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Stabilization of Planar Collective Motion
With Limited Communication

Rodolphe Sepulchre, Member, IEEE, Derek A. Paley, Member, IEEE, and Naomi Ehrich Leonard, Fellow, IEEE

Abstract—This paper proposes a design methodology to stabilize
relative equilibria in a model of identical, steered particles moving
in the plane at unit speed. Relative equilibria either correspond
to parallel motion of all particles with fixed relative spacing or
to circular motion of all particles around the same circle. Particles
exchange relative information according to a communication graph
that can be undirected or directed and time-invariant or time-
varying. The emphasis of this paper is to show how previous results
assuming all-to-all communication can be extended to a general
communication framework.

Index Terms—Cooperative control, geometric control, multi-
agent systems, stabilization.

I. INTRODUCTION

THE DEVELOPMENT of versatile and scalable method-
ology to control collective motion for multiagent systems

is driven by a growing number of engineering applications that
depend on the coordination of a group of individually con-
trolled systems. The various applications, which impose diverse
operational constraints and performance requirements, include
formation control of unmanned aerial vehicles (UAVs) [1], [2]
and spacecraft [3], cooperative robotics [4] [5], and sensor net-
works [6], [7]. In this paper, we are strongly motivated by the ap-
plication of autonomous underwater vehicles (AUVs) as mobile
sensors to collect oceanographic measurements in formations
or patterns that yield maximally information-rich data sets; see,
e.g., [8] and [9]. Such patterns are designed to match the mea-
surement density in space and time to the characteristic scales of
the oceanographic process of interest. Coordinated, periodic tra-
jectories such as the ones studied in this paper provide a means
to collect measurements with the desired spatial and temporal
separation.

Motivated by these issues, we consider, in the present paper,
the design of stable collective patterns in a model of identical
planar particles introduced in [10]. The particles move at con-
stant speed and are subject to steering controls that change their
direction of motion. In addition to a phase variable that models
the orientation of the velocity vector, the state of each particle
includes its position in the plane. The synchrony of the collec-
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tive motion is thus measured both by the relative phasing and
the relative spacing of particles.

In recent work [11], we proposed a versatile design method-
ology that specifies collectives as minima of artificial potentials.
These potentials are used as Lyapunov functions for the design
of gradient-like control laws that make them decreasing along
the solutions of the closed-loop system. The resulting control
laws exhibit a number of desirable properties, but they require
all-to-all communication, that is, the control law of a given
particle requires relative information from all other particles.
All-to-all communication is an assumption that is unrealistic
in a number of applications. In large sensor networks, each
agent is expected to exchange information with a limited num-
ber of neighbors only. The interplay between the information
flow among particles and the individual agent dynamics then be-
comes a central issue of the collective design. Even if all-to-all
communication is available, limited use of communication may
be advantageous for performance. The objective of the present
paper is to address this issue in the framework of the planar
particle model [10] and to show that the results previously ob-
tained in the framework of all-to-all communication [11] can be
recovered in a systematic way under quite general assumptions
on the network communication.

Two different approaches are considered to address the lim-
ited communication topology. A first proposed approach is to
generalize the design of artificial potentials in such a way that the
resulting control laws respect the communication constraints.
Encoding the communication constraints in a graph, we pro-
pose the design of potentials based on the graph Laplacian,
and show that these potentials reduce to the previously pro-
posed all-to-all potentials in the particular case of a complete
graph. This approach requires the communication topology to
be time-invariant and connected. The gradient-type control laws
proposed in the present paper further require the communication
to be bidirectional. This generalization is relevant, for instance,
in design settings, where the topology of the communication
is a design parameter, but where the number of communication
links is limited by technological constraints. The framework has
been previously considered in [12]–[14], for instance, where
the authors focused on circulant graphs and studied the stabil-
ity of various circular formations also considered in the present
paper.

A second approach is to generalize the design of collec-
tives in a framework where the communication is possibly
time-varying, unidirectional, and not fully connected at any
given instant of time. The possibility to achieve synchroniza-
tion under such general assumptions on the communication has
been extensively addressed in the recent literature on consensus
algorithms [15]–[19]. In particular, the analysis tools proposed
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in [16] and [20] are appropriate to study convergence issues in
the present framework under weak assumptions on the com-
munication graph. The application of these tools imposes re-
strictions on the system dynamics, and, more fundamentally, on
the Euclidean nature of the underlying state space. As a conse-
quence, only local results have been available for non-Euclidean
state spaces such as those encountered in phase-oscillators mod-
els [16], [21] or in the present particle model [22]. However, a
recent result [23], [24] shows how consensus estimators de-
signed for Euclidean space [25] can be used in the closed-loop
system dynamics to obtain globally convergent consensus al-
gorithms in phase models. We use this idea to generalize our
previously proposed all-to-all design [11] to general communi-
cation topologies. In this approach, the weakened assumptions
on the communication topology are compensated for by an in-
creased exchange of information between communicating par-
ticles. Communicating particles indeed not only exchange their
relative configuration variables, but also their relative estimates
of averaged quantities used in centralized designs.

The paper follows the logical structure of our companion
paper [11]. Each section briefly summarizes the corresponding
all-to-all result of [11], then provides the generalization to: 1)
time-invariant and undirected communication and 2) uniformly
connected communication, which allows for time-varying and
directed communication. Section II reviews the geometric prop-
erties of the considered particle model. Section III focuses on a
simpler phase model that controls only the relative orientation
of the particle velocities. In Section IV, we consider the stabi-
lization of parallel and circular formations, which are two types
of relative equilibria of the full particle model. The next two sec-
tions elaborate on these basic results by proposing symmetry-
breaking control laws that either reduce the dimension of the
equilibrium set in shape space and isolate symmetric patterns
(Section V) or achieve stabilization in the absolute space by
connecting the network to a reference particle (Section VI).
Section VII illustrates an application of the results in the frame-
work of the ocean sampling project that motivated many of
the developments proposed in the present paper. Section VIII
illustrates an application of the results in the framework of a
proximity communication graph that involves unidirectional and
time-varying communication links. Conclusions are presented
in Section IX.

II. MODEL AND PROBLEM STATEMENT

A. Model of Steered Particles in the Plane

We consider a continuous-time model of N identical particles
(of unit mass) moving in the plane at unit speed and subject to
steering control [1]

ṙk = eiθk

θ̇k = uk , k = 1, . . . , N. (1)

In complex notation, the vector rk = xk + iyk ∈ C ≈ R
2

denotes the position of particle k, and the angle θk ∈ S1

denotes the orientation of its (unit) velocity vector eiθk =
cos θk + i sin θk . We call θk the phase of particle k. The scalar

uk is the steering control for particle k. The model (1) reflects
second-order dynamics of particles with forcing only in the di-
rection normal to velocity (steering control), i.e., r̈k = θ̇k (iṙk )
with ṙk of unit length. We use a bold variable without index to de-
note the corresponding N -vector, e.g., θ = (θ1 , . . . , θN )T and
u = (u1 , . . . , uN )T . In the absence of steering control (θ̇k = 0),
each particle moves at unit speed in a fixed direction and its mo-
tion is decoupled from the other particles. We study the design
of various feedback control laws that result in coupled dynamics
and closed-loop convergence to different types of organized or
collective motion.

The model (1) has been recently studied by Justh and
Krishnaprasad [1]. These authors have emphasized the Lie group
structure that underlies the state space. The configuration space
consists of N copies of the group SE(2). When the control
law only depends on relative phases and relative positions, the
closed-loop vector field is invariant under an action of the sym-
metry group SE(2) and the closed-loop dynamics evolve on a
reduced quotient manifold. This (3N − 3)-dimensional mani-
fold is called the shape space, and it corresponds to the space of
all relative phases and relative positions. For all pairs j and k, we
use shape variables θk − θj and (rk − rj )e−iθk , which are the
phase and position of particle j relative to the phase and position
of particle k, respectively. Equilibria of the reduced dynamics
are called relative equilibria and include parallel motions, char-
acterized by a common orientation for all the particles (with
arbitrary relative spacing), and circular motions, characterized
by circular orbits of the particles around a fixed point [1].

