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A Passive Repetitive Controller for Discrete-Time
Finite-Frequency Positive-Real Systems

Ramon Costa-Castelló, Danwei Wang, and Robert Griñó

Abstract—This work proposes and studies a new internal model for dis-
crete-time passive or finite-frequency positive-real systems which can be
used in repetitive control designs to track or to attenuate periodic signals.
The main characteristic of the proposed internal model is its passivity. This
property implies closed-loop stability when it is used with discrete-time pas-
sive plants, as well as the broader class of discrete-time finite-frequency pos-
itive real plants. This work discusses the internal model energy function and
its frequency response. A design procedure for repetitive controllers based
on the proposed internal model is also presented. Two numerical examples
are included.

Index Terms—Discrete-time control, discrete-time passivity, finite-fre-
quency positive realness, repetitive control.

I. INTRODUCTION

Repetitive control is an established control design technique for sys-
tems handling periodical signals. The most important component in a
repetitive controller is the periodic signal internal model [4]. The main
drawback of the conventional internal model is its high order that makes
the stability analysis of the closed-loop system difficult. In the pio-
neering work of Inoue [10], the stability of these systems is established
by disecting the closed-loop system into three series-connected subsys-
tems. The stability checking of the first two subsystems is straightfor-
ward but, for the remaining third subsystem, the Small Gain Theorem
needs to be used. Later, this approach was extended and modified to
improve high frequency robustness [7] and �� conditions and proce-
dures were established [19]. Lyapunov based analysis was also intro-
duced in [14]. These works provide stability conditions for passive (i.e.
Positive Real (PR) in linear systems) systems. These results have been
extended to Almost Strictly Positive Real (ASPR) and Almost Strictly
Negative Real (ASNR) systems [3]. Although a discrete-time formula-
tion exists [1], most works have set out and developed repetitive control
in continuous time.

This work proposes a new structure for the internal model which is
discrete-time passive (equivalently, it is Discrete-Time Positive Real).
When this internal model is used as a repetitive controller with a dis-
crete-time passive plant, the closed-loop system stability is guaranteed.
Furthermore, feedback passivizable plants [16] can also benefit from
this property.

The passivity property of the proposed internal model implies a re-
duced phase lag and this finds its application to finite frequency pos-
itive-real (FFPR) and passive plants [11]. The FFPR property is less
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restrictive than passivity. In addition, being positive real in a certain
frequency range is a necessary condition for good control performance
in that frequency range [12].

The proposed internal model introduces configurable zeros to shape
the open-loop frequency response and to provide an additional degree
of freedom in control design. In view of time response, the proposed
internal model will reduce the time delay of repetitive controllers due
to its reduced phase lag. Furthermore, several internal models can be
combined in parallel to obtain a multiperiodic repetitive control system.
Besides this, the proposed internal model preserves all relevant proper-
ties of repetitive controllers: trajectory tracking and disturbance rejec-
tion capability, simple structure and low computational cost.

This work analyses and characterises the proposed internal model
and presents a design methodology for FFPR discrete-time plants
which is illustrated with two numerical examples.

II. PASSIVE INTERNAL MODEL

A. Internal Model Structure

The proposed internal model is described by the transfer function

���� �
� ���

����
� ��

�� ������

�� ������
(1)

where 	 � , �� � �, �� � � � �, �� � � � � and ���� is a
low-pass filter.

For ���� � �, the poles of (1) are1


� � ����������������������	���������, � � �� �� � � � � 	 � �,
so they are uniformly distributed over a circumference of
radius2

�
�. The frequencies associated to the poles are


� � ����	�� � ���� � 	
��������	�, so the poles are placed
to cover all the harmonic frequencies of the fundamental one,
���	 . This pole placement is the same as the one obtained in
the conventional internal model. The zeroes of (1) follow a similar
placement [2].

