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Camino de los Descubrimientos s/n, 41092 Sevilla, Spain

e-mail:{alamo,davidmps,eduardo}@cartuja.us.es

Keywords: Binary quadratic programming, band
matrices, combinatorial optimization, model predic-
tive control, min-max

Abstract

Binary Quadratic Programming (BQP) problems
arise frecuently in robust MPC when min-max tech-
niques are used. In this paper, an efficient algorithm
that solves the problem for L-Band matrix structures
is presented. The L-Band matrix algorithm has a
direct application to min-max MPC. The computa-
tional burden of the L-Band max algorithm is poly-
nomial with the dimension of the optimization vari-
able and exponential with L, the band size. The pro-
posed algorithm makes the implementation in real
time of min-max predictive controllers possible.

1 Introduction

The objective of a binary quadratic programming
(BQP) problem is to find a binary vector z ∈
{−1, 1}N that maximizes:

F (z) =
N∑

i=1

N∑
j=1

hijzizj +
N∑

i=1

qizi (1)

where H = {hij} is a symmetric N ×N matrix and
q = {qi} a real vector.

BQP problems arise in a variety of applications,
e.g. capital budgeting and financial analysis [9],
traffic message problems [4], machine scheduling
[2], molecular formation [1], etc. Furthermore, it
is well known that the BQP is equivalent to many
classical combinatorial problems such as maximum
cut, maximum clique, maximum vertex packing,
minimum vertex cover, maximum independent set
and maximum weight independent set problems [8].
In Model Predictive Control (MPC), BQP prob-
lems arise when min-max techniques are used with

bounded additive uncertainties models [7].

The BQP belongs to the class of NP hard problems.
At the present time, the computation of the exact
solution is only possible for small size instances.
For this reason, min-max predictive controllers are
hardly implementable in real plants.

In this paper, an efficient algorithm for solving BQP
L-Band problems is presented. A BQP L-Band
problem arises when matrix H has a band structure,
that is, hij = 0 if |i − j| ≥ L. The computational
burden of the proposed L-Band maximization algo-
rithm is polynomial with the dimension of the opti-
mization variable and exponential with L, the band
size. To the knowledge of the authors, there is no
equivalent result in the literature.

When the control action of a min-max MPC is ob-
tained computing a sequence of correction control
actions to a given stabilizing control law [3, 5, 6],
the contribution of a perturbation in the prediction
vanishes in an exponential way. This implies that
|hij | decreases in an exponential way with |i − j|.
In this way, the maximization problem arising from
a min-max MPC can be approximated by an L-Band
maximization problem. The error in the approxima-
tion can be made arbitrarily small choosing conve-
niently the band width L.

This paper is organized as follows. Section 2
presents the BQP L-Band optimization problem.
Section 3 presents the preliminary notation. In sec-
tion 4, the L-Band algorithm is presented. In section
5, an example is provided. Section 6 is devoted to
some preliminary results needed to prove the main
contribution of the paper. In section 7 the main the-
orem is proved. The computational efficiency of the
algorithm is addressed in section 8. The paper ends
with a section of conclusions.



2 L-Band maximization problem

The L-Band maximization problem is:

max
‖z‖∞≤1

F (z) = zT Hz + qT z (2)

with z ∈ IRN and H a semidefinite positive L-Band
matrix:

|i − j| ≤ L ⇒ hi,j = 0

We propose an algorithm that builds a set of 2L

hipothesis that contains the optimum solution. To
build this set we need to make (N −L− 1)2L com-
parations. So, the algorithm requires a number of
evaluations of F (z) proportional to (N − L)2L.

Note that for L = 1 the optimization problem is triv-
ial and the maximum value of the quadratic function
is tr(H)+‖q‖1 and it is attained at in x = sign(q).

