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Static output feedback sliding mode control design via an

artificial stabilizing delay

Alexandre Seuret, Christopher Edwards, Sarah K. Spurgeon and Emilia Fridman

Abstract—It is well known that for linear, uncertain

systems, a static output feedback sliding mode controller

can only be determined if a particular triple associated

with the reduced order dynamics in the sliding mode

is stabilisable. This paper shows that the static output

feedback sliding mode control design problem can be

solved for a broader class of systems if a known delay

term is deliberately introduced into the switching function.

Effectively the reduced order sliding mode dynamics are

stabilized by the introduction of this artificial delay.

Index Terms—Sliding mode control, output feedback,

time delay systems, exponential stability, discretized

Lyapunov-Krasovskii functionals, stabilizing delay.

I. INTRODUCTION

In many practical situations, all the states are not

available to the controller. In some circumstances it

is impossible or prohibitively expensive to measure

all of the process variables. With this in mind,

many authors have developed methods to control

systems only using output feedback, of which one

approach is the output feedback sliding mode con-

trol paradigm [5].

The idea developed in this paper is to broaden the

class of systems for which a static output feedback

based sliding mode controller can be developed

based on a recent result from time delay systems. In
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[7], [11], the authors show that for some systems,

the presence of delay can have a stabilizing effect.

This affords the possibility of taking a system which

is not stabilizable by static output feedback without

delay and finding a constant delay τ strictly greater

than 0 such that the system is stable. In this case, a

stabilizing delay is introduced into the dynamics to

effect output feedback stability.

This design concept is not new. Several authors

have considered this possibility. For example in

[15], [17], [18] it has been shown that introducing

a delay in an output feedback controller can stabi-

lize a system which cannot be stabilized without

delay. This property has already been noted in

the production of proteins in a cell [13]. When

researchers try to model this production without

delay, the solutions oscillate and do not correspond

to the known physical behaviour. By introducing a

delay corresponding to the intracellular transport by

convection, the solutions correspond more closely to

the known behavior.

The novelty in this paper is in overcoming the

output feedback stabilizability assumption [2] in the

design of sliding mode controllers by static output

feedback. The authors propose a new switching

function which contains an additional term which

is linear in the delayed output. This is shown to be

constructive in stabilizing the reduced order sliding

mode dynamics. It is then shown that a sliding

motion can be reached in finite time.

The article is organized as follows. The second

section presents the problem formulation. Section

three formulates the definition of a new sliding func-

tion which contains an artificial delay. In section

four, the problem of exponential stability of the

reduced order sliding motion with constant delay

using discretized Lyapunov-Krasovskii functionals

is solved. Section five deals with the exponential

stabilization of non-delayed systems by a sliding

mode controller including delay. In the last section,

a numerical example demonstrates the design of the
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gains and the effect of the choice of the delay in the

sliding mode controller.

Throughout the article, the notation P > 0 for

P ∈ R
n×n means that P is a symmetric and positive

definite matrix. [A1|A2|...|An] is the concatenated

matrix formed from the matrices Ai. The symbol

In represents the n × n identity matrix. The no-

tations |.| and ‖.‖ refer to the Euclidean vector

norm and its induced matrix norm, respectively. For

any function φ from C1([−τ ; 0], Rn), we denote

|φ|τ = sups∈[−τ, 0](|φ(s)|).

II. PRELIMINARIES AND PROBLEM

FORMULATION

Consider the linear uncertain system without de-

lay

ẋ(t) = Ax(t) + B(u(t) + ψ(y(t)))
y(t) = Cx(t)

(1)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p with

m < p < n, corresponds to the state, control and

output variables respectively. The function ψ ∈ R
m

represents the matched disturbances and is assumed

to satisfy:

‖ψ(t)‖ ≤ Ψ2(y(t)) (2)

where Ψ2 is a known function.

The matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n

are assumed to be known. It is also assumed that

the pair (A,B) is controllable and the input and the

output matrices B and C are full rank. In addition,

it is assumed rank(CB) = m. Then from [2],

[4], there exists a change of variables such that the

system has the following representation:

ẋ(t) =

[

A11 A12

A21 A22

]

x(t) +

[

0
B2

]

(u(t) + ψ(y(t)))

y(t) = [ 0 T ]x(t)
(3)

where A11 ∈ R
(n−m)×(n−m), B2 ∈ R

m×m is nonsin-

gular and T ∈ R
p×p is an orthogonal matrix. In [2]

a sliding surface

S = {x ∈ R
n : FCx(t) = 0} (4)

is proposed, where F = F2[K Im]T T , K ∈
R

m×(p−m) and F2 ∈ R
m×m is a nonsingular matrix.

The sliding motion is governed by the choice of K.