Depending on the signs of � and �, we have the following cases: if
	
����� � 	
�����, the poles and the zeroes are placed at the same fre-
quencies, and if 	
����� �� 	
����� the poles and the zeroes are placed
at shifted frequencies. In particular, in the later case, the frequencies as-
sociated with the zeros are exactly the mean of the frequencies of the
adjacent poles. However, in real world applications it is necessary to re-
duce the controller gain in the high frequency band and for this reason,
the internal model includes the low-pass filter ����.

B. Energy Properties of the Passive Internal Model

Let ��������� be the LTI discrete-time system
���� ���� ���� (2)

�� ���� ���� (3)

where �� � �, ����� � 	; or in input-output form3 ����


�

���	� � ����� ��.
Definition 1 (Discrete-Time Passivity (DTP), [13]): System (2), (3)

is discrete-time passive with storage function �� � ������
�
��
(� -passive) if, and only if


��


� ���� � �� � �
� ��� (4)

Definition 2 (�����
�-Dissipative [5]): DTP systems with


�� � �
���� � ��
� ��� � �


�
�� (5)

1������� equals 1 for � � � and �1 for � � �.
2��� � � is necessary to assure the stability of the repetitive block.
3� being the �th order identity matrix.
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where� and� are symmetric matrices and � an appropriate size ma-
trix, are regarded as �������-Dissipative systems.

Lemma 1 ([5]): If a single-input-single-output (SISO) system
��������� with transfer function ���� is �������-DTP, then:

1) If � � �, then the graph of ������ lies inside the
circle on the complex plane with center �	��� and radius
��	���� �� �����.

2) If � � �, then the graph of ������ lies to the right (if � 
 �)or
the left (if � � �) of the vertical line ����� � ���		��.

For ���� � �, a state-space description of the transfer function

in (1) has the matrices4 � �
���� ����


 �����

, � � �

�
, � �


���
 � ��������� and � � 
���.
Proposition 1: The passive internal model in (1), for���� � � and

�� 
 �, �
� � �, ��� � � and 
� �� �, is �������-Dissipative and
also DTP.

Proof: Through inspection, ��� can be written as in (5) by using
	 � ����� � 
��	��� �
��
�, � � ��� 
��		����
� ��, � �
����� ���		��
� �� and � � �		. Also, according to Definition 4
and noting that � � �		, � � � and � � � it is clear that the system
is DTP.

Definition 3 (Discrete-Time Positive Real (DTPR)): Let ���� be a
square matrix of real rational functions. Then���� is called Discrete-
Time Positive Real (DTPR) if it satisfies the following properties:

a) The entries of ���� are analytic in ��� 
 �.
b) Every pole of ���� on � � ��� , if any, is simple and the corre-

sponding residue matrix is Hermitian positive semidefinite.
c) ������ �������� � �, ���� � �.
Remark 1: It is important to remark that in linear systems DTPR

is equivalent to DTP. The connection between both definitions is pro-
vided by the discrete-time KYP-Lemma [9].

Proposition 2: If �� 
 �, �
� � �, ��� � �, 
� �� � with ����
stable, ���� � � and �������� � �, � � ��� � � the internal model,
���� � �����

� � ������	��� � 
������, introduced in (1), is
DTPR.

Proof: The proof is organized in the following way: firstly, we
show that the Nyquist plot of ����� � �����

� � ��	��� � 
��
decomposes the complex plane into two connected regions; sec-
ondly, we show that the curves �������� � ��	����� � 
�� and
�����

��� � ��������	����� � 
�������� have only one point in
common; thirdly, we show that another point is in one of the partitions
defined by the Nyquist plot of � ���� such that the curve is DTPR.
Finally, it is proved that ���� is stable. This procedure, together with
the assumption that the Nyquist plot of ���� is continuous, will prove
that it is DTPR.

1) The Nyquist plot � ���� defines a complex plane partition. In
Proposition 1, it has been stated that� ���� is DTP, so it is DTPR;
or equivalently, the Nyquist plot of � ���� lies in the open right
half complex plane. The topology will be analyzed in two dif-
ferent cases:
• In case �
� � �, the Nyquist plot of ���� is a circumference

of radius � � ����
 � ��	��� 
��� and center � � ������
�
�	��� 
���. In this case, the two partitions are the interior
and exterior of this circumference.

