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Control of Quantum Systems Despite Feedback

Delay

Kenji Kashima and Naoki Yamamoto

Abstract

Feedback control (based on the quantum continuous measotenf quantum systems inevitably suffers from
estimation delays. In this paper we give a delay-dependabilisy criterion for a wide class of nonlinear stochastic
systems including quantum spin systems. We utilize a ségebaaic problem approach to incorporate the structure
of density matricesTo show the effectiveness of the result, we derive a glgls#ibilizing control law for a quantum
spin-1/2 systems in the face of feedback delays.
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|. INTRODUCTION

Quantum systems substantially differ from classical ,(iron-quantum) systems in that state variables are
represented by noncommutative operators acting on a Hifiparce; see e.g., [1]. Such noncommutativity imposes
some critical constraints on the structure of a quantumrodiet. This makes it difficult to analyze/synthesize
feedback control systems for quantum systems. Howeuamtum filtering theory2], [3], [4], [5] has clarified that
a number of quantum control problems can be formulated ahedavithin the framework of standard classical
stochastic control theory [6], [7], [8], [9], [10], [11], &1, [13], [14], [15].

A brief description of the filter-based approach to quantuntol is as follows. The plant dynamics are given
by a quantum stochastic differential equatiowhere the state is a noncommutative random variable [16¢ T
dynamics are partially monitored by means of a continuouasmement that allows us to construct an estimator
of the plant variables. The resulting filter is a classicatbhastic differential equation called tBzlavkin equation
or stochastic master equatio®ur objective is to synthesize an effective controllertstitat the filter shows a
desirable behavior.

For this problem, two types of control law have been propo$ee first one is a simple proportional feedback of

the output signal. The second one is a feedback of the estiofidhe plant variables, which we call tfiter-based
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controller. A more detailed description of these two controllers wél @iven in the next section, but we here note
that, for the implementation of the filter-based controlienon-negligible computation time is required to process
the estimation [17]. Therefore, from a practical point cdwj a filter-based feedback controller should be considered
taking the feedback delay into explicit account. For exanfteck et al. have numerically studied the issue of
delay in the case of feedback stabilization of atomic mofi8]. However, to the authors’ best knowledge, there
have been no theoretical means to perform such investigatiothe quantum case.

In this paper we study the effect of the delay in quantum systevith the full use of several techniques for
analyzing stability of stochastic delay differential gysts; see e.g., [19], [20], [21] and references therein. In
particular, we focus on the control problem of a quantum syistem, which has also been studied in [8], [10],
[13]. This system is very important, since it is one of the triz@sic components in quantum information processing
[22].

This paper is organized as follows. Section Il reviews quamfiltering and control. In particular, we discuss
delay in this feedback control scheme. Section Il is thempeirt of this paper. Theorem 1 gives a delay-dependent
stability criterion for a class of nonlinear stochasticteyss including some quantum spin systems. The effectigenes

of the result is then verified by deriving a stabilizing catfigr for the spini/2 particle case.

Notation Forz € R and M € R™*", |z||3, := 2"Mz. The subscript is omitted wheM/ is the identity
matrix. A functionF' : D — R is said to benegative(resp.positivg in D if F(z) < 0 (resp.F(z) > 0) for any

z € D. A subsetC in R" is said to besemi-algebraidf
Ci={zeR":pi(z) <0, i =1,2,--- 1}

with polynomialsp;.

Let C¥ be the set ofC-valued uniformly continuous functions dr-h, 0]. This is a Banach space equipped with
[Zllcr == supgerp,g) 12(0)]c. Given a probability measure, the probability and expémtaare denoted by and
E. We say an everf2 occurs almost surely iP {Q} = 1. If it exists, theinfinitesimal generatoof a functionV’

E* [2] —
t

along a Markov process, is denoted byV i.e., &V (Z) := %in% ¥ whereE? represents the expectation
—

with respect to paths which start a§ = &; see [20], [19], [21] for a formula.