B. Graph Representation of the Communication Limitations

It is common in a multiagent framework to describe the com-
munication between particles by means of a graph. Each of
the N nodes in the graph represents a particle in the model. A
(weighted) edge from k to j indicates a communication link from
particle k to particle j. The resulting weighted digraph (directed
graph) is denoted by G = (I, E , A), where I = {1, . . . , N} is
the set of node indices, E ⊆ I × I is the set of edges, and A
is a weighted adjacency matrix with nonnegative elements ajk .
The element ajk is bounded away from zero when there is a
communication link (i.e., information passing) from k to j, and
ajk = 0 when there is no communication link from k to j. We
assume that there are no self-cycles, i.e., akk = 0, ∀ k ∈ I.

The digraph G is called strongly connected if and only if any
two distinct nodes of the graph can be connected via a path that
follows the direction of the edges of the digraph.

The in-degree and out-degree of node k are defined as din
k =∑N

j=1 akj and dout
k =

∑N
j=1 ajk , respectively. The digraph G

is said to be balanced if the in-degree and the out-degree of each
node are equal, that is

∑
j

akj =
∑

j

ajk ∀ k ∈ I.
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The graph Laplacian L associated to the graph G is a square
matrix defined as

lkj =


∑

i

aki , j = k

−akj , j �= k.

The kth row of L is denoted by Lk . By construction, the
Laplacian matrix has zero row sums, that is, L1 = 0, where
1 = (1, . . . , 1)T is an N × 1 matrix. Several properties of the
graph translate into matrix properties of its Laplacian L. In par-
ticular, the following properties are relevant in the framework
of the present paper:

1) the graph G is undirected if and only if L is symmetric;
2) if the graph G is strongly connected, then 1 spans the

kernel of L, i.e., Lx = 0 if and only if x = 1x0 [18, Th.
5]; and

3) the graph G is balanced if and only if L + LT ≥ 0
[20, Proposition 1].

For further background on spectral graph theory, see, for
example, [26].

A particular generalization of the all-to-all communication
topology that we consider in the present paper is the fixed and
connected topology corresponding to a d0-circulant graph in
which each node is connected to d0 other nodes, where d0 is a
fixed integer in the interval [2, N − 1]. Both the adjacency and
Laplacian matrices of a circulant graph are circulant, i.e., they
are completely defined by their first row. Each subsequent row
of a circulant matrix is the previous row shifted one position to
the right with the first entry equal to the last entry of the previous
row. For example, the all-to-all topology is (N − 1)-circulant
and the ring topology is 2-circulant. The following lemma (see,
for instance, [27]) will be useful in various proofs.

Lemma 1: Let L be the Laplacian of a d0-circulant graph with
N vertices. Set φk = (k − 1)2π/N for k = 1, . . . , N . Then, the
vectors

f (l) = ei(l−1)φ, l = 1, . . . , N (2)

define a basis of N orthogonal eigenvectors of L. The unitary
matrix F whose columns are the N (normalized) eigenvectors
(1/

√
N)f (l) diagonalizes L, that is, L = FΛF ∗, where Λ =

diag{0, λ2 , . . . , λN } ≥ 0 is the (real) diagonal matrix of the
eigenvalues of L.

It is of both theoretical and practical interest to con-
sider time-varying communication topologies; in a net-
work of moving particles, existing links can fail and new
links can appear as other particles leave or enter an ef-
fective range of detection. Time-varying communication
topologies will be described by a time-varying δ-digraph
G(t) = (I, E(t), A(t)), where the elements of A(t) are
bounded and satisfy some threshold δ > 0, that is, akj (t) =
0 in the absence of a communication link and akj (t) ≥ δ
in the presence of a communication link. The set of neighbors of
node k at time t is denoted by Nk (t) := {j ∈ I : akj (t) ≥ δ}.

Consider a graph G(t) = (I, E(t), A(t)). A node k is said
to be connected to node j (j �= k) in the interval I = [ta , tb ] if
there is a path from k to j, which respects the orientation of the
edges for the directed graph (I,∪t∈IE(t),

∫
I A(τ)dτ). G(t) is

said to be uniformly connected [20] if there exists an index k and
a time horizon T > 0 such that, for all t, node k is connected to
all the other nodes across [t, t + T ].

III. PHASE SYNCHRONIZATION AND PHASE BALANCING

A. All-to-All Communication

All control laws in this paper are based on gradient-
like stabilization of collectives specified as critical points
of well-chosen potentials. The inner product 〈·, ·〉 is defined
by 〈z1 , z2〉 = Re{z∗1z2} for z1 , z2 ∈ C, where ∗ denotes the
complex conjugate. For vectors, we use the analogous bold-
face notation 〈w, z〉 = Re{w∗z} for w, z ∈ C

N , where ∗

here denotes the conjugate transpose. We first recall a basic
result from our previous paper [11], which characterizes the
critical points of the potential Um (θ) defined as

Um =
N

2
|pmθ |2 (3)

where pmθ is the mth moment of the phase distribution on the
unit circle defined as

pmθ =
1

mN

N∑
k=1

eimθk , m = 1, 2, . . . . (4)

Theorem 1 (synchronization and balancing): Let 1 ≤ m ∈ N.
The potential Um = (N/2)|pmθ |2 reaches its unique minimum
when pmθ = 0 (balancing modulo 2π/m) and its unique maxi-
mum when the phase difference between any two phases is an
integer multiple of 2π/m (synchronization modulo 2π/m). All
other critical points of Um are isolated in the shape manifold
TN /S1 and are saddle points of Um .

Proof: See [11, Th. 5]. �
The significance of Theorem 1 for the collective model (1) is

as follows: for m = 1, the potential U1(θ) reaches its maximum
when all phases synchronize. This state is characteristic of paral-
lel formations in the collective model (1), i.e., all particles move
in the same direction. In contrast, the potential U1(θ) reaches
its minimum when all phases balance. This state is character-
istic of a fixed center of mass in the collective model because
pθ := p1θ = (1/N)

∑N
k=1 ṙk . The parameter |pθ | is a classical

measure of synchrony of the phase variables θ in the literature
on coupled oscillators. In the context of the Kuramoto model,
pθ has been called the complex order parameter [28].

For m > 1, the interpretation of the critical points of Um is
similar modulo 2π/m, that is, when phases differing by 2π/m
are identified. The use of potentials Um for m > 1 is postponed
until Section V, where we address the stabilization of partic-
ular symmetric phase arrangements. Fig. 1 provides a simple
illustration of the role of balancing and synchronizing different
moments to attain specific phase arrangements.

To achieve stabilization of minima or maxima of the po-
tential Um , it is natural to consider the gradient control u =
−KgradUm , i.e.

uk = −K〈pmθ , ie
imθk 〉 =

K

mN

N∑
j=1

sin(m(θk − θj )) (5)
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Fig. 1. Phase synchronization and balancing examples for N = 4. (a) Phase
arrangement is balanced modulo 2π and synchronized modulo π; i.e., pθ =
0 and 2|p2θ | = 1. (b) Phase arrangement is balanced modulo 2π , balanced mod-
ulo π , and synchronized modulo π/2; i.e., pθ = p2θ = 0 and 4|p4θ | = 1.

where K �= 0. The resulting closed-loop dynamics corresponds
to either a descent or ascent algorithm depending on the sign
of the gain K, leading to the following result as a direct conse-
quence of Theorem 1. As a convention throughout the paper, we
associate negative gains (K < 0) to synchronization controls
and positive gains (K > 0) to balancing controls.

Corollary 1: The phase model θ̇ = u with the gradient control
(5) forces convergence of all solutions to the critical set of Um . If
K < 0, then only the set of synchronized states is asymptotically
stable, and every other equilibrium is unstable. If K > 0, then
only the balanced set pmθ = 0 is asymptotically stable and every
other equilibrium is unstable.
The all-to-all sinusoidal coupling (5) with m = 1 is a fre-

quently studied coupling in the literature of coupled oscilla-
tors [28]–[30]. However, it requires all-to-all communication,
an assumption that we relax in the following sections.