3 Preliminary notation

Notation 1 (Hypercube in IRn)

Bn
r denotes the following hypercube in IRn:

Bn
r = { z ∈ IRn : ‖z‖∞ ≤ r }

Notation 2 (Vertices of a Hypercube)

The vertices of the unit hypercube Bn
1 in IRn will be

enumerated as follows:

ϑn
i =




1 − 2b0(i − 1)
1 − 2b1(i − 1)

...
1 − 2bn−1(i − 1)


 , i = 1, . . . , 2n

where bj(i), j = 0, . . . , n − 1 are the binary digits

of i, that is, i =
n−1∑
j=0

bj(i)2j .

Notation 3 Suffix and Prefix

1. Denote the length of vector x as

l(x) =
{

0 if x = 0
max { i : x(i) �= 0 } otherwise

that is, l(x) is zero if x = 0. If x �= 0 then l(x)
is defined as the greatest index i that satisfies
x(i) �= 0.

2. If n ≤ l(x) then sn(x) denotes the suffix of
length n of x, that is,

sn(x) =




x(l(x) + 1 − n)
x(l(x) + 2 − n)

...
x(l(x))




3. Given vector x ∈ IRm and n ≤ m, pn(x) de-
notes the prefix of length n of x, that is,

pn(x) =




x(1)
x(2)

...
x(n)




The following property can be easily obtained from
the properties of bj(.).

Property 1 .

1. The vertices ϑL
i , i = 1, . . . , 2L can be obtained

from the vertices ϑL−1
j , j = 1, . . . , 2L−1:

ϑL
i =




[
ϑL−1

i

1

]
if i ≤ 2L−1

[
ϑL−1

i−2L−1

−1

]
otherwise

2. sL−1(ϑL
2i) = sL−1(ϑL

2i−1) = ϑL−1
i

4 L-Band Max Algorithm

The following algorithm solves the L-Band max
problem making a number of operations that, for a
fixed width band L, grows in a polynomial way with
the number of optimization variables.

Theorem 1 Let us consider the quadratic function
F (z) = zT Hz + qT z where H ∈ IRN×N is a
semidefinite positive matrix with band structure, that
is, Hij = 0 for all |i − j| ≥ L > 1. Then

max
‖z‖∞≤1

F (z) = max
i=1...2L−1

F (zN
i )

where zN
i , i = 1, . . . , 2L−1 are obtained from the

following recursion:

1. Define zL−1
i ∈ IRN , i = 1, . . . , 2L−1 as

zL−1
i =

L−2∑
j=0

(1 − 2bj(i − 1))ej+1



where ej is the j-esime unitary vector in IRN

and bj(n), j = 0, . . . , L − 2 are the binary
digits of n ∈ [0, 2L−1 − 1], that is, n =
L−2∑
j=0

bj(n)2j .

2. Given an integer k ∈ [L,N ], and vectors zk−1
i ,

i = 1, . . . , 2L−1, vectors mk
i , i = 1, . . . , 2L

are obtained from:

mk
i =




zk−1
i + ek if i ≤ 2L−1

zk−1
i−2L−1 − ek otherwise

3. Given an integer k ∈ [L,N ], and vectors mk
i ,

i = 1, . . . , 2L, vectors zk
i , i = 1, . . . , 2L−1 are

obtained from:

zk
i =




mk
2i−1 if F (mk

2i−1) ≥ F (mk
2i)

mk
2i otherwise

5 Example

The algorithm proposed in theorem 1 constructs in
a recursive way a set of candidates for the optimum
solution to problem (2). This algorithm is shown in
the following example.

The algorithm starts with a set of 2L−1 different vec-
tors of L−1 non zero components. These are all the
possible endings of a vector. Therefore, it is guar-
anteed that the optimum will have one of these end-
ings. This is the set of candidates of length L − 1.

In each iteration, the algorithm builds a candidate set
of 2L−1 vectors but with one more non zero compo-
nent than the previous iteration. When the vectors
have N nonzero components the algorithm finishes
and the optimum can be evaluated.

When a new component is added, the number of vec-
tors is doubled, one for each of the possible values
of the new component. This is the hypothesis set
and it is made of 2L vectors. To eliminate half of
this vectors we use lemma 1. This property allows
us to compare vectors with the same suffix of length
L−1, eliminating the one with the lower functional.
We obtain the 2L−1 new set of candidates vectors.