If a further coordinate change is introduced based

on the nonsingular transformation z = T̂ x with T̂
defined by:

T̂ =

[

In−m 0
KC1 Im

]

(5)

where C1 = [0(p−m)×(n−p) I(p−m)], then, as argued

in [2], the dynamics of the reduced order sliding

motion is governed by

ẋ1 = (A11 − A12KC1)x1(t) (6)

The fictitious system (A11, A12, C1) is assumed to be

output stabilizable i.e., there exist a matrix K such

that the matrix A11−A12KC1 is Hurwitz. It is shown

in [2] that a necessary condition for (A11, A12, C1)
to be stabilizable is that the invariant zeros of

(A,B, C) lie in the open left half-plane. However

the design of an output feedback gain K such that

the matrix A11 + A12KC1 is Hurwitz is not always

straightforward and may be impossible.Consider for

instance the system (6) with

A11 =

[

0 −2
1 0.1

]

, A12 =

[

−1
0

]

, C1 =
[

0 1
]

which is from [1], [2]. In this case, the output

feedback stabilization problem becomes the prob-

lem of finding a scalar k such that the matrix
[

0 −2 − k
1 0.1

]

has strictly negative eigenvalues,

which is clearly not possible. In this situation, some

authors [1], [3], [5] have employed a compensator

in order to stabilize the system. However, these

methods increase the order of the controller and

have an associated computational overhead both in

terms of design and implementation. The proposed

method seeks to introduce an artificial delay in the

system such that the system can be stabilized by

static output feedback without the need to introduce

a compensator.

III. DESIGN OF A NEW SLIDING MODE SURFACE

In this section, the design of a new type of sliding

surface will be discussed. The objective is to define

a sliding surface of the form of (4) but which

introduces a delay in the reduced order dynamics.

Consider

S
′ = {x ∈ R

n : FCx(t) + FτCx(t − τ) = 0} (7)

where as before the matrix F = F2[K Im]T T and

where Fτ = F2[Kτ 0m]T T , Kτ ∈ R
m×(p−m). Here,
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without loss of generality, the matrices F2 and T
are chosen as Im. In (7), τ is an artificial, fixed and

known delay which has to be chosen to stabilize

the reduced order dynamics in the sliding mode and

represents a design parameter. The existence of such

a delay and constructive methods to choose it will be

discussed in a latter section. Instead of (5), consider

the coordinate change x 7→ Tτx:

x̃1(t) = x1(t)
x̃2(t) = x2(t) + KC1x1(t) + KτC1x1(t − τ)

By construction the switching function associated

with S
′ is s(t) = x̃2(t). This leads to:

˙̃x1(t) = (A11 − A12KC1)x̃1(t)
−A12KτC1x̃1(t − τ) + A12x̃2(t)

(8)

˙̃x2(t) = (A21 + KC1A11)x̃1(t)
+KτC1A11x̃1(t − τ) + (A22 + KC1A12)x̃2(t)
+KτC1A12x̃2(t − τ) + B2(u(t) + ψ(t))
−(A22 + KC1A12)KC1x̃1(t) − (KC1A12Kτ

+A22Kτ + KτC1A12K)C1x̃1(t − τ)
−KτC1A12KτC1x̃1(t − 2τ)

(9)

Remark 1: It is important to note that the system

(8) is a particular delay system. Since the delay is

artificially introduced in the sliding manifold, the

delay τ is known and can be chosen to improve the

stability of the closed-loop system.

Remark 2: The sliding mode dynamics are given

by equation (8) with x̃2(t) = 0. This is a retarded

system, where the delay is known and can be

selected to stabilise, or enhance the stability of, the

reduced order sliding motion.

Remark 3: Note that the range space dynamics

given in (9) contain several delayed terms and two

different delays, τ and 2τ . However τ is a design

parameter in the particular formulation presented

here, and thus τ is perfectly known to the controller.

The last two lines of equation (9) only depend on

the known output information, x̃2 and C1x̃1, where

T T y = [C1x̃1, x̃2], and thus the following output

feedback control law can be defined:

u(t) = −(B2)
−1{(A22 + KC1A12)x̃2(t)

+KτC1A12x̃2(t − τ)
−(A22 + KC1A12)K(C1x̃1(t))
−KτC1A12Kτ (C1x̃1(t − 2τ))
−Glx̃2(t) + ν(t) − (KC1A12Kτ

+A22Kτ + KτC1A12K)(C1x̃1(t − τ))}
(10)

where x̃i(t) = 0, t < 0, i = 1, 2 and Gl is a Hurwitz

matrix. The term ν is the discontinuous injection

defined by

ν(t) =

{

ρ(t, y) Q2x̃2(t)
‖Q2x̃2(t)‖

if x̃2(t) 6= 0

0 otherwise
(11)

where Q2 is a symmetric positive definite matrix in

R
m×m and

ρ = ‖B2‖Ψ2(y(t)) + δ (12)

where δ is a positive scalar gain. The closed loop

system satisfies the following equations

˙̃x1(t) = (A11 − A12KC1)x̃1(t)
−A12KτC1x̃1(t − τ) + A12x̃2(t)

˙̃x2(t) = (A21 + KC1A11)x̃1(t) + Glx̃2(t)
+KτC1A11x̃1(t − τ) − ν(t) + B2ψ(y(t))

(13)

Remark 4: Note that the control law (10) does

not have a heavy computational overhead.