• In case �
� � �, ���������� � �� � ��		. In this case the
two partitions are the left and right half plane of the vertical line
� � �� � ��		.

2) The Nyquist plots of ���� and � ���� have only one point
in common which is the initial point � � ��� � ��.
To prove this statement lets assume that another inter-
section exists, so �����

�� � � ��	���� � � 
�� �

4� being the �th order zero column vector.

�����
�� � � ������ ��	���� � � 
����� ��� should be

satisfied; which implies ��� � � ��� ������ �. The only
possible solution is for ������ �� � � and, according to the
hypothesis made on � , this is only feasible for �� � �. Note that
if 
 � � this point is placed at 	.

3) ����� � ��������
� � �������	������ � 
������� 


is inside one of the partitions.
• In the case of �
� � � it is sufficient to prove that it is inside the

circle described by � ������. In order to fulfill this, it is neces-
sary that ����������������	�������
������������

��	���
����� � �
����	���
��� which can be rewritten
as��
��������������� �. This inequality is always true
in the proposition conditions ������ � ��.

• In the case �
� � �. It is not difficult to prove that ����������
�������	�������
��������������		��� 
 �. So the
Nyquist plot of ���� lies in the right half plane of the Nyquist
plane.

4) ���� is analytic in ��� 
 �. By writing ���� as a diagram and
applying the Small Gain Theorem it can be shown that the system
is stable (marginally stable for �
� � �).

It has been proven that the Nyquist plot of ���� lies in the right half
plane of the Nyquist plane and that it is analytic for ��� 
 �, so ����
is DTPR and, then, DTP.

Remark 2: The parallel connection of two or more passive systems
yields a passive system. So it is possible to use several internal models,
with different values of � , and its parallel connection will be passive.
This property can be used in order to design discrete-time multi-peri-
odic repetitive controllers [15].

C. Passive Internal Model Frequency Response

Proposition 3: If �� 
 �, �
� � �, ��� � � and ���� stable
with �������� � � �� 
 
�� ��, then the Nyquist plot of ���� �
�����

��������	����
������ lies in a disk of center � � ������
�
���	��� 
����� � �� and radius � � �����
� ��	��� 
�����.

Proof: The proof follows the same steps as those in Proposition 2.
By applying Lemma 1 and Proposition 1 to ����������	����
���,
it can be shown that its Nyquist plot is a circumference of radius � �
�����
���	���


����� and center � � �������
�
��	���
������

��.
In order to prove that ���� lies in the abovementioned circle

it must be proved that if �������� � � no intersection be-
tween �����

�� � � ���	���� � � 
��� and �����
�� � �

������ ��	���� � � 
����� ��� exists and that the last point
��� � ��, of the second curve, is inside the circle.

1) An intersection between the circumference and the Nyquist plot
of ���� in � 
 
�� �� should satisfy: ����� � � ���	���� � �

��� � ����� � � ������ ��	���� � � 
����� ��� which is
equivalent to: ���� � � ����� ���� � . Note that this equation
has no solution in �� 
 
�� �� due to the fact that �������� � �
�� 
 
�� ��. So, no intersection between the circumference and
the Nyquist plot of ���� in the frequency range 
�� �� exists.

2) The last point of the Nyquist plot of ���� �� � ���
is in the circle defined by the Nyquist plot of �����

� �
���	��� � 
���. This fact can be proved by showing
that: �������� � �������	������ � 
����������� �

����	�� � 
������� � ���
 � ��	�� � 
������ that is
equivalent to ������ � 
��� � ��� � 
������ which can be
easily proven true by assuming �
� � � and ������� � � � �.

As the Nyquist plot of ���� in � 
 
�� �� is smooth, does not cross
the circumference and has one point inside, the complete curve is in the
circle.

Corollary 1: The gain of the internal model, ��������, in the fre-
quency range 
�� ��, for �� 
 �, �
� � �, ��� � �, ���� stable and
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Fig. 1. Closed-loop controlled system block diagram.