II. CONTROL SCHEME BASED ONQUANTUM FILTERING
A. Quantum filtering

We here provide a brief summary of quantum filtering theoily [2], [4]. For a more detailed description, see

[5].
In the framework of quantum filtering, a plant dynamics isaléd in a similar form to a general classical

stochastic differential equation. For example, when usngomodyne detectof23], a single state variabl&,
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satisfies
dX = f(X¢)dt + g(Xe)dWr,
dYy = (h(Xy) + h(Xy)")dt + dV, 1)
wheref, g, andh are smooth functions with specific structures. Howeverikerthe classical case, the state variable
X, the outputY;, and the stochastic nois&g;, V, are observablesi.e., Hermitian operators that act on a certain
Hilbert space £ denotes the self-adjoint operation). Thus, in general theyot commute with each other. Note
that any noncommutative random variables cannot take thalization values on a same probabilistic space. This
implies that the classical stochastic control theory isdi@ctly applicable, because we cannot define the condition
expectationr(X;) := E(X¢|):), and consequently the optimal filter. He@g, denotes the set df; (0 < s < t).
Quantum filtering theory identifies systems free from theicdlties, i.e., systems satisfying theondemolition
properties [Ys, Y] = 0 (¥s,t) and [X;,Y,] = 0 (Vs < t), where[4, B] := AB — BA. Fortunately, in many
important cases, especially in quantum optics, we can tauith systems. The filter is then given by
dm(Xy) = m(f(Xe, ue))dt
+ (*(Xeh(X0) + h(X2)" X1) = 7(X0)m(h(X) + h(X,)"))
X (dYs — m(h(X,) + h(X,)*)dt). 2
Surprisingly, this is the same form as the classical filgggguation except the symmetrized terms. We now introduce
a density matrixp; in a finite-dimensional case, it belongs to the convex set

S:={peCV*N . p=p">0,trp=1}, 3)

whereN is determined from the system. The statistics of the measemeresults of an observahlé is completely
characterized by. For example, théi-th moment of the outcomes is given by(X"*p). Thus the conditional
expectationt(X;) should also be represented in terms of a time-dependenitylemerix p;, asw(X;) = tr(Xp:),
which together with[{2) leads to the time-evolution @f In particular, when the homodyne detection scheme is
used, the most simple form of it is given by the followistpchastic master equation

dpe = L (pr, ur)dt + (LPt +pe " —tr(Lpy + PtL*)Pt)

X (dYt —tr(Lpy + ptL*)dt),
1 1

L¥(pyu) = i[H, p] + LpL* = 5L"Lp — 5pL*L. 4)

Here, H is an observable calledamiltonian representing the energy of the system. The measuremergtopg

determines how the system interacts with the measuremeatraps (e.g. a laser field; see Figure 1).

B. Implementation of filter-based controller

In a typical situation, the Hamiltonian term is a functiontb® control inputu,; H = H(u). Our goal is to

designu,; such that the filter of Eq[14) has a desirable behavior. Nio&, ias in the classical case, the last term
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dwy := dY; — tr(Lps + p: L*)dt is a classical Wiener increment. This implies that gy (42 ilassical stochastic
differential equation to which several techniques devetbim control theory can be applied.

The proportional output feedback controller = kdY;/dt¢ (k € R is the gain) is often considered [15], [11],
[12] and was implemented in the experimental setup of spireszing control [24], [25]. On the other hand, note
that we can computg, by using the past output sequenfE,}.<; by Eq. [B). If it is possible to perform this
computation on-line, we can implement controller of thetestieedback formu; = wu(p:), i.e., the filter-based
controller. With this control the target state is limitedttee eigenstate®f the measurement operatbrunlike the
proportional feedback case where the target can be to sotastehanged flexibly [26], [27], but we can instead
take much wider variety of designing methods of the filtesdzh controller. In fact, it has been proven that the
Lyapunov theory was successfully employed to show the dlstadility of the filter for some systems [8], [10],
[13], [28]. Moreover, it is known that the optimal controllior a general type of quantum optimal control problem
is given by a filter-based controller. This is known as separation theorenfi29].

However, in general, the time required to comppités not negligible compared to the time-constants assatiate
with the dynamics of a nano-mechanical system. In other sydrdm a practical point of viewp, cannot be used
to determineu;. In view of this we should consider the delayed feedbackrobmiput u; = u(p;—,), wherer > 0
denotes the delay length. Note that this formulation is dbléandle further delays, for example input delays.
Such input delays occur because the control inpuinust be physically implemented by means of actuators. The
purpose of this paper is to propose a rigorous methodologgrfalyzing the behavior of quantum control systems

in the face of feedback delay.