IV. EXPONENTIAL STABILITY OF THE CLOSED

LOOP SYSTEM

A. Exponential stability of the reduced order system

Consider the linear system with constant delay:

˙̃x1(t) = A0x̃1(t) + A1x̃1(t − τ) (14)

where x̃1 ∈ R
(n−m) is the state and where A0 =

A11 − A12KC1 and A1 = −A12KτC1 are constant

matrices with appropriate dimensions. System (14)

represents the dynamics of the reduced order system

(8) when x̃2(t) = 0. Therefore, the sliding surface

(7) underpins the stabilization of the sliding mode

dynamics by using the delayed term A12KτC1x1(t−
τ).

System (14) is said to be exponentially stable

[14], [16] with a decay rate α > 0 and an exponen-

tial gain β ≥ 1 if the following exponential bound

holds:

|x̃1(t; t0, φ)| < β|φ|τ2e
−α(t−t0), (15)

where x̃1(t; t0, φ) is the solution of (14), starting at

time t0 from the initial function φ ∈ C1. Note that

both α and β must be independent of φ.

Consider the change of variable xα(t) = eαtx̃1(t)
as in [19], [21]. Effectively, asymptotic convergence

of the xα states implies exponential convergence of
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x̃1 at a prescribed rate. Then it is easy to see that in

the case of constant delay, equation (14) becomes

ẋα(t) = (A0 + αIn)xα(t) + eατA1xα(t − τ) (16)

Consider the following theorem based on the

N discretized Lyapunov-Krasovskii functional pro-

posed in [11].

Theorem 1: System (14) is exponentially stable

with the decay rate α if there exist (n−m)×(n−m)
matrices P1 > 0, P2, P3, Sp = ST

p , Qp, Rpq = RT
qp,

p, q = 0, ..., N , which satisfy the LMI conditions

(17) and (18) with h = τ/N

Πα =

[

Ξα Ds Da

∗ −Rd − Sd 0
∗ ∗ −3Sd

]

< 0 (17)

and
[

P1 Q̃

∗ R̃ + S̃

]

> 0 (18)

where the matrix Ξα is given by
[

Ψα P T
[

0n

eατ A1

]

−
[

QN

0n

]

∗ −SN

]

(19)

and where Ψα is given by

P T
[

0n In

A0 + αIn −In

]

+
[

0n In

A0 + αIn −In

]T

P

+
[

Q0 + QT
0 + S0 0n

0n 0n

]

where

Q̃ = [Q0 Q1 . . . QN ],

S̃ = diag{1/hS0, 1/hS1, . . . , 1/hSN},

R̃ =





R00 R01 . . . R0N

R01 R11 . . . R1N

.

.

.
.
.
.

. . .
.
.
.

RN0 RN1 . . . RNN



 .

P =
[

P1 0n

P2 P3

]

and where for i, j = 1, .., N

Sd = diag{S0 − S1, S1 − S2, ..., SN−1 − SN},

Rdij = h(R(i−1)(j−1) − Rij),

Rd =





Rd11 Rd12 . . . Rd1N

Rd21 Rd22 . . . Rd2N

.

.

.
.
.
.

. . .
.
.
.

RdN1 RdN2 . . . RdNN



 ,

Ds = [Ds
1 Ds

2 . . . Ds
N ],

Ds
i =

[

(R0(i−1) + R0i) − (Qi−1 − Qi)
h/2(Qi−1 + Qi)

−h/2(RN(i−1) + RNi)

]

,

Da = [Da
1 Da

2 . . . Da
N ],

Da
i =

[

−h/2(R0(i−1) − R0i)
−h/2(Qi−1 − Qi)

h/2(RN(i−1) − RNi)

]

,

Proof: Consider the following Lyapunov-

Krasovskii functional:

V1α(t) = xT
α(t)P1xα(t)

+2xT
α(t)

∫ 0

−τ
Q(ξ)xα(t + ξ)dξ

+
∫ 0

−τ
xT

α(t + ξ)S(ξ)xα(t + ξ)dξ

+
∫ 0

−τ

∫ 0

−τ
xT

α(t + s)R(s, ξ)dsxα(t + ξ)dξ
(20)

where P1 > 0, Q(ξ) ∈ R
(n−m)×(n−m), R(s, ξ) =

RT (ξ, s) ∈ R
(n−m)×(n−m), S(ξ) ∈ R

(n−m)×(n−m),

and Q,R, S are continuous matrix functions. From

[12] (p. 185) V1α is positive definite if the LMI

(18) holds. Then the proof follows along the lines

of [7] using a descriptor representation [9] and

Gu-discretization [11]. It follows that xα converges

asymptotically to the solution xα = 0 and conse-

quently, the variable x converges exponentially to

the solution x = 0 with the decay rate α. See the

Appendix for more details.