�������� � �, �� � ��� �� is in the interval �����	������
�����
����� 	����	�
����	�������
��	������
����������	����	
�
���� 	 ������.

Proof: Straightforward from Proposition 3.
Corollary 2: The phase of the internal model, � 
�����, in the fre-

quency range ��� ��, for 	� � �, ��� � �, �
� � �, ���� stable
and �������� � �, �� � ��� �� is in the interval � 

��
����� �

�� ��� 	 
��������� � ��� which is always contained in the in-
terval ����� ��� 

�.

Proof: Straightforward from Proposition 3.
In many situations is interesting to know the value of � to ensure that

the internal model gain is lower than � in a particular frequency range.
This value can be computed from Corollary 1.

Remark 3: In order to keep the gain of 	����� � 
��������� �
������� lower than � in the frequency range ��� ��, ���� should
satisfy �������� � ��	� � ����	�
 � ����, � � ��� �� and 	� � �.

By choosing a proper set of values for �, 
 and 	� and using the
bounds introduced in Remarks 1, 2, and 3, it is possible to shape the in-
ternal model frequency response according to the desired performance
[2].

III. DESIGN PROCEDURE

It is well known that the closed-loop negative feedback connection
of two passive systems generates a stable system [18]. In this sense the
proposed repetitive controller 
��� can be connected to any discrete-
time passive plant,5 ����, giving a stable closed-loop system. Besides
this, the proposed controller structure and parameters will ensure the
desired tracking or attenuation performance in the closed-loop system.
So, if the plant to be controlled ���� is DTP, then the closed-loop
stability is guaranteed by construction. But, unfortunately, most dis-
crete-time plants are not DTP, for this reason an stabilizing controller,
�������, is introduced in order to guarantee closed-loop stability. Sev-
eral approaches can be used in the design of �������, for those plants
which are feedback passivizable [16]. It is possible to construct a new
plant, � , which is passive so the complete system (see Fig. 1) will be
closed-loop stable by construction. In order to extend the class of plants
where the proposed repetitive controller can be applied, the concept of
finite-frequency positive real (FFPR) systems [11] is recalled.

Definition 4: A transfer function ���� is called Finite-Frequency
Discrete-Time Positive Real (FFDTPR) with bandwidth� if it satisfies
the conditions in Definition 3 with ��� � � replaced by ��� � � � �.

If a closed-loop system obtained by connecting two FFDTPR
systems with bandwidth� or greater, is stable, it will also be FFDTPR
with at least the same bandwidth. The stability of the closed-loop
system can be checked by applying the Nyquist Criterion. The Nyquist
plot of the open-loop system will lie in the frequency range ��� �� on
the 4th and 3rd quadrants, to guarantee closed-loop stability it is only
necessary to have gain less than one in the complementary frequency
range, ��� ��.

This reasoning can be summarized in the following proposition.

5Note that may be any linear or nonlinear discrete-time passive plant.

Proposition 4: The closed-loop system obtained when two FFDTPR
systems,
��� and� ���, with bandwidth� are connected in feedback
loop is stable if

� ����� 
����� � �� �� � ��� ��� (6)

Proof: Straightforward from previous comments.
Remark 4: If one of the systems connected in feedback is DTPR

and the other is FFDTPR with bandwidth � the previous results also
apply.

If the plant to be controlled ���� is not DTPR and it is not feedback
passivizable then the following design procedure is proposed (see Fig.
1):

1) Determine the system bandwidth, ���, in which the plant is PR.
If this bandwidth is not large enough for the desired performance,
then���� can be combined in feedback connection with an stabi-
lizing controller ������� to increase the original plant bandwidth.
This procedure will define a new bandwidth � for the modified
system � ���. Note that it is necessary that � ��� has low gain
(lower than one) in the complementary range of frequencies where
it is Positive Real [11].
The design of������� can be addressed using different techniques
such that ������

������������	������
���������� is FFDTPR

with bandwith � while minimizing �������
������������ 	

������
����������� for � � �. Some commonly used tech-

niques include phase cancellation [17] and generalized KYP
techniques [11].

