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Stability robustness of a feedback interconnection of
systems with negative imaginary frequency response

Alexander Lanzon lan R. Petersen

Abstract—A necessary and sufficient condition, expressed sim-
ply as the DC loop gain (i.e. the loop gain at zero frequency)
being less than unity, is given in this paper to guarantee
the internal stability of a feedback interconnection of Linear
Time-Invariant (LTI) Multiple-Input Multiple-Output (Ml  MO)
systems with negative imaginary frequency response. Sysis
with negative imaginary frequency response arise for examnlp
when considering transfer functions from force actuators o co-
located position sensors, and are commonly important in for
example lightly damped structures. The key result presentthere
has similar application to the small-gain theorem, which réers
to the stability of feedback interconnections of contractve gain
systems, and the passivity theorem (or more precisely the pitive
real theorem in the LTI case), which refers to the stability d
feedback interconnections of positive real systems. A corfgie
state-space characterisation of systems with negative irgmary
frequency response is also given in this paper and also an exale
that demonstrates the application of the key result is prowviled.

Fig. 1. Positive feedback interconnection

and N (s) satisfy certain known properties (e.g. they are both
bounded-real with product of gains less than unity, or threy a
both positive-real, etc), it is also possible to derive pdule
theorems (such as the small-gain theorem [2], [3], or the
passivity theorem [4],[[5], etc) that use only limited infioa-

tion on M (s) and N(s) to establish the internal stability of
this feedback interconnection. This is powerful and irgéng
because it provides a mechanism to derive robust stability
Notation results when systems are perturbed by uncertain dynamics

Let 227" denote the set of real-rational stable transfépat are quantified only in terms of restricted information
function matrices of dimensiom x n). Let R andC denote (€. stable and contractive gain for the small gain theorem
fields of real and complex numbers respectively, &ig» O stable and positive real for the passivity theorem, etc).
and C"*" denote real and complex matrices respectively of In this paper, we derive a new result of a similar flavor.
dimension(n x n). Let \;(A) denote thei-th eigenvalue of We assume that both/(s) and N(s) are LTI MIMO stable
a square complex matrid and A(4) denote the maximum SyStems with “negative imaginary frequency respdhseid
eigenvalue for a square complex matrixthat has only real USe this mfglrmatlon.t_o derllve a necessary and s_ufﬁment
eigenvalues. LeR(a) andS(a) denote the real and imaginaryintérnal stability condition using only limited informati on
parts respectively ofs € C. Let AT and A* denote the M (s) andN(s). _ o
transpose and the complex conjugate transpose of a comple¥/e now show why systems with negative imaginary fre-
matrix A and M~(s) denote the adjoint of transfer functiondUency response are important in engineering applicatitias
matrix M (s) given by M(—s)T. Finally, let diag(a,b) be will do this via a simple example. Consider a lightly damped

a 0 structure with co-located position sensors and force &mtsia
shorthand for[o b} and A= be shorthand fotA=")". Lightly damped structures with co-located position sessor
and force actuators can typically be modeled by a (possibly
infinite) sum of second order transfer functions as follows:

Index Terms—positive position feedback, positive-real systems,
bounded-real systems, small gain theorem, passivity.

[. INTRODUCTION

Consider a positive feedback interconnection of two LTI
MIMO systems, M (s) and N(s), as shown in Figuréll,
denoted by[M (s), N(s)]. The Nyquist stability theorem (see )
for example [[1]) gives necessary and sufficient conditiod" the purpose of control systems design, however, one
under which this interconnection is internally stable,ngsi tYPically tends to include only a small finite number of modes

much information ofM(s) and N (s). However, whenl/(s) (i < H) in the modeling of such systems, thereby giving rise
to spillover unmodeled dynamics (i.e. unmodeled dynamics
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R(jw)*] > 0 (or > 0) for all w € (0, c0). This is because for Single-Input
Single-Output (SISO) systemsS(R(jw)) = j[R(jw) — R(jw)*]. Note
that atw = 0 or w = oo, (R(jw)) = 0 as R(s) is real-rational.
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for control systems design ad(s) be the spillover dynamics, swer to this question is “no, it does not” dSﬁV(s) is not
both given by: stable, sM (s) is not always guaranteed to be proper, and
most importantly positive real analysis yields an uncdoddl