Remark 5: Note that Theorem 1 is an extension

of Theorem 2.1 from [7] to the exponential stability

case. However the exponential stability considera-

tions allow the performance and the convergence

of the solutions to be characterized, which will

be efficient for the design of the output feedback

controller.

Remark 6: In the definition of the delayed sliding

manifold (7), the delay is chosen to be constant.

If for some reason the chosen delay needs to be

time-varying, then a time-varying gain 1 − τ̇(t)
will appear in the control law and the change of

variables ‘x → xα’ will affect system (16) as the

exponential gain will also be time-varying. However

this situation can also be dealt with: see for example

[19] or [20].

B. Illustrative example

Consider system (14) [8], [10] with

A0 =

[

0 1
−2 0.1

]

, A1 =

[

0 0
1 0

]

As in [8], Theorem 1 cannot guarantee that this

system is asymptotically stable, i.e. for α = 0, if

the delay is less than τmin = 0.11s. The relationship

between the delay τ and the maximum admissible

decay rate α is given in Figure 1. The maximal

decay rate α results from the following optimization

problem (see the Appendix, section B for more
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details):

αmax =
max α

τ ∈ [0, 2]
such that (17) and (18) are satisfied

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α

τ

N=2

N=1

N=3

N=4

N=6

N=8

Fig. 1. Relation between τ and α with respect to N

Figure 1 shows that the conservatism of the

condition from Theorem 1 reduces when the number

of discretizations N is increased. This is due to the

fact that when N increases, the degree of freedom

to define the Lyapunov-Krasovskii functional also

increases. Note that for all the discretizations, there

exists a optimal delay which corresponds to the

maximal decay rate. In a system where the delay can

be chosen, as in system (13) presented in Section III,

this form of graph can help to determine the optimal

delay. Compared to the asymptotic result proposed

in [8], Theorem 1 allows the existence of an optimal

delay to be shown. This delay corresponds to the

best performance in terms of stability.

Remark 7: Note that the ‘optimal delay’ is rel-

ative to the number N of discretizations used in

Theorem 1. In Figure 1 the optimal delay when

N = 1 is different from the one when N = 2.

In the sequel the statement ‘optimal delay’ will be

used to express the delay which corresponds to the

fastest decay rate α with respect to a certain level

of discretization.

C. Stabilization of the closed loop system

This section focusses on the stability of the whole

system (13). In particular, it needs to be established

that x̃2 = 0 in finite time, i.e. a sliding motion is

achieved.

Theorem 2: System (13) is exponentially stable

for given output feedback gains K and Kτ with

decay rate α if there exist P1 > 0, P2, P3, Sp = ST
p ,

Qp, Rpq = RT
qp, p, q = 0, ..., N in R

(n−m)×(n−m) and

Q2 > 0 ∈ R
m×m which satisfy the LMI condition

(21) and (18) with h = τ/N









Πα





(A21 + KC1A11)T Q2 + P1A12

0(n−m)×m

eατ (Kτ C1A11)T Q2

0N(n−m)×m

0N(n−m)×m





∗ Q2Gl + GT
l Q2 + 2αQ2









< 0 (21)

where the matrix Πα is given by (19) and where

A0 = A11 − A12KC1 and A1 = −A12KC1.

Proof: Consider new variables x̃1α(t) =
x̃1(t)e

αt and x̃2α(t) = x̃2(t)e
αt. The new closed-

loop system satisfies the following equations:

˙̃x1α(t) = (A11 − A12KC1 + αIn−m)x̃1α(t)
−eατA12KτC1x̃1α(t − τ) + A12x̃2α(t)

˙̃x2α(t) = (A21 + KC1A11)x̃1α(t)
+eατKτC1A11x̃1α(t − τ)
+(Gl + αIm)x̃2α(t) − eαt(ν(t) − B2ψ(y(t)))

(22)

Consider the Lyapunov-Krasovskii functional

Vα(t) = V1α(t) + V2α(t)

where V1α is defined in (20) and where

V2α(t) = xT
2α(t)Q2x2α(t)

From [7] and following the line of the proof pro-

posed in the appendix, differentiating V1α along the

trajectory of (22a) leads to the following inequality:

V̇1α ≤ ξT (t)Ξαξ(t) −
∫ 1

0
φT (β)Sdφ(β)dβ

−
∫ 1

0

∫ 1

0
φT (β)Rdφ(γ)dβdγ

+2ξT (t)
∫ 1

0
[Ds + (1 − 2β)Da] φ(β)dβ

+x̃T
1α(t)P1A12x̃2α(t)

(23)

where Ξα is defined in (19) and the functions ξ and

φ are defined in the appendix.