[1l. STABILIZATION OF QUANTUM SPIN SYSTEMS IN THE FACE OF DEIAY
A. The physical model and control problem

In this section we consider a cold atomic ensemble trappeghiptical cavity [24], [8], [10], [11], [13], as

depicted in Figure 1. The total angular momentum operaiasf the atom around théaxis ¢ = y, z) is given by

O C1

—C1 0 Co

—CN-2 0 CN-1

—CN -1 0

¢m = VIN—-m)m, m=12--- /N-1,

1
3 diag{N —1,N — 3,

o
[

: 7_(N_3)’_(N_ 1)}7

where N — 1 represents the number of atoms. The system interacts wibea field oriented along theaxis at a

homodyne-type photo detector, which implies= F,. The system also interacts with an external magnetic field,
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Fig. 1. Quantum plant and classical controller. The filteed®ea finite timer > 0 to compute the control inpui; = u(p¢—+).

which is oriented along thg-axis, H(u,) = w,F,, where the control input,, corresponds to the magnetic field

strength, which can be modified in time. As a result, the cdlew filter equation[(4) becomes

. 1
dps = i[us Fy, pe]dt — §[Fm [F, pe]]dt

+ V1 (Fepe + peFe — 2t0(FLpe) pe)duwy, (5)

wheren € (0, 1] represents the measurement efficiency. Note that the W@neessw, contains the measurement
datay;.

Our goal is to design a feedback control law= wu(p;_,) that achieves the deterministic convergence,ofo
a prescribed target state. This problem was solved in [&)], [1L3], for the case of no delay. Note that controlled
filter equation [(b) shows a significant dependence on theyd#ieough the inputu; = u(p;_.). Therefore the

control problem is much more difficult than the previous one.

B. Delay-dependent stability criteria

The system of Eq[1{5) is described py<c CV*¥. By concatenating the real and imaginary part of all elesent
of p; into a column vector, we can rewrite Eff] (5) aRa-valued nonlinear stochastic delay system. It is important
to note that the resulting system has the following features

o The drift and diffusion terms are polynomials in the stateialde.

« The bounded semi-algebraic set determinedShg positively invariant; see also [8, Proposition 1].

o The control input, which possibly suffers from delays, iplgd only to the drift term.

We here do not limit our attention to the specifically struetlidynamics of Eq[{5), but rather consider a wide
class of nonlinear stochastic systems with the above ptiepeA delay-dependent stability criterion is given in

Theore .

1Throughout this section, the symbais (resp.z.) are used to represent functions (resp. vectors). Thesbagmwith (resp. without) the
time index denote the solution to EfJ (6) (resp. any funstion vectors).
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Theorem 1:Let f(-,-) : R™ x R™ — R", ¢g(-) : R” — R"™, be polynomials and a bounded semi-algebraic set

in R™ such that for any initial conditiort; € CZ the solution to the delay differential stochastic equation
dxt = f(xta Itfq-)dt + g(xt)dwt (6)
xg = %(0)eC, 0e[-7,0] (7)

does not exiC almost surelySuppose there exist a polynomiél(-) which is positive inC, n-variable polynomials
Vi (i =0,1), S € R?"*" and positive-definite matriceB, T € R™*" such thatY defined below is negative in
C x C x R?":

P, ag) = (252) " f(z, 2q)
T
+1 g(@)T2 (259) g(a)

+Vi(z) — Vi(zq) + V() + 7]lg(2)||%

12 a7 o] | S(a - a0) + 7S (20 ®)

Y (z, zq,y) := F(z, 2q)

T ;
x 0o S 75 T
+ | g STi-T 0 g
y ST+ 0 —7R Y

Then, V. (z;) converges t@ almost surelyfor any initial conditionz; € CZ.

Suppose thal/, (z) represents a distance betweerand a given target state. Then, this theorem states that
x; converges to the target state ifsami-algebraic problenis feasible; see also Subsection Il.C. Semi-algebraic
problems are in general NP-hard. However, if the degreeslyhpmials have been decidesiyms of squareSOS)
relaxation enables us to solve the problem efficiently [§32]. In the numerical example in the next subsection,
we utilized MATLAB SOSTOOLS [33], [34].