P(s) = i kiwr%,i stability refsult_whereas the interconnection of two system
p 82 + 2Gwn, ;s +w$m. with negative imaginary frequency response will always be
P b2 conditionally s_table (see Theor_e[ﬁh 5). Of course, there are
andA(s) := Z _ i%ni —. some connecfuons_between positive real systems f_;md systems
i) ° + 2Giwn,is + w;, ; with negative imaginary frequency response which in fadit wi

be exploited in Lemmil 1 where we give a complete state-space
It is typically an important, though difficult, design spci characterization of systems with negative imaginary fezmy
cation to ensure that the closed-loop system retains #yabitesponse, but the differences are also important and should
in the presence of such spillover dynamifi§s). Since the not be discounted (e.g. arising from frequencies= 0 and
relative degree of such spillover dynamics is more thanyunit, = o).
standard positive real analysis [4]] [5] will not be very el
in establishing robust stability and since these systent te [Il. SOME TECHNICAL RESULTS

be highly resonant, application of the small gain theoreIn [2 | this section, we generate the technical machinery that
[3] would typically be very conservative. However, itis dd#§ || enable us to concisely prove the main result in the next
noticed that such spillover dynamias(s) are stable and section, First, for the sake of brevity, let us define theoiolhg
satisfy a negative imaginary frequency response propeig. 1o sets of “stable systems with negative imaginary fregyen

DC gain of the spillover dynamics is simpIEi:(hH) k;. response” as follows:
Also, satisfaction of stability and the negative imaginary

frequency response property is invariant to valueg;of 0 ¢ = {R(S) € RAZL "

andw, ; > 0 for all < € [h + 1, H]. Consequently, provided j[R(jw) — R(jw)*] > 0 Vw € (0,00)}, 1)

f\ cor;tro:leri'_(s) |g def&gne? sctJ as:[ tot(r;jatkebthe ClOtSEd;IO?(p @, = {R(s) € RAT" ;

ransfer function— from plant output disturbances to plan o s

input satisfy a neagt?ve imaginary frequency responsegrtgp JIR(jw) = R(jw)’] > 0Vw € (0,00)} € €. (2)

with DC gain strictly less thaﬂ/(Zfi(hH) k;), then robust  The first lemma gives a complete state-space characterisa-

stability to all spillover dynamicg\(s), and more, will hold tion of elements irng. It hence also provides a test to easily

for any value of(; > 0 andw, ; > 0 for all i € [h + 1, H], check whether a transfer function matrix belongs to &et

and hence”(s) will also robustly stabilizePa (s). or not. Testing whether a transfer function belongs to&et
Note that a similar conditiospecifically for a subclass of or not requires an additional check on transmission zeros of

SISO systembas existed in the Positive Position Feedback(s) — R™(s) in the open frequency regiofd, o).

control literature([6],[[7] for some time. It is also not ddfilt to ) B o ;

see how such a condition arises in SISO systems via a Nyquislt'emma 1iLet C|D be a minimal state-space reali-

diagram sketch. In fact, most controller synthesis andyaigl Sation of a transfer matri®(s). Then R(s) € ¢ if and only

in Positive Position Feedback control is based on graplii-A is Hurwitz, D = D* and there exists a real matrix > 0

cal techniques using Nyquist plots, or non-convex paramegich that

optimi;ation [8]. In this paper, we do three _things: _(a) we AY +YA* <0 and B=—AYC*.

formalize the robustness qualities of feedback intercotioes

of systems with negative imaginary frequency response via a Proof: The two statements are connected via a sequence

mathematical theorem and corollary (as opposed to graphiehequivalent reformulations:

Nyquist sketches); (b) we extend the ideas to MIMO LTa | A|B @

systems and show that even in that case, a necessary ngR(S) IR

sufficient condition for the internal stability of such systs is BrN | A|B s

that the DC loop-gain (measured in a precise sense) is lass tfwb) Bi(s) = (R(s) = D) = c|0 €¢andD =D

unity; and (c) we give a complete state-space charactinizat ~ This equivalence follows on nothing théi(s) € ¢ im-

of MIMO LTI systems with negative imaginary frequency  plies;j[R(co) — R(c0)”] > 0 via continuity and a limiting

response which may, in future work, underpin controller argument, which in turn implies-j[R(co) — R(c0)"] =

synthesis. (j[R(c0) — R(c0)T])T > 0. Then, these two inequalities
It is worth also pointing out that while a transfer func-  together implyR(co) = R(c0)".