Differentiating V2α along the trajectory of (22a)

leads to:

V̇2α ≤ x̃T
2α(t)(GT

l Q2 + Q2Gl + 2αIm)x̃2α(t)
+xT

2α(t)Q2[(A21 + KC1A11)x̃1α(t)
+eατKτC1A11x̃1α(t − τ) − eαt(ν(t)
+B2ψ(y(t)))]

(24)

Then by combining (23) and (24) and by defining

ξ′(t) = col{x̃1α(t), ˙̃x1α(t), x̃1α(t − τ), x̃2α(t)}, the

following inequality holds:
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V̇α ≤ ξ′T (t)Θαξ′(t) −
∫ 1

0
φT (β)Sdφ(β)dβ

−
∫ 1

0

∫ 1

0
φT (β)Rdφ(γ)dβdγ

+2ξT (t)
∫ 1

0
[Ds + (1 − 2β)Da] φ(β)dβ

−xT
2α(t)Q2e

αt(ν(t) − B2ψ(y(t)))
(25)

where Θα is given by:








Ξα





(A21 + KC1A11)
T Q2 + P1A12

0(n−m)×m

eατ (KτC1A11)
T Q2





∗ GT
l Q2 + Q2Gl









From (12), note that −xT
2α(t)Q2e

αt(ν(t) −
B2ψ(y(t))) ≤ −δeαt‖Q2y(t)‖. The last term is thus

negative. Applying Proposition 5.21 from [12] to

(25) it can be concluded that V̇ (t) < 0 if LMI (21)

holds.

D. Reachability of the sliding manifold in finite time

Corollary 1: An ideal sliding motion takes place

on the surface s(t) = 0 in the domain Ω =
{(x̃1, x̃2) ∈ [t − τ, t] 7→ R

n−m × R
m : (‖(A21 +

KC1A11)‖+‖KτC1A11‖)|x̃1|τ < δ−η} where η is

a small scalar satisfying 0 < η < δ.

Proof: Consider the following Lyapunov func-

tion Vs(t) = x̃T
2 (t)Q2x̃2(t). By differentiating Vs

along the trajectories of (13b), it follows that:

V̇s(t) = x̃T
2 (t)(Q2Gl + GT

l Q2)x̃2(t)
+2x̃T

2 (t)Q2[(A21 − KC1A11)x̃1(t)
−KτC1A11x̃1(t − τ) − ν(t) + B2ψ(y(t))]

Since the matrix Gl is Hurwitz, Q2 can be chosen

such that Q2Gl + GT
l Q2 < 0. By taking an upper

bound on the second and third term, the following

inequality holds:

V̇s(t) ≤ 2‖x̃2‖‖Q2‖[(‖(A21 + KC1A11)‖
+‖KτC1A11‖)|x̃1|τ + ‖B2‖|ψ(y(t))|]
−‖x̃2‖‖Q2‖ρ(t, y)

If the system satisfies the conditions from Theorem

2, the state x̃1 converges to the solution x̃1 = 0 with

an exponential decay rate. It follows that the domain

Ω is reached in finite time. Since the gain ρ of the

sliding function is defined as ρ(t, y) = Ψ2(y(t))+δ,

the following inequality holds:

V̇s(t) ≤ −η
√

Vs(t)

This concludes the proof.

E. Comments on the design of the output feedback

gain

As usual, the problem of designing the output

feedback gain is not straightforward. Moreover the

LMI (21) is not in an appropriate form for synthesis

purposes because the gains K and Kτ appear in

different ways in Ξα than in (KC1A11)
T Q2 and

(KτC1A11)
T Q2. Congruence and other ‘classical’

LMI transformations will probably not facilitate

constructive conditions. A constructive method at

this time is to test the stability of the closed-loop

system for a given set of values of K and Kτ is

discussed in the appendix.

V. EXTENSION TO UNCERTAIN SYSTEMS

Consider now the case when the system (3) is

uncertain and time varying. Instead of the known

matrices Akl for k, l = 1, 2, the following represen-

tation is introduced:

At
kl = A0

kl +
∑

M
i=1λi(t)A

i
kl,

Bt
2 = B20 +

∑

M
i=1λi(t)B

i
2

(26)

where A0
11 ∈ R

(n−m)×(n−m) and B20 ∈ R
m×m is

non singular. The other matrices in (26) are assumed

to have appropriate dimensions. It is assumed that,

for all i ∈ {1, .., M}, the pair of matrices (A0
kl +

Ai
kl, B20) is controllable. The scalar functions λi are

such that:

∀i = 1, .., M, λi(t) ∈ [0, 1],
M

∑

i=1

λi(t) = 1. (27)

As it is possible to remove some uncertainties, the

system is rewritten as:

ẋ(t) =

[

At
11 At

12

At
21 A0

22

]

x(t)

+

[

0
B20

]

(u(t) + ψ0(t, y, u))

y(t) = [ 0 T ]x(t)

(28)

where the matched uncertainties are represented by:

ψ0(t, y, u) = B−1
20

(

∑M
i=1 λi(t)(A

i
22x2(t) + Bi

2u(t))
)

+ψ(t, y)
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This leads to

˙̃x1(t) = (At
11 − At

12KC1)x̃1(t) + At
12x̃2

−At
12KτC1x̃1(t − τ)

˙̃x2(t) = (At
21 + KC1A

t
11)x̃1(t)

+KτC1A
t−τ
11 x̃1(t − τ)

+(A0
22 + KC1A

t
12)x̃2(t)

+KτC1A
t−τ
12 x̃2(t − τ) + B20(u + ψ0(t, y, u))

−(A0
22 + KC1A

t
12)KC1x̃1(t)

−KτC1A
t−τ
12 KτC1x̃1(t − 2τ) − (KC1A

t
12Kτ

+A0
22Kτ + KτC1A

t−τ
12 K)C1x̃1(t − τ)

(29)

Note that the last two lines of the previous equation

only depend on the output information and thus

the following output feedback control law can be

defined:

u(t) = −(B20)
−1{(A0

22 + KC1A
0
12)x̃2(t)

+KτC1A
0
12x̃2(t − τ) + ν − (A0

22

+KC1A
0
12)KC1x̃1(t) − (KC1A

0
12Kτ

+A0
22Kτ + KτC1A

0
12K)C1x̃1(t − τ)

−KτC1A
0
12KτC1x̃1(t − 2τ) − Glx̃2(t)}

(30)

where Gl is a Hurwitz matrix. The closed loop

system satisfies the following equations:

˙̃x1(t) = (At
11 − At

12KC1)x̃1(t)
−At

12KτC1x̃1(t − τ) + At
12x̃2(t)

˙̃x2(t) = Glx̃2(t) + (At
21 + KC1A

t
11)x̃1(t)

+KτC1A
t
11x̃1(t − τ) − ν + ψ1(t, y, u)

(31)

where

ψ1(t, y, u) =
∑

M
i=1λi(t)[KC1A

i
12x̃2(t)

+KC1A
i
12KC1x̃1(t)

−KC1A
i
12KτC1x̃(t − τ)]

+
∑

M
i=1λi(t − τ)[KτC1A

i
12x̃2(t − τ)

+KτC1A
i
12KC1x̃1(t − τ)

−KτC1A
i
12KτC1x̃(t − 2τ)]

+B20ψ0(t, y, u)

Since ψ1 depends on t, y and u only, there exist

positive functions Ψ2 and Ψ21 such that:

‖ψ1(t, y, u)‖ ≤ ‖B20‖Ψ2(t, y, u) + Ψ21(t, y, u)

The discontinuous control component ν is still de-

fined by (11) but the gain is now defined by:

ρ(t, y, u) = ‖B20‖Ψ2(t, y, u)+Ψ21(t, y, u)+δ (32)

where δ is a positive scalar gain.

Noting that equation (31) is polytopic and of the

same form as (31), and that Theorem 2 is linear

with respect to the matrix definition, the following

result holds:

Theorem 3: System (31) is exponentially stable

for given output feedback gains K and Kτ with

decay rate α if there exist P1 > 0, P2, P3, Sp = ST
p ,

Qp, Rpq = RT
qp, p, q = 0, ..., N in R

(n−m)×(n−m) and

Q2 > 0 ∈ R
m×m which satisfy the LMI condition

(21) and (18) for all vertices i = 1, .., M with h =
τ/N .

Then the following corollary holds:

Corollary 2: An ideal sliding motion takes place

in the domain Ω given by

{(x̃1, x̃2) ∈ [t − τ, t] 7→ Rn−m × Rm :
maxi,j=1,..,N

(‖(Λi
21 + KC1Λ

i
11)‖ + ‖KτC1Λ

j
11‖)|x̃1|τ < δ − η}

where η is a small scalar satisfying 0 < η < δ.

Proof: The proof is similar to the previous one.

VI. EXAMPLE

Consider the non-delayed system (3) with the

definitions:

A11 =

[

0 −2
1 0.1

]

, A12 =

[

−1
0

]

,

A21 =
[

−0.1 −1
]

, A22 =
[

1
]

,

C =





0 0
1 0
0 1





T

, B =





0
0
1



 .

As in [2], this system is not output stabilizable using

traditional static (ie. non delayed output feedback).

The objective remains here to design the controller

(10) with appropriate gains K, Kτ ∈ R and an

artificial delay τ such that the closed-loop system

is exponentially stable with decay rate α.

A. Design of the output feedback

This section proposes a method to obtain the

optimal controller (K,Kτ , τ ). The idea is to test if,

for a set of values of K and Kτ , the LMIs from

Theorem 2 have a solution and if it is possible to

find the delay which ensures the greatest exponential

decay rate.