B. Time-Invariant and Undirected Communication Graphs

Let P = IN − (1/N)11T . Then, Peimθ = eimθ − mpmθ 1.
One deduces the equality

‖Peimθ‖2 = 〈eimθ, P eimθ〉 = N(1 − m2 |pmθ |2) (6)

which implies that the quadratic form 〈eimθ, P eimθ〉 has the
same critical points as the phase potential Um (θ). Because P
is (1/N times) the Laplacian matrix of the complete graph, the
identity (6) suggests to replace the optimization of Um (θ) in the
previous section by the optimization of

Wm (θ) =
1

m2 QL (eimθ) :=
1

2m2dmax
〈eimθ, Leimθ〉 (7)

where we denote by QL (s) the quadratic form in s ∈ C
N

and dmax = maxk∈I{din
k }. Notice that Wm (θ) = (N/(N −

1))(N/(2m2)) − Um (θ)) in the case of a complete graph in
which case, both Wm (θ) and Um (θ) have the same critical
points.

Suppose that L is the Laplacian of an undirected graph with
unit edge weights, which implies L = LT and akj ∈ {0, 1}.
Then, the significance of optimizing the potential Wm instead
of Um is that the gradient control

uk = K
∂Wm

∂θk
=

K

mdmax

∑
j∼k

sin(m(θk − θj )) (8)

is adapted to the topology of the communication graph. That
is, the control uk only uses the relative information from the
communicating neighbors j ∈ Nk , denoted by j ∼ k.

The synchronized state modulo 2π/m is a global minimum
of Wm provided that G is balanced. However, Wm may possess
other (local) minima, and the (local) maxima do not necessarily
correspond to balanced states. A meaningful generalization of
Theorem 1 holds for d0-circulant graphs.

Theorem 2: If L is the Laplacian of a connected and balanced
graph, then the global minimum of Wm (θ) is synchronized
modulo 2π/m, i.e., eimθ = eiθ0 1, where θ0 ∈ S1 . If the graph
is d0-circulant, then the global maximum of Wm (θ) is balanced
modulo 2π/m, i.e., 1T eimθ = 0.

Proof: If L is the Laplacian of a balanced graph, then
〈z, Lz〉 ≥ 0 for all z ∈ C

N . If the graph is also connected,
then 〈z, Lz〉 = 0 if and only if z = 1z0 , which proves that the
global minimum of Wm is reached (only) for eimθ = eiθ0 1. If
the graph is d0-circulant, then Lemma 1 provides the following
equivalent expression for the phase potential (7):

Wm (θ) =
1

2m2d0
〈v,Λv〉 =

1
2m2d0

N∑
k=2

|vk |2λk (9)

where v = F ∗eimθ. Because ‖v‖ = ‖eimθ‖ =
√

N , an upper
bound is provided by

Wm (θ) =
1

2m2d0
〈v,Λv〉 ≤ N

2m2d0
λmax . (10)

This bound is attained by selecting eimθ as the eigenvector
of L associated with the maximum eigenvalue. This vector is
orthogonal to the mimimal eigenvector 1, that is, it satisfies 1T

eimθ = 0.
The assumptions of Theorem 2 do not require bidirection-

ality of the communication graph. This additional property is,
nevertheless, necessary to implement the gradient control law
(8).

C. Uniformly Connected Communication Graphs

The goal of this section is to extend the stabilization of syn-
chronized or balanced states under weaker assumptions on the
communication graph. We first recall a general result that holds
in the Euclidean space C

N .
Proposition 1: Let G(t) be a uniformly connected δ-digraph

and L(t) the corresponding Laplacian matrix. In the linear time-
varying system

ẋ = −L(t)x, x ∈ C
N (11)

the set of synchronized states is uniformly exponentially stable.
In particular, each solution of (11) exponentially converges to
a synchronized state x̄1. If G(t) is balanced, then the asymp-
totic consensus x̄ ∈ C is the average of the initial conditions
(1/N)

∑N
k=1 xk (0).

Proposition 1 shows that synchronization is achieved under
weak assumptions on the communication graph when the state
evolves in an Euclidean space. There is a vast recent literature
on the convergence properties of consensus algorithms of the
type (11). We refer the reader to the recent paper [16] for a proof
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of Proposition 1 (the setup in [20] is even more general since it
considers communication delays).

When the graph G is fixed and undirected, (11) is a gradient
system for the quadratic form (1/2)〈x, Lx〉. It is tempting to
consider the analog of (11) on the torus. The gradient expression
(8) suggests the generalization

θ̇k =
K

dmax
〈Lk (t)eimθ, ieimθk 〉, K < 0 (12)

even when L(t) is nonsymmetric or time-varying. The dynamics
(12) linearize to (11) in the neighborhood of a synchronized
state, showing that local synchronization is indeed achieved
by the dynamical system (12) under the sole assumption that
G(t) is uniformly connected. A stronger convergence result is
proven in [16] by mapping the dynamics (12) into the Euclidean
space. This change of coordinates requires restricting the set
of initial phases in an open interval (θ0 − π/2, θ0 + π/2). An
alternative proof is provided in [21]. For initial conditions in a
broader interval, simulation results indicate that, in contrast with
the consensus dynamics (11), synchronization is not achieved in
general by the dynamical system (12). This fact is not surprising
when considering that the proof of Proposition 1 rests on a
contraction property for the convex hull of the N states xk ∈ C,
a proof concept that does not extend to the torus.

Comparing the dynamics (12) to the (all-to-all) gradient dy-
namics (5), one is led to interpret

∑
l∼k eimθl /dmax as a (local)

static estimate of the average quantity
∑

l �=k eimθl /N − 1. In
contrast to the consensus dynamics (11), the use of this static
estimate in (12) fails to recover the global convergence results
of the gradient dynamics (5). The approach recently proposed
in [24] shows that the global convergence results can be recov-
ered by using a local dynamic estimate instead. We summarize
the main results of [24] in the following theorems. The reader
is referred to [24] for detailed proofs.

Theorem 3 (dynamic synchronization): Let G(t) be a uni-
formly connected δ-digraph and L(t) the corresponding Lapla-
cian matrix. Consider the phase model θ̇ = u. Then, the (dy-
namic) control

uk = −K

m
〈wk , i〉, K < 0

ẇk = iKwk 〈wk , i〉 +
N∑

j=1

akj (t)wje
im (θj −θk ) (13)

enforces exponential convergence of solutions θ(t) to the critical
set of Um . Only the set of synchronized states modulo 2π/m is
asymptotically stable and every other limit set is unstable. Fur-
thermore, if G(t) is a balanced digraph and if wk (0) = 1 for each
k, then the asymptotic consensus value for eimθk /m, for k =
1, . . . , N , is the average pmθ (0) = (1/(mN))

∑N
k=1 eimθk (0) .

Proof: Set xk = wkeimθk /m. Then, x obeys the consen-
sus dynamics ẋ = −L(t)x, which implies that the solution
x(t) exponentially converges to the consensus variable x̄1.
This implies that the dynamics θ̇k = −(K/m)〈wk , i〉 expo-
nentially converges to the (time-invariant) dynamics θ̇k = −K
〈|x, ieimθk 〉. Consequently, θ(t) asymptotically converges to
an equilibrium in the critical set of Um , and only the

set of synchronized states is asymptotically stable. If G(t)
is balanced, then 〈1,x〉 is a conserved quantity and x̄ =
(1/(mN))

∑N
k=1 wk (0)eimθk (0) = pmθ (0). �

Theorem 4 (dynamic balancing): Let G(t) be a uniformly con-
nected balanced δ-digraph and L(t) the corresponding Lapla-
cian matrix. Consider the phase model θ̇ = u. If wk (0) = 1 for
each k, then the (dynamic) control

uk = −K

m
〈wk , i〉, K > 0

ẇk = iK(wk − 1)〈wk , i〉 +
N∑

j=1

akj (t)wje
im (θj −θk )

(14)

enforces exponential convergence of solutions θ(t) to the crit-
ical set of Um . Furthermore, only the set of balanced states
modulo 2π/m is asymptotically stable and every other limit set
is unstable.