tion from force actuators to co-located position sensois hg) r(s) .= sR(s) = A B € AT F(jw) +

typically negative imaginary frequency response, the eorr CA|CB

sponding transfer function from force actuators to codeda  (jw)" > 0Vw € R, :4 is Hurwitz andD = D*.
velocity sensors has typically a positive real respons@seo (d) 4 is Hurwitz, D = D* and3X > 0, L, W such that
guently, it is legitimate to wonder V\ihether simply replagin XA+ A*X = —L*L,

M (s) with sM(s) and N(s) with —<N(s) in Figure[1 to X wr

obtain a negative feedback interconnection and using atdnd BX+w L* N Cé’
positive real analysisl [4],[[5] would do the trick? The an- CB+(CB)" = W'W.
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This equivalence is via the Positive Real Lemma (seelLemma 4:Given A € C™*" with j[A — A*] > 0 andB €

for example [[4] together with the fact thaC' A, A) is

observable or [2, Thms 13.25,13.26] together with the fact

that (L*L, A) is observable).
(e) A is Hurwitz, D = D* and3X > 0, L, W such that
XA+ A*X = —L*L,
B=X"'(A"C* - L*'W),
CXtA*C* + cAXIC*
=W*W+CX LW + W*LX~'C*.
(f) Ais Hurwitz, D = D* and3X > 0, L, W such that

XA+ A X =-L"L,
B =X"YA*C* — L*'W),
W = —-LX~'C* via a completion of squares

(9) A is Hurwitz, D = D* and3X > 0, L such thatX A +
A*X = —L*L andB = X }(A*C* + L*LX~1C*).
(h) A is Hurwitz, D = D* and3X > 0 such thatXA +
A*X <0andB = -AX"1C*.
|

C™*™ with j[B — B*] > 0. Then,
det(I — AB) # 0.

Proof: The suppositions can be rewritten #gA) +
(jA)* >0and(jB)! + (jB)~* > 0. Thendet(I — AB) =
det(I + (jA)(jB)) = det((jA) + (jB) ") det(jB) £ 0. m

lll. THE MAIN RESULT

The key result in this paper is Theordt 5 below. It is an
analysis theorem that states that provided one system drelon
to class% and the other system belongs to clags then
a necessary and sufficient condifiofor internal stability of
a positive feedback interconnection of these two systems is
to check that the DC loop gain (i.e. the loop gain at zero
frequency) is less than unity.

Theorem 5:Given M (s) € ¢ and N(s) € %, that also
satisfy M (co) N (oc0) = 0 and N(oco) > 0. Then,

[M(s), N(s)] is internally stable & X(M(0)N(0)) < 1.
_ | A|B _[A|B
Proof: Let M(s) = oD andN(s) = oD

The second lemma relates the gain at zero frequency and (e minimal realizations. Then, by the suppositions of this
gain at infinite frequency for systems with negative imaginaheorem and Lemni@ U is Hurwitz, D = D*. A is Hurwitz

frequency response.
Lemma 2:Given R(s) € ¥ (resp. %,), then R(0) —
R(c0) >0 (resp.> 0).

Proof: Given a minimal realisatiotR(s) = [ é g ] €

¢ and applying Lemmal1, we get

R(0) — R(0) = —CA™'B=CA'AYC* =CYC* >0
3)

which concludes the proof for the non-strict inequality.
Now, we focus onR(s) € €s < R(s) := (R(s)— D) € %

(sinceD = D* by Lemmdl) and suppose there existsran

R"*" such thatR(0)z = 0. Then, it follows thaCyY C*z = 0

D = D* >0, DD = 0 and there exists real matric&s> 0
andY > 0 such that

which implies thatC*z = 0 asY > 0. This then also gives
that Bx = 0 via B = —AY C* which yields

R(jw)x = C(jwl — A)"'Bx =0 YweR.

But j[R(jw) — R(jw)*] > 0 Vw € (0, 00) implies thatR(jw)

is nonsingular for allv € (0, c0) and hence the only possible
z € R™" such thatR(0)z = 0 is z = 0. This shows that
R(0) is also nonsingular and thug(0) > 0. This concludes
the proof. [ ]

The following lemma gathers some straightforward compu-
tations which help us understand properties of systems with
negative imaginary frequency response.