Remark 1:In Theorem[l,Y is required to be negative only i x C x R2?, not globally (i.e., inR*").
This is the reason why Theorem 1 can incorporate the streicfidensity matrices which is useful for reducing
the conservativeness. Similar criteria for some modifieabjgm formulations (i.e., time-varying delay or delay-
independent stability) can be obtained straightforwardly [ |

We prove Theorernl1 by using the following Lyapunov-Krasavisioe argument:

Proposition 1: Let z; be the solution of the stochastic delay differential equrati{6) and[{7). Define

it(b’) = Ttyi0, RS [—27', O]
for t > 7. Suppose that there exists a positive functiorialefined inC2™ such that
B[V (L) + Vi(z:)] <0 )

for anyt > 7. Then,V,(x;) converges td) in the same sense as in Theorgm 1.
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Proof: Recall thatx; evolves only in the bounded domain Hence Fubini’'s theorem yields

E{[dﬂ@mﬁzlﬁWW@MM.

By combining this equality, Eq[]9), and Dynkin’s formula0]2[36], we obtain
t
E[V(%)]-V(z.) = E [/ %V(is)ds}

< —/t]E[V*(xt)]ds <0.

Therefore we conclude thadf(z;) is a nonnegative super-martingale. The remainder of thefpsothe same as

the standard Lyapunov-Krasovsii argument; see e.g. Theofel and 6.2 in [36] and their proofs. This completes

the proof. [ |
Now we are ready to prove Theorem 1.

Proof of Theorem 1:1t suffices to show that’
0

V(i) = %(@(0))+[ Vi(2(0))do (10)

w1037+ )l + o) ) avar
satisfies the assumptions made in Proposition 1.
The polynomialsV; (i = 0,1) are bounded from below of due to the continuity of polynomials and the
boundedness of the domain. Note that adding any constah} ttoes not affecf’. Therefore, without loss of
generality we can assume thidtis positive.

A direct computation yields

-0
0<rte'Xe —/ e’ Xeds

-7

0=(2-2)-€'S {:E(O) —&(—7) — i(s)ds}

0
< 2eTS(2(0) — (7)) —/_ 2" S f(s)ds

-7

2

+e' ST 1STe + ||2(0) — (—7) — i f(s)ds

T
.
wheree = | #(0)T &(—7)T } . f(s) = f(&(s),Z(—7 + s)), and X := SR™'ST > 0. Combining these

inequalities and

0
- / {63 + lg@s)]2 ) ds,
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we obtain
V(%) + Vi(£(0)) < T(E(0), #(—7)) — G1(F) — Ga(%)

with
2

T(z,2q) = F(x,:cd)—l-H[xT xg]T

0
| latasn s

—T

TX4+8T-18T
2
ds >0

T

LT )T ]

Ga(T)

r T
X S
E o= >0
ST R
Let us take the expectation after substituting- z,. We can show
E[G2(Z:)] =0
by using the Itd isometry. We thus have
E[/V (i) + Vi(z)] <E [T(It, IH)] .
Finally, by the assumption off and defining
T*l
g = ST o S RQna
R_l Tt—r
we obtain
Y (e, w—r) = Y(24, 24-7,7) < 0.
Therefore Eq.[(9) follows. This completes the proof. |

C. Numerical example: Control of a spin-1/2 system

This subsection focuses onsgin-1/2model such that the system is composed of only a single fartit this

case, the density matrix is in C2*2, The filter equation[{5) without the input (i.e; = 0) shows the following

1 0 0 0
Pt — pp = or py — py = .
0 0 0 1

This phenomenon is known asiantum state reductiof80]. Here p; (resp.p,) denotes the eigenstate (bf= F7,)

probabilistic convergence:

for which the monitored spin state of the atom is determizadly up (resp. down). Note that whan = 0, these
two matrices are the only equilibrium points of Elg. (5). Ooabis to design a feedback control law = u(p;—_,)

that achieves the deterministic convergence,a the prescribed target, which is eitherp; or p;, as we choose.
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It is shown in [8] that the control input; = u(p;) with

u(p) := ki (1 —tr(ppr)) + ko tr(i[Fy, plpr) (11)

achieves the control objectiyve — pr when bothk; andk, are chosen appropriatlyn this subsection, we derive
a sufficient condition for this control law to globally stébé the spin-1/2 system in the face of feedback delay.