Proof: Set xk = wkeimθk /m. Then, x satisfies the dynamics

ẋ = −L(t)x + i diag{uk}eimθ = −L(t)x +
d

dt

eimθ

m
. (15)

As a consequence, the quadratic form V (x) = (1/2)〈x,x〉 is
nonincreasing along the solutions and satisfies

V̇ = −〈x, L(t)x〉 +
N∑

k=1

uk 〈xk , ieimθk 〉

= −〈x, L(t)x〉 − 1
K

N∑
k=1

u2
k ≤ 0. (16)

We deduce from (16) that uk is a time function in L2(0,+∞)
along each solution of the closed-loop dynamics. But, then (15)
is the consensus dynamics (11) with an additive perturbation in
L2(0,+∞), which does not destroy the convergence of x(t) to
a consensus equilibrium 1x̄. Since G(t) is balanced, one obtains
from (15)

1
N

〈1, ẋ〉 =
1
N

〈
1,

d

dt

eimθ

m

〉
. (17)

Integrating both sides of (17) and using the fact that xk (0) =
eimθk (0)/m, one concludes that (1/N)

∑N
k=1 xk (t) = pmθ (t)

for all t ≥ 0. This implies that the dynamics θ̇k = −(K/m)
〈wk , i〉 asymptotically converges to the (time-invariant) dynam-
ics θ̇k = −K〈pmθ , ie

imθk 〉. This shows that θ(t) asymptotically
converges to an equilibrium in the critical set of Um and that
only the set of balanced states modulo 2π/m is asymptotically
stable. �

Theorems 3 and 4 generalize the global convergence results
of the all-to-all gradient control (5) under weak assumptions on
the communication graph. This generalization is obtained at the
price of increased communication between the communicating
particles because particles must not only exchange their relative
configuration variables, but also their local estimate of the av-
erage pmθ . In both theorems, the variable wk can be interpreted
as a local estimate of pmθ in a reference frame attached to par-
ticle k, while xk = wkeimθk /m is the local estimate of pmθ in
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Fig. 2. Synchronizing the state variables sk = −iω0 ck . (a) If ω0 = 0,
then synchronization of sk generates a parallel formation. (b) If ω0 �= 0,
then synchronization of sk generates a circular formation centered at ck =
rk + iω−1

0 eiθk .

an absolute reference frame. Consensus filters that reconstruct
possibly time-varying average quantities have been recently pro-
posed in [25]. It should be noted that the balancing control law
in Theorem 4 requires proper initialization of the estimator vari-
ables. This is a potential limitation of the consensus algorithm
in applications that involve network reconfigurations such as a
time-varying number of agents. Such limitations could possibly
be alleviated by exploiting the recent work [31] on consensus
algorithms.

All of the convergence results in this section still hold when
adding a constant ω0 ∈ R to uk . The constant ω0 is elimi-
nated from the equations by using the change of coordinates
θ̃ = θ − ω0t1, which amounts to expressing the dynamics of
θ in a rotating frame. The feedback control laws are invariant
under this change of coordinates because they are expressed in
the relative coordinates θk − θj . In geometric terms, the stabi-
lization takes place in the shape manifold TN /S1 . We exploit
this feature in the subsequent sections.

IV. STABILIZATION OF PARALLEL AND CIRCULAR FORMATIONS

A basic observation in the companion paper [11] is to refor-
mulate the stabilization of parallel and circular formations in
the collective model (1) as the task of synchronizing the state
variables

sk = −iω0ck = eiθk − iω0rk , k = 1, . . . , N. (18)

An illustration is provided in Fig. 2: for ω0 = 0, the synchro-
nization of sk is equivalent to the synchronization of the phase
variables θk . This corresponds to a parallel formation in the
collective model (1). For ω0 �= 0, the state ck = isk/ω0 is the
center of the circle of radius ρ0 = |ω0 |−1 traversed by particle
k under the action of the constant control uk = ω0 . A circular
relative equilibrium is obtained when all the centers coincide,
which corresponds to synchronization of the variables sk .

A. Time-Invariant and Undirected Communication Graphs

In our previous paper [11], synchronization of the state vari-
ables sk defined in (18) is achieved by minimizing the quadratic
form ‖Ps‖2 = 〈s, Ps〉, which, for ω0 = 0, reduces to the phase

synchrony measure (6). Viewing P as 1/N times the Laplacian
of a complete graph, one is led to the following extension.

Theorem 5 (Laplacian control): Let G be a connected and bal-
anced graph and L be the Laplacian of G. Then, the quadratic
potential QL (s) = (1/2)dmax〈s, Ls〉 reaches its global mini-
mum in the set of synchronized states s = 1s0 . If G is undi-
rected, this set is (locally) exponentially stabilized by the control
law

uk = ω0 +
K

dmax
〈Lks, ieiθk 〉, K < 0. (19)

If ω0 �= 0, then the convergence is global.
Proof: The proof is entirely analogous to the proof of

Theorem 2 in the companion paper [11] except that the all-to-all
Laplacian (N)P is replaced by the Laplacian L of an arbitrary
connected and undirected graph. If ω0 �= 0, then s takes val-
ues in C

N , and the convergence is global because the quadratic
form Q(s) has no other minima. If ω0 = 0, then the control (19)
reduces to (12), and the result is only local, except for complete
graphs. �

B. Uniformly Connected Communication Graphs

For a complete graph, the control law (19) with K =
(dmax/(dmax + 1))K̃ takes the form

uk = ω0 + K̃〈sk − (pθ − iω0R), ieiθk 〉, K̃ < 0,
(20)

where the position R = (1/N)
∑N

k=1 rk and the velocity pθ =
(1/N)

∑N
k=1 eiθk are quantities averaged over the entire group.

In a manner analogous to the result of Section III-C, these av-
erage quantities can be estimated by a consensus filter, leading
to a generalization of the control law of Theorem 5 to arbitrary
communication graphs.

Theorem 6 (dynamic Laplacian control): Let G(t) be a
uniformly connected δ-digraph and L(t) the corresponding
Laplacian matrix. Then, the (dynamic) control

uk = ω0 − K〈wk − iω0vk , i〉, K < 0

ẇk = iwkuk +
N∑

j=1

akj (t)wje
i(θj −θk ) (21)

v̇k = −1 − ivkuk +
N∑

j=1

akj (t)
(
vj e

i(θj −θk ) + rk − rj e
−iθk

)
enforces exponential convergence of solutions to a relative equi-
librium of the collective model (1). If ω0 = 0, the relative
equilibrium is a parallel formation. For ω0 �= 0, the rel-
ative equilibrium is a circular formation of radius ρ0 =
|ω0 |−1 with direction of rotation determined by the sign of
ω0 .

Proof: Set xk = wkeiθk and yk = vkeiθk + rk . Then, x
and y obey the consensus dynamics ẋ = −L(t)x and ẏ =
−L(t)y, respectively, which implies that the solutions x(t)
and y(t) exponentially converge to the consensus variables x̄1
and ȳ1, respectively. This implies that the dynamics θ̇k = uk
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exponentially converge to the (time-invariant) dynamics

θ̇k = ω0 + K〈sk − (x̄ − iω0 ȳ), ieiθk 〉. (22)

For ω0 = 0, (22) is identical to the dynamic synchronization
result of Theorem 3. For ω0 �= 0, the quadratic form

Sk =
1
2
|sk − x̄ + iω0 ȳ|2 (23)

satisfies Ṡk = K〈sk − x̄ + iω0 ȳ, ieiθk 〉2 ≤ 0 along the solu-
tions of (22). One concludes that all solutions converge to
a circular formation of radius ρ0 = |ω0 |−1 centered at c0 =
ix̄/ω0 + ȳ. �

In Theorem 6, the variable wk can be interpreted as a local
estimate of pθ in a reference frame attached to particle k, while
xk = wkeiθk is the local estimate of pθ in an absolute reference
frame. The variable vk can be interpreted as a local estimate of
the center of mass R in a reference frame attached to particle k,
while yk = vkeiθk + rk is the local estimate of R in an absolute
reference frame.