Lemma 3:Given R(s) € %, A(s) € € and Ry(s) € %.
Then

R(s)+A(s) €€ and Ry(s)+ A(s) € .

Proof: Trivial. [ |
The final technical lemma provides a matrix result that state
that unity is not in the spectrum of matrixB when matrices
A and B satisfy certain negative imaginary properties.

AY +YA* <0 and B=-AYC", (4)
AY +YA* <0 and B=-AYC*. (5)
! AY 0
Now, define @ = 0 AY} and T =
—1 _ et YTa
[Y —C*CCDC - _Cé(iDC}’ and note that:
[M(s), N(s)] is internally stable
(I —M(s)N(s))~" =
A BC BD - BD
0 )= (F)e v | can
C DC I
A BC BD - . .
A= [0 i } { 5 } [C DC] = @T is Hurwitz

[as the above realization is stabilizable and detectable

T>0

[(=) Since A is Hurwitz and® is nonsingular,T is
nonsingular. Since + ®* < 0, it follows thatT' A +
A*T <0. ConsequentIY,A is Hurwitz impliesT > 0.
But T' is also nonsingular, therefofg > 0.

(<) Since® + &* < 0, it follows thatT A + A*T <
0. Consequently” > 0 implies éR()\i(A)P < 0 Vi.
But 7" > 0 and ® nonsingular also imply4 has no
eigenvalue at the origin. We now invoke Lemfja 4 and
use the fact thad/(s) € € andN(s) € %, to conclude
that det(I — M (jw)N (jw)) # 0 Vw € (0,00), which
in turn is equivalent ta4 having no eigenvalue gtw
for all w € (0, 0). ]

2Under some assumptions on the gains of the systems at irfiiei@ency.
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Y '—-C*DC >0 and
(Y= —c*DC)-Cc*C(Y ' =C*DC)'C*C >0
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IV. ILLUSTRATIVE EXAMPLE

Consider the lightly damped mechanical plant depicted in
Figure[2, which consists of two unit masses constrained to

& X[vic'pevi] <1 and
B L o Y1 Y2
Y ' -C*DC - C*(I-CYC*D)"'CYC*C >0 — —
1 N/m k N/m 1 N/m
& X[DOYC*] <1 and 1ig [0 T kg
Yy~'—C*DC - C*(I - N(O)D)il(N(O) - D)C >0 1 Ns/m » « Ns/m = 1 Ns/m

=

[asN(0) — D = CYC* via () andDD = 0]

A[DN(0)] <1 and
Y~ - C*(I - N(0)D)"}[D+ (N(0) — D)]C >0
[asN(0) — D = CYC* via () andDD = 0]

NO)™'-D>0 and
Yy '—C*(NO)"'-D)*'C>0
[as N (0) > D via Lemma2 andD > 0]

Y—l C*

¢ No-t-p|>"

NO)™'-D-CYC*>0

N(0)™' — M(0) >0
[asM(0) = D + CYC* via @)

XM(0)N(0)) < 1.

[ |
One may wonder whether Integral Quadratic Constrain

(IQC) theory [9] captures the sufficiency part of Theorem 5p(s) :=

or not. This question is subtle and its answer is non-trivial

However, in short the answer is “no, it does not”. The suiptlet

of the question arises from the fact that IQC theory dealb wit

ul U2
Fig. 2. Lightly damped uncertain mechanical plant

slide rectilinearly on a frictionless table. Each mass tiachited
to a fixed wall via a spring of known unit stiffness and
via a damper of known unit viscous resistance. Furthermore,
the two unit masses are coupled together via a spring of
uncertain stiffnessk N/m and via a damper of uncertain
viscous resistance Ns/m. A force is applied to each mass
(denoted byu; andus respectively) and the displacement of
each mass is measured (denotedybyandy, respectively).
Although this is not an extremely difficult design problem,
it does illustrate a number of important points arising from
the results in this paper, as it contains key features such as
an uncertain MIMO system with uncertainty that has negative
imaginary frequency response. Similar examples have been
considered in the literature as benchmark problems by a
number of authors, including][1],_[10] to mention a few.
For shorthand, let us define some commonly appearing
trtansfer functions and matrices. Let
1 1

2+s+1’ os) 1= 24+ (2a+1)s+ (2k+1)
and ¥ := [1 0].

