� ��


��������

�
�
�
��������

� ���
��

�

���

�����	��
�
�
�
������	�
	

� ���
�� �

�� ��


���� ����

�
�
�
��������

� ���
��

�

���

���� �	��
�
�
�
������	�
	� (17)

From (3) and the definition of �� in (14), it can be easily seen that
�� � � . In terms of the fact that the positive definite matrices ��, ��

and �� (� � �, 2) are diagonal, we have from Lemma 2 that
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Similarly, noticing that � �� � �, � �� � � and �� (� � �, 2) are
positive scalars, we obtain
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Noting the sector condition (4), we substitute (18)–(20) into (17),
take mathematical expectation on both sides and obtain

��� ����

� �
�� ������� ���

����� ����� ���
��
�

���
��

� ���� ����
��
� � ���

��

� �
��
� �� ���

� ���
����

� ���
�� ���

� �
��

�
�
�����

�
���

���
��� ��


�
�
�
�
����� �������

� ���� ��� ���
����� ����� ���

��
�

���
��

� ���� ���
��
�

���
�� � �

��
� �� �� ���

��

� �
� �� �

�� �����
��

�
�
���

� �
�
����� � ��

��� ��


�
�
�
�
��

���� ���������
� ������ �

� �� ������ �������� ������� �
�
�������

� ����� �
�
������� �

��� ��



� ��������� ��� ������ �
�
�
�
���



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 10, NOVEMBER 2008 2453

� ��������� ��� ������ � �
��� ��

�

� �	������� �
�����
�
�
�
���

� �	������� �
����� � �

� ��� 
� ������� (21)

where we have (22), shown at the bottom of page, with
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By Schur complement, we can conclude from (10) that � � � and
therefore ��� ���� � �. We are now ready to prove the mean square
exponential stability of system (13). Define
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From the definitions of �����, �����, �����, ���� and (15), it follows
that there exists a positive scalar � such that
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and
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By Itô’s formula [21], we obtain that
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It follows from (23), (24) and (25) that
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or, equivalently,
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�
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which indicates that the trivial solution of (13) is exponentially mean
square stable and the exponential decay rate is �. The proof is now
complete.

Remark 3: In Theorem 1, the lower bound � for the exponential
decay rate is given in the criterion. Such a lower bound behaves as a
flexible performance parameter adjustable according to different prac-
tical applications. Note that the decay rate lower bound characterization
approach has been exploited in [27] for a class of stochastic neural net-
works with time delay.

Remark 4: In Theorem 1, given filter parameters and decay rate
lower bound �, (10) is a linear matrix inequality whose feasibility can
be readily checked by using the Matlab LMI toolbox [10].

B. Filter Synthesis

The following theorem shows that the desired filter parameters can
be determined by solving an LMI.

Theorem 2: Consider system (6). For a prescribed constant � � �,
if there exist matrices  � � �, 
� � �, diagonal matrices �� � �,
�� � �, �� � � and scalars �� � � (! � �, 2) such that the linear
matrix inequality (26), shown at the bottom of the next page, holds,
where
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then system (6) is exponentially mean square stable. In this case, the
parameters of the desired filter �� � are given as follows:
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Proof: Define
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where �� � ���� � �.

Pre- and post-multiplying the LMI in (26) by
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we have (30), shown at the bottom of the page, where
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It can be seen from the definitions of��,��,�� and�� that the LMI
in (30) is equivalent to (31), shown at the bottom of the page, where
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Finally, pre- and post-multiplying (31) by
��	
����� ����� � �� �� �� �� �� ��	
�������	
������

��
� ����� � and

its transpose, we can obtain from Theorem 1 and Schur complement
that system (6) is exponentially mean square stable with the given
filter parameters in (28).

IV. AN ILLUSTRATIVE EXAMPLE

In this section, a simulation example is presented to illustrate the
usefulness and flexibility of the filter design method developed in this
paper.

The dynamics of repressilator has been theoretically predicted and
experimentally investigated in Escherichia coli [19]. The repressilator
is a cyclic negative-feedback loop comprising three repressor genes
(����, ���� and ��) and their promoters. The kinetics of the system
are described as follows:
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where � and � (� � ����, ���� and ��) are the concentrations
of the three mRNA and repressor protein, � � � denotes the ratio of
the protein decay rate to mRNA decay rate, and � is the feedback reg-
ulation coefficient. Taking into account the time-delay and stochastic
disturbance, we consider the following compact matrix form nonlinear
genetic regulatory network model (1):
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with transcriptional time delay �� � ���, �� � ���, exponential decay
rate lower bound � � ��� as well as the following data:
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where the sector-like nonlinearities are taken as
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It is easy to check that the maximal value of the derivative of ��� �
is less than �� � ���.

By using the LMI toolbox [10], we solve (26) and obtain
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According to Theorem 2, the filter parameters can be calculated as
follows:
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Fig. 1. Trajectory and estimate of � �.

Fig. 2. Estimation error of � �.

Figs. 1–4 give the simulation results for the performance of the de-
signed filter, Fig. 5 gives the simulation for the actual decay rate of
augmented systems state ����� via� �������� �	
� ������ ����� and the
prescribed decay rate lower bound �, where the initial condition ���� �
��� �� �� �� �� �� �� �� �� �� �� ���� ���� � � � �.

It can be seen from Fig. 5 that, as the time is greater than 1.2, the
actual decay rate of the augmented system state ����� becomes greater
than its prescribed lower bound � � �. This clearly illustrates that
the expected performance of exponential mean square stability is well
achieved with the given decay rate lower bound.

V. CONCLUSION

In this paper, we have investigated the filtering problem on a class
of stochastic time-delay genetic regulatory networks with sector-like
nonlinearity, where both the translation delay and feedback regulation
delay have been taken into account. By using Itô’s differential formula
and Lyapunov stability theory, we have proposed a linear matrix in-
equality method to derive sufficient conditions under which the desired
filters exist. We have also characterized the expression of the filter pa-
rameters and the decay rate lower bound � 	 , and employed a simu-
lation example to illustrate the effectiveness of the proposed results. It
should be pointed out that, we can extend the main results in this paper

Fig. 3. Trajectory and estimate of � �.

Fig. 4. Estimation error � �.

Fig. 5. Actual decay rate of �� � and decay rate lower bound .

to more complex and realistic systems, such as systems with polytopic
or norm-bounded uncertainties.
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