V. STABILIZATION OF SYMMETRIC PATTERNS

An interesting feature of the phase potentials derived in
Section III and the spacing potentials derived in Section IV
is that they can be combined additively. The phase potentials
Wm , 1 ≤ m ∈ N, defined in (7) satisfy

Ẇm =
N∑

k=1

∂Wm

∂θk
uk

and, because they are invariant to a rigid rotation θ �→ θ + ω01,
they also satisfy

Ẇm =
N∑

k=1

∂Wm

∂θk
(uk − ω0)

for an arbitrary ω0 ∈ R. Likewise, the spacing potential QL (s)
defined in Theorem 5 satisfies

Q̇L =
1

dmax

N∑
k=1

〈Lks, ieiθk 〉(uk − ω0).

As a consequence, a linear combination of the potentials

V (s,θ) = −KQL (s) −
M∑

m=1

Km Wm (θ), K < 0 (24)

satisfies

V̇ =−
N∑

k=1

(
K

dmax
〈Lks, ieiθk〉+

M∑
m=1

Km
∂Wm

∂θk

)
(uk − ω0).

The corresponding gradient-like control

uk = ω0 +
K

dmax
〈Lks, ieiθk 〉 +

M∑
m=1

Km
∂Wm

∂θk

is thus the same linear combination of the individual gradient-
like controls. A critical point that jointly minimizes the
individual potentials −KQL and −Km Wm , 1 ≤ m ≤ M , also

minimizes the Lyapunov function V . This suggests a versa-
tile design method for the decentralized stabilization of relative
equilibria that jointly minimize various combinations of the po-
tentials proposed in the previous sections.

A. Stabilization of Symmetric Balanced Patterns

Let 1 ≤ M ≤ N be a divisor of N . An (M,N)-pattern is
a symmetric arrangement of N phases consisting of M clus-
ters uniformly spaced around the unit circle, each with N/M
synchronized phases. For any N , there exist, at least, two sym-
metric patterns: the (1, N)-pattern, which is the synchronized
state, and the (N,N)-pattern, which is the so-called splay state,
characterized by N phases uniformly spaced around the circle.
An (M,N)-pattern circular formation of radius ρ0 is an isolated
relative equilibrium of the collective model (1).

Lemma 2: Let L be the Laplacian of a d0-circulant graph with
N vertices. For 1 ≤ m ∈ N, each (M,N)-pattern is a critical
point of the potentials Wm defined in (7).

Proof: Modulo a uniform rotation and with the notations
of Lemma 1, an (M,N)-pattern is characterized by the phase
arrangement

θ̄ =
N

M
φ.

This means that the vector eim θ̄ = eim (N/M )φ is the kth eigen-
vector of L, with k = 1 + (m(N/M) − 1)mod N . But, if eim θ̄

is an eigenvector of L, then θ̄ is a critical point of 〈eim θ̄, Leim θ̄〉,
which proves the claim.

The following result was proven in [11] for complete graphs.
An early version of the theorem for d0-circulant graphs appeared
in [13].

Theorem 7 (Laplacian stabilization of (M,N)-pattern circu-
lar formations): Consider a connected and d0-circulant graph G,
the associated Laplacian L, and the associated phase potentials
Wm (θ) = (1/2)m2dmax〈eimθ, Leimθ〉. Let 1 ≤ M ≤ N be a
divisor of N . If θ̄ ∈ TN is an (M,N)-pattern then it is a (local)
minimum of the potential

WM,N
L = −

M∑
m=1

Km Wm (25)

with Km > 0 for m = 1, . . . ,M − 1 and

KM < −
M −1∑
m=1

Km > 0. (26)

An (M,N)-pattern circular formation of radius ρ0 = |ω0 |−1 is
(locally) exponentially stabilized by the control law

uk = ω0 +
K

dmax
〈Lks, ieiθk 〉 +

M∑
m=1

Km
∂Wm

∂θk
. (27)

Proof: By Lemma 2, θ̄ is a critical point of WM,N
L . We first

show that θ̄ is exponentially stabilized in the reduced space of
relative phases by the gradient control

u =
M∑

m=1

Km
∂Wm

∂θ
. (28)
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The Jacobian linearization of (28) about θ̄ is a square matrix L̂
that has entries

l̂kk =
N∑

l=1

akl

d0

M∑
m=1

Km 〈eimθ̄k , eim θ̄l 〉

and, for j �= k

l̂kj = −akj

d0

M∑
m=1

Km 〈eimθ̄k , eim θ̄j 〉

= −akj

d0

(
KM +

M −1∑
m=1

Km 〈eimθ̄k , eim θ̄j 〉
)

.

Using the condition (26) shows that l̂kj ≥ 0 and l̂kj = 0 if and
only if akj = 0. This implies that −L̂ is the Laplacian of a graph
Ĝ that, other than having different edge weights, is identical to
G. Therefore, none of the eigenvalues of L̂ are positive, and
since Ĝ is connected, zero as an eigenvalue of L̂ is simple.

The proof of the second part of Theorem 7 is a straightforward
adaptation of [11, Th. 3]. Under the control (27), the Lyapunov
function V (s,θ) in (24) satisfies V̇ = −

∑N
k=1(uk − ω0)2 ≤ 0

along the closed-loop solutions. By the LaSalle Invariance prin-
ciple, solutions for the reduced system on shape space converge
to the largest invariant set Λ where

K

d0
〈Lks, ieiθk 〉 = −

M∑
m=1

Km
∂Wm

∂θk
(29)

for k = 1, . . . , N . In the set Λ, the dynamics reduce to θ̇k = ω0 ,
which implies that WM,N

L is constant. Therefore, the right-
hand side of (29) vanishes in the set Λ, which implies Ls = 0
since ṡ = 0. We conclude that solutions converge to an (M,N)-
pattern circular formation of radius ρ0 = |ω0 |−1 . �

Theorem 7 does not exclude convergence to circular forma-
tions that correspond to other critical points of the phase po-
tential WM,N

L . Simulations indicate that the basin of attraction
of certain symmetric patterns is indeed small in the case of in-
complete graphs. In contrast, convergence to a different critical
point is rarely observed in simulations for a complete graph,
suggesting a large basin of attraction in the case of all-to-all
communication. The all-to-all control law makes use of the av-
eraged quantities pmθ , 1 ≤ m ≤ M , and (1/N)

∑N
k=1 sk . For

general graphs, these averaged quantities can be reconstructed
by consensus filters so that the all-to-all result is recovered with
the following dynamic control scheme.

Theorem 8 (dynamic stabilization of (M,N)-pattern circular
formations): Let G(t) be a balanced and uniformly connected
δ-digraph and L(t) the corresponding Laplacian. Consider the
collective model (1). Then, the set of (M,N)-pattern circular
formations is (locally) exponentially stabilized by the (dynamic)
control

uk = ω0 −
〈

K(wk − iω0vk ) +
M∑

m=1

Km

m
w

(m )
k , i

〉

+ẇk = −iwkuk +
N∑

j=1

akj (t)wje
i(θj −θk )

+v̇k = −1−ivkuk+
N∑

j=1

akj (t)
(
vj e

i(θj −θk )+rk − rj e
−iθk

)
ẇ

(m )
k = −im

(
w

(m )
k − 1

)
(uk − ω0)

+
N∑

j=1

akj (t)w
(m )
j eim (θj −θk )

+ẇ
(M )
k =−iMw

(M )
k (uk − ω0) +

N∑
j=1

akj (t)w
(M )
j eim (θj −θk )

with gains K < 0, Km > 0, m = 1, . . . , M − 1, and KM < 0
and provided the initial conditions satisfy wk (0) = 1, vk (0) =
0, w

(M )
k (0) = 1, and w

(m )
k (0) = 1.