2) Choose � , � and 
 of the internal model 
��� � 	����
� �


��������� � ������� to shape the frequency response ac-
cording specifications.

3) Calculate � � �������	
������ �������. The value of 	� � ��� ��
makes, together with the condition in the next step, the closed-loop
system stable and it must be chosen using a trade-off between
robustness and time response [8].

4) Finally, to ensure the closed-loop stability, it is necessary to find
a lowpass filter, ����, such that

	�
����� � 
�������

����� � ��������
� �� �� � ��� �� (7)

and, by applying Remark 3, this condition can be transformed to
the following specification for ����:

������ �
	� � �

	�
 � ��
� � � ��� ��� (8)

IV. NUMERICAL EXAMPLES

A. Example I

This example shows how the proposed internal model can be used
with a DTP plant. In this case it can be used without a stabilizing con-
troller, so the complete controller would be simpler than the one ob-
tained with a conventional repetitive controller. It is worth to note that
taking advantage of the proposed internal model passivity, several in-
ternal models can be combined in a very straightforward manner to ob-
tain good performances with multiperiodic references or disturbances.

In this example, we design a repetitive controller to force the DTP
plant,���� � ���������������������������������, to track the
signal, ��	� � � �����������	�	 ��� �����������	� with �� � ��
and �� � ��. As this signal is composed by two sinusoidal signals
with non harmonic frequencies, the multi-periodic internal model is


��� � 	�
��	 	 ���

��	 	 �
	
�

 	 ���

�

 	 �
(9)
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Fig. 2. Closed-loop time response: reference, output with � � ��� and output
with � � ���.

Fig. 3. Bode diagram of the plant ��� and the compensated plant �� �.

with a term for each frequency to be tracked. As stated in Remark 2,
in this case ���� will be DTP because it is the addition of two DTP
transfer functions. The design with this combination would not be so
straightforward with the conventional repetitive internal models. It is
important to note that, as both the plant and the controller are DTP,
there is no need of an stabilizing controller which is also an important
difference with respect to the conventional repetitive control.

Fig. 2 shows the system behavior for two values of �� . As expected,
in both cases the output follows the reference signal in steady state.
Note that higher is �� smaller is the settling time. The repetitive con-
troller does not use the plant model to guarantee closed-loop stability
because the plant is DTP and, clearly, this strategy is an improvement
in comparison to the conventional repetitive control designs.

B. Example II

The purpose of this example is to illustrate the design procedure pro-
posed in Section III for FFDTPR plants.

The control objective is to force the plant ����� � ��������� 	
�����
������ � ������ 	 ����
�� to track a �� � �� �� sinu-
soidal signal. This plant corresponds to the discrete-time model of a
pulse-width modulated (PWM) dc-ac converter with sampling time

Fig. 4. Closed-loop time response: reference, output with � � � and output
with � � ���.

�� � ���� � ���� � [20] and the sinusoidal signal to be tracked is the
reference ac voltage of the closed-loop system. The design procedure
for this example is as follows:

• Step 1: As shown in Fig. 3, this plant is FFDTPR with bandwidth6

	 � �����
 ��� (399 Hz) and 
 � �������������� ������ �
��
�. Unfortunately, the bandwidth in which this plant is PR is
very small. So, in order to allow the internal model to introduce
high gain in a broader bandwidth it is needed to increase the band-
width in which the system is PR. A stabilizing controller, 
	
�,
which enlarges PR frequencies range of � , is designed following
the phase cancellation [17] approach.
Then, the complete plant, � , equals to ������ � ��
� which is
FFDTPR with bandwidth 	 � ��
��� ��� (1266.3 Hz) (Fig. 3).
It is important to note that the stabilizing controller, 
	
�, can be
designed using any control methodology and that is a clear im-
provement when compared to the conventional repetitive control
design by a plant inversion method.