11

the full frequency rangey € R whereas system&/(s) € 45 Then, elementary mechanical modeling reveals that the-tran
satisfy the frequency domain inequalityV (jw)— N (jw)*] > fer function matrix for the plant depicted in Figuié 2 from

0 only on an open frequency interval € (0, co). This strict  ¢5,ce input vecton: :=
inequality cannot be satisfied at= 0 because via Lemnid 2
we know thatN(0) = N(0)*. This fact causes the mai”mentSy —
theorem (Theorem 1) in_[9], which underpins IQC theory, to
be inapplicable by violation of its suppositions. B (s2 + (a+ 1)s + (k + 1)) (as + k)

The following corollary is a weaker restatement of the maif® = P($)3(s) { (as+k) (24 (a+Ds+ (k+1)]°
theorem, written in the same form as the small-gain theoreny is clear that Pa(s) is uncertain becausgé and a are
or the passivity theorem.

U .
ul to displacement output measure-
2

1] s aven byt = Pt e

unknown.

Corollary 6:

I. Given v > 0 and M(s) € %5 with

For the purpose of control system design, we now choose

M(oc) > 0. Then [A(s), M(s)] is internally stable i gpjit the uncertain planPa(s) as Pa(s) = P(s) + A(s)

for all A(s) € ¥ satisfying A(oco)M(c0) =
A(A(0)) < v (resp.< ») if and only if A(M(0)) <
(resp.< %).

Given v > 0 and M(s) € €. Then[A(s),M(s)] is
internally stable for alA(s) € % satisfyingA(co) > 0,
A(oo)M (c0) = 0 and A\(A(0)) < v (resp.< «) if and
only if AX(M(0)) < % (resp.< 2).

1
v

Proof: Sufficiency of the two statements follows on notingy —+ djag(

that A\(M(0))A(A(0)) < 1 implies A(A(0)M(0)) < 1.

Necessity can be proved via a contra-positive argument
choosingA(s) =

N g
%I as the destabilizing\(s). =

0 and

where P(s) is the nominal completely known plant model
and A(s) is the uncertain remainder. Via partial fraction
expansion, we see thaP(s) = W diag(3p(s),0)¥* and
A(s) = Ut diag($6(s),0)¥~*. It is then a simple compu-
tation to check than\(s) € ¢ for all @ > 0 andk > 0.

Now let us consider the controlled closed-loop system
given in Figure[B, and letC(s) be chosen as’(s) :=

b ) )91, Then, defineM(s) =

—C(s)(I + P(s)C(s))~! to be the transfer function matrix
Riappingw to z so that the closed-loop system in Figlie 3
can be rearranged into Figure 4 for robust stability analysi
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o 1PA(s)
il
[

- Ols) - o) -

Fig. 3. Controlled closed-loop system

A(s)

M(s)

Fig. 4. Rearranged closed-loop

Since P(s) € #°2*2, internal stability of the nominal
feedback loop (i.e. pretendind(s) = 0) is equivalent to
M(s) € #7722, Furthermore, sincé\(s) € ¢, we addi-

LTI systems with negative imaginary frequency response
showing that even in this case, a necessary and sufficient
condition for the internal stability of such systems is that
the DC loop gain (measured in a particular precise sense) is
less than unity. We also gave in this paper a complete state-
space characterisation of MIMO LTI systems with negative
imaginary frequency response. This could possibly be used i
future work to assist with synthesising systems with negati
imaginary frequency response.

The next steps to extend applicability of this research
are: (a) devise a controller synthesis procedure that gesger
systems that belong to either cléésor %;; and (b) generalise
the analysis result given in this article to allow one (orgibly
both) systems to be nonlinear and/or time-varying. Fo@usin
on the latter, we point out that [11] has derived a theory for
SISO nonlinear systems with counter-clockwise input-atitp
dynamics that is closely related to this work. It is consexjye
interesting to see whether the ideas in [11] generalise td®|
systems or not, or whether use of dissipativity theory mag le
to the required MIMO nonlinear generalisations.
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V. CONCLUSIONS

SISO LTI systems with negative imaginary frequency re-
sponse have been studied in the context of positive position
feedback control of lightly damped structures and the analy
sis/synthesis methods there depended on graphically Biyqui

plots. This paper generalises the key stability result o/l
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