Proof: Set xk = wkeiθk and yk = vkeiθk + rk . Then, x and
y obey the consensus dynamics ẋ = −L(t)x and ẏ = −L(t)y,
respectively, which implies that the solutions x(t) and y(t)
exponentially converge to the consensus variables x̄1 and ȳ1,
respectively. Similarly, set x

(M )
k = w

(M )
k eiM (θk −ω0 t)/M , then

ẋ(M ) = −L(t)x(M ) (30)

which implies that x(M )(t) converges to consensus variables
x̄(M )1.

Next, we prove exponential stability of (M,N)-pattern cir-
cular formations with the modified control

ũk = ω0 + K〈sk − (x̄ − iω0 ȳ), ieiθk 〉

−
M −1∑
m=1

Km

m
〈w(m )

k , i〉− KM

M
〈x̄(M ) , ieiM (θk −ω0 t)〉.

(31)

Because the closed-loop systems obtained with the control laws
uk and ũk only differ by a perturbation in L2 [0,∞), exponen-
tial stability of the modified system implies convergence of the
solutions to the equilibrium in the original system as well. Set
x

(m )
k = w

(m )
k eim (θk −ω0 t)/m, m = 1, . . . , M − 1, then x(m )(t)

obeys the dynamics

ẋ(m ) = −L(t)x(m ) + i diag{uk − ω0}eim (θ−ω0 t1)

= −L(t)x(m ) +
d

dt

(
eim (θ−ω0 t1)

m

)
, m = 1, . . . , M−1.

(32)

Consider the Lyapunov function V = −K
∑N

k=1 Sk +
(1/2)

∑M −1
m=1 Km‖x(m )‖2−(KM /2)‖eiM (θ−ω0 t1)/M − x̄(M )

1‖2 with Sk defined by (23). With the control law (31), V is
nonincreasing along the solutions and satisfies

V̇ = −
M −1∑
m=1

Km 〈x(m ) , L(t)x(m )〉 −
N∑

k=1

(ũk − ω0)2 ≤ 0.
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This implies that ũk is a time function in L2(0,+∞) along
each solution of the closed-loop dynamics. For each m ∈
{1,M − 1}, (32) is a linear exponentially stable system with
an additive perturbation in L2(0,+∞). This implies that each
estimator x(m )(t), 1 ≤ m ≤ M − 1, converges to a consensus
equilibrium 1x̄(m ) . Since G(t) is balanced, one obtains from
(32)

1
N

〈1, ẋ(m )〉 =
1
N

〈
1,

d

dt

eim (θ−ω0 t1)

m

〉
(33)

for m = 1, . . . ,M − 1. Integrating both sides of (33) and us-
ing the fact that x(m )(0) = eimθ(0)/m, one concludes that
(1/N)

∑N
k=1 x

(m )
k (t) = e−imω0 tpmθ (t) for all t ≥ 0. Using

that each x
(m )
k (t) converges to e−imω0 tpmθ (t), 1 ≤ m ≤ M ,

one concludes that, along each solution of the closed-loop sys-
tem, the dynamics θ̇k asymptotically converge to the (all-to-all)
control law

ūk = ω0 + K〈sk − x̄ + iω0 ȳ, ieiθk 〉

−
M∑

m=1

Km 〈pmθ , ie
iθk 〉. (34)

As a consequence, the only limit sets of the closed-loop dy-
namics are circular formations with a phase arrangement in the
critical set of the (all-to-all) potential W

(M,N )
N P . In particular, the

(M,N)-pattern circular formation is an exponentially stable
equilibrium of the closed-loop system. �

Exponential stabilization of (M,N)-pattern circular forma-
tions was considered in our previous paper [11] in the framework
of complete graphs (all-to-all communication). Theorem 8 ex-
tends that result to the framework of general communication
graphs. As mentioned in our earlier paper, the result is only
local, but simulations suggest a large region of attraction.

VI. SYMMETRY BREAKING

All the control laws discussed so far are control laws in the
shape space, that is, the closed-loop dynamics are invariant to
rigid translations and rotations in the plane, which corresponds
to the action of the symmetry group SE(2). It is of interest,
in some applications, to break this SE(2) symmetry. For phase
synchronization, this means forcing the synchronization to a
specific phase θ0 ∈ S1 . For the control of circular formation, this
means forcing the formation to a specific circle in the plane. We
show in this section how these can be achieved in a decentralized
way.

Let the reference frame be described by the (virtual) reference
particle with dynamics ṙ0 = eiθ0 , θ̇0 = ω0 . If ω0 = 0, θ0 serves
as a fixed reference orientation. If ω0 �= 0, then the reference
particle traces a circle of radius ρ0 = |ω0 |−1 centered at c0 =
r0 + iω−1

0 eiθ0 =: is0/ω0 . In that case, θ0(t) serves as reference
orientation and c0 serves as a reference center for the circular
formation.

In order to describe the information flow from the (virtual)
reference particle to the particles k, we augment the communi-
cation δ-digraph G(t) by an additional reference node 0, with
directed edges from 0 to the informed particles. The augmented

δ-digraph is denoted by G̃(t) and its Laplacian matrix is denoted
by L̃(t). The Laplacian L̃(t) has the block structure

L̃(t) =


0 0 . . . 0

l10(t)
... L(t) − diag{lk0(t)}

lN 0(t)

 .

Note that, in order for the uniform connectedness assumption
to be satisfied for the extended δ-digraph G̃(t), there must be
a path from reference node 0 to each of the other nodes which
respects the orientation of the edges of the graph.

A. Time-Invariant and Undirected Communication Graphs

For a fixed graph, the potential S0(s, s0) = −
∑N

k=1 lk0 |sk −
s0 |2 satisfies

Ṡ0 = −
N∑

k=1

lk0〈sk − s0 , ie
iθk 〉(uk − ω0).

Augmenting the potential QL (s) in Theorem 5 by the
symmetry-breaking potential S0 results in the augmented con-
trol law

uk = ω0 +
K

dmax

(
〈Lks, ieiθk 〉 + lk0〈sk − s0 , ie

iθk 〉
)

(35)

with K < 0. As a direct corollary of Theorem 5, the symmetry-
breaking control law (35) stabilizes a parallel formation with
orientation θ0 , if ω0 = 0, and a circular formation centered at
c0 , if ω0 �= 0. The same modification in Theorem 7 stabilizes
an (M,N)-pattern circular formation centered at s0 , breaking
the translation symmetry of the control law. The rotation sym-
metry can also be broken by synchronizing the orientation of
the (M,N)-pattern with the reference θ0(t). To this end, the
phase potential WM,N

L (θ) must be augmented by the symmetry-
breaking potential S0(eimθ, eiM θ0 ). The resulting control law
is

uk = ω0 +
K

dmax

(
〈Lks, ieiθk 〉 + lk0〈sk − s0 , ie

iθk 〉
)

+
M∑

m=1

Km
∂Wm

∂θ
− KM

dmax
lk0〈eiM θ0 , ieiM θk 〉.

(36)

As a direct corollary of Theorem 7, the symmetry-breaking
control law (36) stabilizes an (M,N)-pattern circular formation
centered at c0 and with all phases synchronized modulo 2π/M
with the reference θ0(t).