• Step 2: In this step the parameters � , � and � of the internal
model, ����, are selected. As the frequency of the signal to be
tracked is �� and assuming that the possible disturbances of the
system are odd-harmonic periodic signals, � � ������ � ���
and � � �� [6]. Furthermore, as a very selective (in frequency)
system is desired� � ����. For this particular example, the open-
loop transfer function has high gain only where it is necessary
and, then, the behaviour of the closed-loop system is better in
the presence of the measurement noise. This additional degree
of freedom is an improvement with respect to the conventional
repetitive controllers which do not allow to shape the open-loop
frequency response.

• Step 3: Once � is designed, and � , � and � are fixed, 
 is ob-
tained as 
 � �����. Then, �� can be chosen in the interval (0,
2.381).

• Step 4: Selecting �� � �,���� is designed according to (8). This
condition states that ���� must have a maximum gain of ���� �

��������
�� � ��
�
� in the frequency range ���
���� �� ���
([1266.3, 5000] Hz). To obtain this attenuation, a third-order null-
phase low-pass FIR filter can be designed accordingly.7 With this
filter, the order of the controller ���� is 103.

6The frequency range is� � ��� �� with � corresponding to half the sampling
frequency � � �	
 .

7In this procedure any standard filter design procedure can be used.
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Fig. 4 shows the simulation results obtained when a 50 Hz sinusoidal
signal is used as a reference for two values of �� . The results show
that, as expected, a lower value of �� gives a slower closed-loop time
response. Furthermore, in both cases the output tracks the reference al-
most perfectly in steady state and there is no delay in the beginning
of the time response. This last characteristic is different in the conven-
tional repetitive control systems where the high relative degree of the
controller causes a significant delay in the response.

V. CONCLUSION

This work has proposed an internal model for repetitive control de-
sign. This internal model is a Discrete-Time Passive, or equivalently,
Discrete-Time Positive Real. According to this, the proposed internal
model can be connected in feedback form with a generic DTP system
with the closed-loop stability being ensured.

Taking advantage of the passivity structure, a design procedure for
FFDTPR systems has been proposed and analyzed. The design pro-
cedure allows to set the desired gain margin through the value of pa-
rameter �� and filter ����. Furthermore, the proposed internal model
allows to shape the open-loop frequency response in a more accurate
way because it adds an additional degree of freedom to its structure.

Additionally, this passivity structure of the internal model establishes
a simple way to deal with multiperiodic references and disturbances.
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Entropy Optimization Filtering for Fault Isolation
of Nonlinear Non-Gaussian Stochastic Systems

Lei Guo, Liping Yin, Hong Wang, and Tianyou Chai

Abstract—In this paper, the fault isolation (FI) problem is investigated
for nonlinear non-Gaussian systems with multiple faults(or abrupt changes
of system parameters) in the presence of noises. By constructing a filter to
estimate the states, the FI problem can be reduced to an entropy optimiza-
tion problem subjected to the non-Gaussian estimation error systems. The
design objective for the FI purpose is that the entropy of the estimation
error is maximized in the presence of diagnosed fault and is minimized in
the presence of the nuisance faults or noises. It is shown that the error dy-
namics is represented by a nonlinear non-Gaussian stochastic system, for
which new relationships are applied to formulate the probability density
functions (PDFs) of the stochastic error in terms of the PDFs of the noises
and the faults. The Renyi’s entropy has been used to simplify the compu-
tations in the filtering for the recursive design algorithms. It is noted that
the output can be supposed to be immeasurable (but with known stochastic
distributions), which is different from the existing results where the output
is always measurable for feedback. Finally, simulations are given to demon-
strate the effectiveness of the proposed data-driven FI filtering algorithms.

Index Terms—Entropy optimization, fault isolation, non-Gaussian sys-
tems, non-linear filtering, optimal control.

I. INTRODUCTION

Fault detection and isolation (FDI) for stochastic systems has drawn
a considerable attention in the past decades, where many effective
methodologies have been developed as seen from the survey works
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