N = 4

L = 3

H =




6 1 −2 0
1 6 1 −2
−2 1 5 2
0 −2 2 4


 q =




2
−7
8
−1




z2
1 z2

2 z2
3 z2

4

1 −1 1 −1
1 1 −1 −1
0 0 0 0
0 0 0 0

This is the initial candidates set. All possible end-
ings are present.

m3
1 m3

2 m3
3 m3

4 m3
5 m3

6 m3
7 m3

8

1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0

F 3
1 F 3

2 F 3
3 F 3

4 F 3
5 F 3

6 F 3
7 F 3

8

20 20 26 34 8 −8 22 14

This is the hypothesis set. It has the double of
vectors because another component has been added
with the two possible values. The functional is eval-
uated for each vector, and then, the next candidates
set is made of the ones with the higher functional
between those that have the same suffix of length
L − 1.

z3
1 z3

2 z3
3 z3

4

1 −1 1 1
1 −1 1 −1
1 1 −1 −1
0 0 0 0

The new candidates set has again 2L−1 vectors, but
now with one more non zero component.

m4
1 m4

2 m4
3 m4

4 m4
5 m4

6 m4
7 m4

8

1 −1 1 1 1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1

F 4
1 F 4

2 F 4
3 F 4

4 F 4
5 F 4

6 F 4
7 F 4

8

23 45 3 25 25 31 21 27

Again the hypothesis set is constructed and the func-
tional evaluated.

z4
1 z4

2 z4
3 z4

4

−1 1 −1 1
−1 −1 −1 −1

1 −1 1 −1
1 1 −1 −1

F 4
1 F 4

2 F 4
3 F 4

4

45 25 31 27



This is the last candidates set, where the optimum is
guaranteed to be in. After evaluating each vector’s
functional, the optimum is z4

1 and the value of the
functional is 45. This result can be proved by evalu-
ating the max with a full matrix algorithm.

6 Preliminary results

In this section some preliminary results needed for
the proof of the main contribution of the paper are
presented.

Lemma 1 Let us consider the quadratic function
F (z) = zT Hz + qT z where H ∈ IRN×N is a ma-
trix with band structure, that is, Hij = 0 for all
|i − j| ≥ L > 1. Suppose also that s ∈ IRL−1 then

F (


 pa

s
y


) − F (


 pb

s
y


) =

F (


 pa

s
0


) − F (


 pb

s
0


), ∀y,∀pa, pb

PROOF :

Taking into account that H is L-Band and given s ∈
IRL−1, F (.) can be rewritten as

F





 p

s
y





 = q�


 p

s
y


+


 p

s
y



� 

 Hpp Hps 0
H�

ps Hss Hsy

0 H�
sy Hyy





 p

s
y




Due to this structure, it is easy to see that

F (


 pa

s
y


) − F (


 pb

s
y


) =

F (


 pa

s
0


) − F (


 pb

s
0


), ∀y,∀pa, pb

Lemma 2 Let us suppose that the vectors mk
i , i =

1, . . . , 2L, k = L, . . . , N are computed according
to Theorem 1. Then

sL−1(mk
2i−1) = sL−1(mk

2i), i = 1, . . . , 2L−1

PROOF :

Note that zL−1
i , i = 1, . . . , 2L−1 are defined as

zL−1
i =

L−2∑
j=0

(1 − 2bj(i − 1))ej+1 =
[

ϑL−1
i

0N−L+1

]

where i = 1, . . . , 2L−1 therefore sL−1(zL−1
i ) =

ϑL−1
i

The lemma will be proved in a recursive way. Sup-
pose that sL−1(zk−1

i ) = ϑL−1
i . Then it is easy to

see that

sL(mk
i ) =




[
sL−1(zk−1

i )
1

]
if i ≤ 2L−1

[
sL−1(zk−1

i−2L−1)
−1

]
otherwise

=

=




[
ϑL−1

i

1

]
if i ≤ 2L−1

[
ϑL−1

i−2L−1

−1

]
otherwise

= ϑL
i

Note that the last equality is due to the properties
of the proposed enumeration of the vertices of a
hyper-cube (see property 1). Thus, it is inferred
that sL(mk

i ) = ϑL
i . Recall (see property 1) that

sL−1(ϑL
2i) = sL−1(ϑL

2i−1) = ϑL−1
i , this equality

yields

sL−1(mk
2i−1) = sL−1(mk

2i) = ϑL−1
i (3)