B. Uniformly Connected Communication Graphs

Symmetry breaking can also be achieved in the dynamic
control algorithms of the previous sections. In order to break the
translation symmetry in Theorem 6, one must simply consider
the augmented graph G̃(t) in the estimation dynamics of wk
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and vk , that is

ẇk = −iwkuk +
N∑

j=1

akj (t)wje
i(θj −θk )

v̇k = −1 − ivkuk +
N∑

j=1

akj (t)(vj e
i(θj −θk ) − rk − rj e

−iθk )

(37)

with the definition of the control law unchanged for k =
1, . . . , N and u0 = ω0 . The consensus dynamics for xk

= wkeiθk and yk = vkeiθk + rk are ẋ = −L̃(t)x and ẏ =
−L̃(t)y, respectively. Because ẋ0 ≡ 0 and ẏ0 ≡ 0, the only
possible consensus values are x0(0) and y0(0), respectively. Set-
ting w0(0) = 1 and v0(0) = 0 results in x(0) = eiθ0 and y(0) =
r0(0). If G̃(t) is uniformly connected, the (modified) control law
of Theorem 6 then achieves exponential convergence to a cir-
cular formation centered at c0 = ix̄ω−1

0 + ȳ = r0 + ieiθ0 ω−1
0 ,

which breaks the translation symmetry of the formation.
A similar modification in the control law of Theorem 8 ad-

ditionally enforces phase synchronization modulo 2π/m to the
reference θ0(t), which also breaks the rotational symmetry of
the phase arrangement.

VII. DESIGN OF COMMUNICATION GRAPHS AND

APPLICATIONS

In this section, we consider design of communication graphs
and illustrate how design can be used to meet performance re-
quirements in applications. Design of a communication graph
for our many particle system refers to the choice of which of the
available communication links should be used in the steering
control law at any given time. In the case that the particle sys-
tem models a multiagent system, availability of communication
links depends upon the technology used for sensing and com-
munication among particles. It may be advantageous for system
performance, efficiency, and/or simplicity to make limited use
of available communication. Further, different choices of com-
munication graph for the different terms in the steering control
law yield multiscale network patterns, as we describe later.

The development in this paper is strongly motivated by the ap-
plication to mobile sensor networks used for autonomous ocean
sampling [8], [9]. In this particular application, each agent in
the network is an autonomous underwater glider, moving at
near constant speed relative to the water, carrying sensors to
measure the ocean (temperature, salinity, currents) and com-
municating only with a central on-shore computer (via Iridium
satellite). Each agent can communicate at fairly regular inter-
vals with the central computer; however, the particles do not
synchronize their communication. In [32], a methodology is
presented that enables control strategies for collective motion
using the idealized particle model with decentralized steering
control for planning, together with feedback provided via the
asynchronous communication. Experimental results illustrate
the methodology.

Because communication in this application is made through
a central computer, there is, in principle, the opportunity to ap-

proximate all-to-all communication, and therefore, to design any
kind of limited communication graphs as appropriate. Justh and
Krishnaprasad have applied their coordinated control strategies
to an experimental network of unmanned aircraft. In this experi-
ment, all-to-all communication is available, making it, therefore,
also possible to design communication graphs as desired [33].
Even in applications where technology limits communication,
there is always the opportunity to use less than is available, and
this will be desirable if it can be done so to advantage.

In the ocean sampling network application and mobile sensor
network applications, in general, the value of the collected mea-
surement data can depend strongly on the collective motion pat-
tern of the moving sensors. For instance, in the optimal mobile
sensor coverage problem discussed in [9], patterns consisting
of sensors moving around closed curves with coordinated phas-
ing are practical solutions for maximizing information in data
collected in a spatially and temporally varying field. Multiscale
patterns become significant when there are multiple significant
scales in the sampled region. For example, in the ocean sam-
pling problem, it is of interest to sample well both the boundary
of a region for fluxes and the interior of a region for dynamics.
Smaller scales become important with the emerging presence of
features such as an eddy or a jet.

There are many competing factors to consider in designing
a communication graph for a given system. For example, the
communication graph can influence the rate of convergence and
region of attraction for stable patterns [18]. Fewer communi-
cation links may minimize the complexity of the network, but
could increase the sensitivity to failures. As illustrated in [14],
for the example of the ring graph topology, the choice of com-
munication graph can also be used as a way to isolate desired
patterns.

We propose a communication graph design concept, of partic-
ular relevance to sensor network applications, that uses multiple
graphs at a time to yield multiscale (sensing) patterns. In this
context, the different graphs are used in the different terms in
the control law, so that subgroups can form and both intra- and
intersubgroup coordination can be regulated. In the following,
we present three examples to illustrate the design concept and
versatility.

1) Separate spacing and phase graphs: We divide the N par-
ticles into B blocks (subgroups) of particles with n = N/B
particles in each subgroup. Although we assume that each
subgroup is the same size in this example, this is not re-
quired. To each block, we assign an all-to-all graph with Lapla-
cian nPn = nIn − 11T . The block-all-to-all graph Laplacian
is L = IB ⊗ (nPn ), where IB = diag{1B } and ⊗ is the Kro-
necker product. We assign L to be the communication graph
for the spacing control term so that in the case of circular con-
trol, particles within any subgroup move around the same circle,
but circles associated with the different subgroups are indepen-
dently located. For the phase control, we assign the all-to-all
graph with Laplacian N P ; this ignores subgroups and fixes the
relative phases of all particles. Choosing the control

uk = ω0 +
K

dmax
〈Lks, ieiθk 〉 − ∂WM,N

N P

∂θk
(38)
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Fig. 3. Simulation results of (1) subject to Laplacian control with separate spacing and phase graphs with reference particles and nested phase potentials. (a)
Control (38) with M = N = 6, B = 3, and K = ω0 = 0.1 stabilizes three separate circular formations of radius ρ0 = |ω−1

0 | and a splay arrangement of all 6

particle phases. (b) Control (39) fixes the centers of the circular formations to the reference locations c
(b )
0 = i25(b − 2), b = 1, 2, 3 denoted by crossed circles.

(c) Control (40) stabilizes a nested (M, N)-pattern with Q = 3 and M = N = (2, 4, 4)T . Trajectories start from random initial conditions, and are plotted
after elapsed time equivalent to 50 revolutions; the last revolution of each particle is plotted in dark gray.

stabilizes an (M,N)-pattern over B separate circular forma-
tions of radius ρ0 = |ω−1

0 |. Simulations of (1) subject to (38) are
shown in Fig. 3(a) for M = N = 6, B = 3, and K = ω0 = 0.1.
The phase gains are K1 = 0.04 and |Km | = 0.01 for m =
2, . . . , 6. Note that the phases of the N = 6 particles are in
the splay state and the relative positions of the B = 3 circles are
arbitrary.

2) Separate spacing and phase graphs with reference par-
ticles: To each of the B blocks, we associate one reference
particle that traces out a circle of radius ρ0 = |ω−1

0 | centered

at c
(b)
0 , b = 1, . . . , B. The reference particle is connected to at

least one particle in each block. To each block, we assign the
augmented Laplacian denoted by ñPn , using the methodology
from Section VI. The augmented block-all-to-all Laplacian is
L̃ = IB ⊗ (ñPn ). Let s̃ denote the corresponding augmented
vector s defined by

s̃ = (−iω0c
(1)
0 , s1 , . . . , sn ,−iω0c

(2)
0 , sn+1 , . . .)T .

Choosing the control

uk = ω0 +
K

dmax
〈L̃k s̃, ieiθk 〉 − ∂WM,N

N P

∂θk
(39)

stabilizes an (M,N)-pattern over B separate circular forma-
tions of radius ρ0 = |ω−1

0 | centered at c
(b)
0 , b = 1, . . . , B. Sim-

ulations of (1) subject to (39) are shown in Fig. 3(b) for
c
(b)
0 = i25(b − 2), b = 1, 2, 3. All other parameters are the same

as in the previous example. It can be observed in this case that
the phases are still in the splay state, but now the circles are
positioned as desired.