Let us rewrite Eq.[(5) in terms of the regulation error

1 2 - .3 .
)  aP i | pt = pe, if pr = py

2 L ) 1 :
R U pt — pr, it pr=py.

T
It can easily be verified thai; — pr is equivalent tax; := { Pz } — 0. When we apply the control input

ur = u(pi—r) With u(-) given by Eq.[(ILL), the dynamics af are independent of” and are given by Eql]6) with

—kxqx®
f(@,zq) = o 1w
krg (a9 — 3) — 3o
2 (2™ — 1)
g(x) = Vn
(2z® — 1)z®
k= |: kl k2 jl
Note thatp, > 0 meansx; is in the circular domairC
2O ,
C:= ER?: U(z) :=aW(2® —1)+2?° <0
2@

It can be verified that, independently of, the solution of Eq.[(6) does not exit almost surely. In summary,
according to Theorem 1, if the following SOS decompositioobem has a solution, then the control objective is
achieved:

Problem 1: With the definitions above, leV,(x) := ||z||?. Then, findS € R**2, positive-definite matrices

R, T € R?>*2, and polynomials/; (i = 0,1), h, hq such that
—Y(2,2q4,y) — h(x,24,y)¥ () — ha(x, 24, y) ¥ (2q),
h(z,xq,y),
ha(z, 24, y)

are the sum of squares of polynomialsiinzg € R? andy € R*.
We provide a numerical example to illustrate the effectdsmnof Theorerl 1. Decision polynomials are restricted

to quadratic functions. Lek; = 1.0 and k» = 4.0 which gives the control law whose stabilizing effect for the

2 The interpretation of this control law is as follows. The @ed term (containingz2 > 0) locally stabilizesps. Unfortunately, bottp; and
p, are equilibria of the closed-loop system. Hence, wheris close to the eigenstate that is not the regulation pgintmust be prevented
from converging to it. This is done by the first term. See [3%]4d discussion on the effect of delays when a switching obtdw is employed

instead.
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dist (Pt)

Fig. 2. Time responses of sample paths (thin blue lines) heidl average process (thick red line).

delay-free case was examined in [8, subsection IV.G]. Oplagameters are chosen to he= 0.9 and7 = 0.3. In
this case, Problefn 1 has a solution; that is, the target statee controlled system is shown to be stable. It took
3.01 seconds to check the feasibility of Problem 1 using aprder with a Pentium 4 3.2GHz processor and 2 GB
memory.

By setting the target statg := p, we performed a numerical simulation. Time responses ofuhetion
dist(p) :=1 —tr(ppr) : S — [0, 1]

are shown in Figurgl2 (30 sample paths and their averages. flihction gives the distance from the target state,
i.e., dist(p) = 0 (resp.dist(p) = 1) if and only if p = pr (resp.p = p;). The initial state is given by, = p, for
—7 <t < 0. From FigurdR it can be seen that stability is achieved.

Remark 2:In principle, the numerical approach introduced in this sadbion is applicable to the stability
analysis of the general multi-spin system despite timeydel The computational complexity grows quickly with
the dimension. Very high dimensional problems are theesfmsmputationally intractable. On the other hand,
there exist somanalytical results for the/N-dimensional delay-free case [10], [28]. The authors aneecily
investigating computational approaches which combineafieeementioned numerical and analytical methods, in

order to overcome this computational issue. [ |

[V. CONCLUSION

From a practical point of view, filter-based quantum conpralblems should be formulated taking feedback delay
into explicit account. A delay-dependent stability ciiber was derived for a class of nonlinear stochastic systems
including some quantum spin control systems. A semi-akljetapproach was shown to be useful for incorporating

the structure of density matrices.
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Theorem 1 was motivated by quantum spin control systemsorehél can deal with any stochastic delay system
having the three properties listed above it. Many finite-@lisional quantum systems satisfy these properties. Hence
Theorent1l is applicable to a wide class of finite-dimensiapuaintum systems.

This paper is a first attempt to analyze quantum systems wéidter from feedback delays. Hence, many

important and interesting problems are left unsolved. Esearch topic mentioned in Remark 2 is one of them.
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