Now from the definition of zk
i it is easy to see that

sL−1(zk
i ) is equal to

{
sL−1(mk

2i−1) if F (mk
2i−1) ≥ F (mk

2i)
sL−1(mk

2i) otherwise

Taking into account equation (3) it results that
sL−1(zk

i ) = ϑL−1
i



7 Proof of the algorithm

Let us suppose that y ∈ BN
1 and that

F (y) = max
‖z‖≤1

F (z)

Suppose also that there is k ∈ [2, N − 1] and i ∈
[1, 2L−1] such that pk−1(zk−1

i ) = pk−1(y). Then
there is j ∈ [1, 2L−1] and ŷ ∈ BN

1 such that

{
F (y) = F (ŷ)

pk(zk
j ) = pk(ŷ)

In effect, denote

r =
{

i if y(k) = 1
i + 2L−1 if y(k) = −1

From the definition of mk
i , and from the equality

pk−1(zk−1
i ) = pk−1(y), it is easily inferred that

pk(y) =
[

pk−1(y)
y(k)

]
=

[
pk−1(zk−1

i )
y(k)

]
= pk(mk

r )

Note that in order to compute the set of vectors {zk
i },

i = 1, . . . , 2L−1, mk
r will be compared with mk

r+a,
where a = 0 if r is odd and a = 1 if r is even. In
what follows, it will be shown that

F (mk
r ) ≥ F (mk

r+a)

Note that from lemma 2, sL−1(mk
r ) =

sL−1(mk
r+a). Thus, applying lemma 1 and

the fact that y is a maximizer of F (.) in the
unit-hypercube:

F (mk
r ) − F (mk

r+a) =

F (
[

pk(mk
r )

sN−k(y)

]
) − F (

[
pk(mk

r+a)
sN−k(y)

]
) =

F (y) − F (
[

pk(mk
r )

sN−k(y)

]
) ≥ 0

From the definition of zk
i it results that choosing j =

(r − a)/2 and ŷ =
[

pk(zk
j )

sN−k(y)

]
:

{
F (y) = F (ŷ) = max‖z‖≤1 F (z)

pk(zk
j ) = pk(ŷ)

Following this reasoning in a recursive way it is ob-
tained that there is j ∈ 2L−1 and ŷ ∈ BN

1 such that

F (ŷ) = max
‖z‖≤1

F (z)

zN
j = pN (zN

j ) = pN (ŷ) = ŷ

8 Computational efficiency

A BQP problem is a NP optimization problem. The
complexity of the computational effort is exponen-
tial with N , the dimension of the optimization vari-
able. The algorithm presented in this paper for L-
band matrices has a computational effort exponen-
tial with L, the band size, but polynomial with N .

Figure (1) shows the polynomial nature of the L-
Band algorithm and the exponential nature of a full
matrix problem. The simulations have been made in
Mathlab 5.3 with the same band optimization prob-
lem. Notice than the axis scale is different. The full
matrix algorithm explores all possible vertexes and
the computation time is much higher.

In figure (2) the dependence of the computational
burden of the L-Band algorithm is shown.

9 Conclusions

In this paper an efficient algorithm for solving a
BQP L-Band problem is presented. The algorithm
requires only (N−L)2L evaluations of the quadratic
functional.

As the simulations results show, the computational
burden is much lower than the corresponding to a
full matrix BQP algorithm.

The application of the L-Band algorithm makes it
possible the implementation of min-max predictive
controller in real processes.
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