3) Separate spacing and phase graphs with reference par-
ticles and nested phase potentials: Let M = (M1 , . . . ,MQ )T

and N = (N1 , . . . , NQ )T , where Mq is a divisor of Nq for all
q = 1, . . . , Q. A nested (M ,N)-pattern is a phase arrangement
over N particle phases in which there are Q distinct symmetric
patterns of Mq clusters of Nq phases. Rather than stabilizing a
single (M,N)-pattern using the potential WM,N

L , we stabilize
symmetric patterns over connected subgroups of particle phases

by combining symmetric phase potentials. Choosing the control

uk = ω0 +
K

dmax
〈L̃k s̃, ieiθk 〉 −

Q∑
q=1

∂W
Mq ,Nq

L ( q )

∂θk
(40)

stabilizes a nested (M ,N)-pattern over B separate circular
formations of radius ρ0 = |ω−1

0 | centered at c
(b)
0 , b = 1, . . . , B.

Simulations of (1) subject to (40) are shown in Fig. 3(c) for
Q = 3 and M = N = (2, 4, 4)T . In this example, there are
three different phase Laplacians given by

L(1) = diag{2P2 , 2P2 , 2P2}
L(2) = diag{4P4 , 02}
L(3) = diag{02 , 4P4}

where nPn is the Laplacian matrix of a complete graph with
n nodes and 0n is an n × n matrix of zeros. Each block of
two particles is arranged in a (2, 2)-pattern with phase gains
K1 = 0.04 and K2 = −0.01. The first two particle blocks, i.e.,
particles with indices 1, 2, 3, 4, are arranged in a (4, 4) pattern.
The second and third particle blocks, i.e., particles with indices
3, 4, 5, 6, are also arranged in a (4, 4) pattern. The phase gains
for the two M = 4 patterns are |Km | = 0.01 for m = 1, . . . , 4.
All other parameters are the same as in the previous example.

Note that, in this last example, each pair of particle phases is in
the splay state on its own circle, while the four particle phases
in the top two circles (and likewise the bottom two circles)
are also in the splay state. This example illustrates a pattern
that is useful for the mobile sensor network problem. In the
ocean sampling application, this pattern is generalized to one
in which the three circles are replaced with a stack of three
superellipses (approximating rectangles) with coincident inner
edges [32]. The pattern provides good sampling coverage of a
large rectangular box that bounds the pattern and timely, well
distributed sampling in the interior of the box.
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Fig. 4. Snapshots after 20, 75, and 250 time steps of simulation results for N = 50 particles randomly initialized in a 50 by 50 spatial domain with periodic
boundary conditions. The particles are subject to the dynamic control (21) with K = −0.1 and a time-varying zonal sensory graph G(t). The radius of proximity
ρk = 7 for all particles is depicted, for a single particle, as a dashed circle. Setting ω0 = 0.1 stabilizes circular motion with radius ρ0 = |ω−1

0 |; setting ω0 = 0
stabilizes a parallel motion (not shown). (a) t = 20. (b) t = 75. (c) t = 250.

VIII. STABILITY OF CIRCULAR COLLECTIVES WITH

PROXIMITY-BASED COMMUNICATION GRAPH

In this section, we consider stabilization of collective mo-
tion of a network of moving particles with time-varying sensing
topologies. We consider sensing to be a form of directed com-
munication in which information flows from the sensed particle
to the sensing particle. Accordingly, the edges in a sensory
graph are directed from the sensed to the sensing particle. Due
to limitations in sensing range, sensing links exist only between
neighboring particles, and may change over time as the particles
move. We illustrate stabilization of parallel and circular motion
with sensory graphs using simulations of the dynamic control
law in Theorem 6 for large groups of particles.

Let the sensing topology be described by a time-varying δ-
digraph G(t) = (I, E(t), A(t)). The nonnegative components
akj (t) of the adjacency matrix are bounded away from zero
when agent k senses agent j and zero otherwise. We have ex-
plored several methods for determining when sensing links are
formed. For example, one can construct a sensing graph that
models sensors with finite sensing capacity by creating directed
links to agent k from a limited number of its nearest neighbors.
Let nk (t) > 0 be the (maximum) number of simultaneously
sensed neighbors. In a nearest neighbor sensory graph, agent j
is strongly connected to agent k at time t, if agent j is one of
agent k’s nk (t) nearest neighbors. Note that although nearest
neighbor graphs are not strongly connected, the in-degree of
each agent is always positive since it equals nk (t).

Another type of sensory graph can be constructed using sens-
ing zones to determine when sensing links are formed. For ex-
ample, a circular sensing zone centered on agent k is defined by

Zk (t) = {r ∈ C | |r − rk (t)| ≤ ρk (t)} (41)

where the radius of proximity ρk (t) represents the (maximum)
sensing range of particle k. In a zonal sensory graph, agent
k senses agent j at time t if rj (t) ∈ Zk (t), where Zk (t) is
agent k’s sensing zone. Note that sensing zone (41), in the
case ρk = ρ for all k, gives rise to bidirectional sensing links
because of its radial symmetry. Directed sensing links can
occur if the sensing zone is not radially symmetric, e.g., if

the ρk are not identical or if the zone contains a “blind spot.”
The sensing zones, which may be time-varying, need not be
identical, and the kth zone need not contain agent k.

If G(t) is uniformly connected, the dynamic control (21)
enforces convergence of the particle model (1) to a parallel
formation if ω0 = 0 and a circular formation of radius ρ0 =
|ω−1

0 | if ω0 �= 0. Uniform connectedness of G(t) is not enforced
in a sensory graph. In the simulation results given later, we
observe that uniformly connected subgroups of particles in a
zonal sensory graph exhibit collective motion. The number of
subgroups is determined in part by the size of the spatial domain
and the radius of proximity.

Fig. 4 shows snapshots after 20, 75, and 250 time steps of
simulation results for N = 50 particles randomly initialized in a
50 by 50 spatial domain with periodic boundary conditions, i.e.,
horizontal edges of the domain are identified and vertical edges
are identified. The particles are subject to the dynamic control
(21) with K = −0.1 and a time-varying zonal sensory graph
G(t). The radius of proximity ρk = 7 for all k = 1, . . . , N is
depicted, for a single particle, as a dashed circle. Setting ω0 =
0 stabilizes parallel motion (not shown) and setting ω0 = 0.1
stabilizes circular motion with radius ρ0 = |ω−1

0 | (see Fig. 4).
For these parameter values, we infer that the entire group of
particles is most likely uniformly connected. Using the same
parameters in a larger spatial domain results in convergence to
several disconnected circular formations (not shown).

IX. CONCLUSION

This paper proposes a design methodology to stabilize iso-
lated relative equilibria in a model of identical, steered particles
moving in the plane at unit speed. In recent work [11], we pro-
vided Lyapunov-based stabilizing feedback control laws under
the assumption of all-to-all communication among particles. In
the present paper, we recover these results under more realistic
assumptions on the communication topology.

To address the design of stabilizing feedback in the framework
of time-invariant and undirected communication topologies, we
generalize the previously proposed potentials in such a way that
the derived stabilizing feedback satisfies the communication
constraints. The proposed potentials are quadratic forms induced
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by the Laplacian of the communication graph. They reduce to
our previously proposed all-to-all potentials in the case of a
complete graph.

To address the design of stabilizing feedback in the framework
of time-varying and directed communication topologies, we de-
sign consensus filters that asymptotically reconstruct the aver-
aged quantities required by all-to-all stabilizing control laws.
This approach, recently proposed in [23] for phase models on
the N -torus, makes it possible to recover the results based on all-
to-all communication under the sole assumption that the com-
munication graph is uniformly connected. It requires increased
communication between communicating particles because par-
ticles must exchange relative estimated variables in addition to
relative configuration variables.

The proposed results are illustrated in the framework of a
sensor network application for ocean sampling [9] that initially
motivated most of this research. They are also illustrated in
the framework of a proximity-based communication graph,
showing how planar collectives can be achieved in a very
decentralized way.

The proposed framework provides a fairly complete conver-
gence analysis of collectives achieved in a simple planar par-
ticle model. Its extension to more general manifolds has rele-
vant applications such as coordination in space [34]. The recent
work [35] should serve as a basis for such extensions. An open
question of particular interest is the robustness of the proposed
approach to more complicated models for individuals, including
dynamic considerations, external disturbances, and discrepan-
cies among the particles.
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