After checking the resolution of the LMIs from

Theorem 2, a solution can only be found when K
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lies in the interval [−6; 2] and Kτ in [0; 8]. For

each value of the gains K and Kτ , an optimization

process, detailed in Appendix B, is used to obtain

the best value of α by tuning τ upwards from zero

until the LMIs are not satisfied. The optimal delay

will be the one which delivers the largest α, using

the same method as in Example 1. For this particular

example the optimization problem is reduced to the

following one:

αmax =
max

(K,Kτ ) ∈ [−6; 2] × [0; 8]

{

max α
τ ∈ [0, 1]

}

such that (18) and (21) are satisfied

�

Fig. 2. Maximum decay rate α with respect to K and Kτ for N = 1

Figure 2 shows the relation between the output

feedback gains and the decay rate α using Theorem

2 with N = 1. The size of the set increases

when the discretization number N increases. Figure

2 also shows that the graph has a maximum at

K = −1.625 and Kτ = 2.625. This selection of

gains K and Kτ ensures the system is exponentially

stable with a decay rate α = 0.3. The corresponding

optimal delay is τ = 0.3.

For N = 3 the optimized gains are K = −2.23
and Kτ = 3.06. The corresponding optimal delay

is τ = 0.43. For these parameters the decay rate

is α = 0.612. Theorem 2 also ensures for N = 6
that the same gains K = −2.23 and Kτ = 3.06
exponentially stabilize the system (3) with a decay

rate α = 0.826 with the optimal delay τ = 0.45.

Remark 8: For N = 3, the computation of the

conditions from Theorem 2 become very heavy. The

optimization problem has not been tested for N ≥ 3.

B. Simulation results

In the results which follow system (3) is con-

trolled using (10) with K = −2.23, Kτ = 3.06 and

τ = 0.45.

0 5 10 15
−20
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0

10

time

x
11

(t)

x
12

(t)

x
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(t)

0 5 10 15
−40

−20

0

20

time

u(t)

0 5 10 15
−10

0

10

20

time

s(t)

Fig. 3. Simulation results for K = −2.23, Kτ = 3.06 and τ = 0.45

Figure 3 shows the state, the input and the slid-

ing function. The state converges exponentially to

x(t) = 0 with an exponential decay rate α = 0.826.

The sliding function converges to x̃2 = 0 in finite

time. The evolution of the control signal is shown

in Figure 3.
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Fig. 4. Simulation results for different values of the delay τ

In Figure 4, different delays are used to show

robustness to changes in the delay. For too small val-

ues, e.g. τ = 0.01, or too large a delay e.g. τ = 0.9,

the system is unstable. However when τ = 0.3 or

0.6, which are sufficiently close to the optimal delay

τ = 0.45, the system is still stable. This behavior is

consistent with the results of Example 1 (see Figure
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1). For given K and Kτ , exponential stability is

ensured for delays sufficiently close to the optimal

value of the delay, but the exponential decay rate is

lower.

VII. CONCLUSION

A new sliding mode controller has been suggested

for systems for which finding a traditional static

output feedback sliding mode controller is not pos-

sible. The controller introduces a stabilizing delay

in the closed loop system. The controller is simple

and does not require heavy real-time computation.

An example is used to demonstrate a method to

design the gains and the delay of the controller. The

robustness with respect to the delay has been shown

in the example. A straightforward extension ensures

robust stabilization with respect to disturbances and

to parameter uncertainties.
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APPENDIX

A. Proof of Theorem 1

The following is not a new result, but the inclu-

sion of a sketch of the proof of the discretization

theorem is included to improve readability. Based

on the results of [8], the first part of the proof

of exponential stability consists of expressing the

derivative of the Lyapunov Krasovskii functional

appropriately. The next step of the proof focusses

on the application of the discretization process of

Gu [10].

Consider system (16) in a descriptor represen-

tation with the extended state vector x̄α(t) =
col{xα(t), ẋα(t)}. This can be written as:

[

In 0n

0n 0n

]

˙̄xα(t) =

[

0n In

A0 + αIn −In

]

x̄α(t)

+

[

0n

eατA1

]

xα(t − τ)

The first term of the Lyapunov Krasovskii func-

tional V1α can be rewritten in the form:

xT
α(t)P1xα(t) = x̄α(t)

[

In 0n

0n 0n

]

P x̄α(t)

where P =

[

P1 0n

P2 P3

]

.
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Differentiating the Lyapunov functional V1α along

the trajectories of (16) leads to:

V̇1α(t) = 2ẋT
α(t)

[

P1xα(t) +
∫ 0

−τ
Q(ζ)xα(t + ζ)dζ

]

+2xT
α(t)

∫ 0

−τ
Q(ζ)ẋα(t + ζ)dζ

+2
∫ 0

−τ

∫ 0

−τ
ẋT

α(t + s)R(s, ζ)dsxα(t + ζ)dζ

+2
∫ 0

−τ
ẋT

α(t + ζ)S(ζ)xα(t + ζ)dζ
(33)

Rewriting the first term of (33) using the descrip-

tor representation [6], and integrating by parts in

(33), the following equality can be established:

V̇1α(t) = ξT (t)Ξαξ(t) + 2ẋT
α(t)

∫ 0

−τ
Q(ζ)xα(t + ζ)dζ

−
∫ 0

−τ
xT

α(t + ζ)Ṡ(ζ)xα(t + ζ)dζ

−
∫ 0

−τ

∫ 0

−τ
xT

α(t + s)( ∂
∂s

R(s, ζ) + ∂
∂ζ

R(s, ζ))

xα(t + ζ)dsdζ

+2xT
α(t)

∫ 0

−τ
[−Q̇(ζ) + R(0, ζ)]xα(t + ζ)dζ

−2xT
α(t − τ)

∫ 0

−τ
R(−τ, ζ)xα(t + ζ)dζ

(34)

where ξ(t) = col{x̄α(t), xα(t − τ)} and Ξα has the

form in (19) with Q(0), Q(−τ), S(0) and S(−τ)
instead of Q0, QN , S0 and SN respectively. The Lya-

punov functional is now expressed in an appropriate

representation to apply the discretization.

The discretization divides the delay interval

[−τ, 0] into N segments [θp, θp−1], p = 1, .., N
of equal length h = τ/N . This divides the square

[−τ, 0] × [−τ, 0] into N × N small squares

[θp, θp−1]× [θp, θp−1]. Each small square is further

divided into two triangles.

The continuous matrix functions Q(ξ) and S(ξ)
are chosen to be linear within each interval and

the continuous matrix functions R(s, ξ) is chosen to

be linear within each triangle. The proposed matrix

functions are:

Q(θp + βh) = (1 − β)Qp + βQp−1,
S(θp + βh) = (1 − β)Sp + βSp−1

R(θp + βh, θq + γh) =
{

(1 − β)Rpq + γR(p−1)(q−1) + (β − γ)R(p−1)q , β ≥ γ
(1 − γ)Rpq + βR(p−1)(q−1) + (γ − β)R(p−1)q , β ≤ γ

for 0 ≤ β ≤ 1 and 0 ≤ β ≤ 1. Simple definitions

of the derivative of the matrix functions can be

obtained which are, for appropriate p and q:

Ṡ(ξ) = 1/h(Sp−1 − Sp),

Q̇(ξ) = 1/h(Qp−1 − Qp),
∂
∂s

R(s, ξ) + ∂
∂ξ

R(s, ξ) = 1/h(R(p−1)(q−1) − Rpq)
(35)

Thus, the Lyapunov Krasovskii functional is com-

pletely determined by the matrices P1, Sp, Qp

and Rpq, p, q = 0, .., N . From [12], the condition

V1α ≥ ǫ‖xα‖ is satisfied if LMI (18) is satisfied.

Using conditions (35), the following equations hold:

2ẋα(t)
∫ 0

−τ
Q(ξ)x(t + ξ)dξ

= 2ẋα(t)
∑N

p=1

∫ 1

0
[(1 − β)Qp + βQp−1]xα(tβp )dβ

= 2ẋα(t)
∑N

p=1

∫ 1

0
[(1 − β)(Qs

p

+Qa
p) + β(Qs

p − Qa
p)]xα(t + θp + βh)dβ

where tβp = t + θp + βh, Qs
p = (Qp + Qp−1)/2 and

Qa
p = (Qp−Qp−1)/2. Then equations (19), (34) and

(35) imply [12]:

V̇1α(t) = ζT (t)Ξαζ(t) −
∫ 1

0
φT (β)Ṡdφ(β)dβ

−
∫ 1

0

∫ 1

0
φ(β)Rdφ(γ)dβdγ

+2ζ(t)
∫ 1

0
[Ds + (1 − 2α)Da]φ(β)dβ

where φ(β) = col{x(t − h + βh), x(t − 2h +
βh), .., x(t−Nh+βh)}. Applying Proposition 5.21

from [12], it can be concluded that V̇1α(t) < 0 if

LMI (17) is satisfied.

B. Optimization programs

The following table presents a schematic of the

optimization program developed for Theorem 1 and

2. The variables ǫτ and ǫK represent the grid size

used during the search.

Theorem 1
Choose N ;
α − max = 0; τopt = 0;
for τ = 0 : ǫτ : τmax

α = 0;
while Theorem1 is satisified

if α > αmax,
αmax = α;
τopt = τ ;

end
α = α + ǫα;

end
end

Theorem 2
Choose N ;
α − max = 0; τopt = 0;
for K = Kmin : ǫK : Kmax

for Kτ = Kτmin : ǫKτ
: Kτmax

for τ = 0 : ǫτ : τmax

α = 0;
while Theorem2 is satisified

if α > αmax,
αmax = α;
τopt = τ ;

end
α = α + ǫα;
end

end
end

end


