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On convexity of the frequency response of
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Abstract

In the complex plane, the frequency response of a univariate polynomial is the

set of values taken by the polynomial when evaluated along the imaginary axis. This

is an algebraic curve partitioning the plane into several connected components. In

this note it is shown that the component including the origin is exactly representable

by a linear matrix inequality if and only if the polynomial is stable, in the sense

that all its roots have negative real parts.
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1 Introduction

Let p(s) ∈ R[s] be a polynomial of the complex indeterminate s ∈ C. We say that p(s) is
stable if all its roots lie in the open left half-plane. Define the frequency response

P = {p(jω) : ω ∈ R}

as the set of values taken by the polynomial when evaluated along the stability boundary,
namely the imaginary axis. The frequency response plays a key role when deriving results
of robust control theory such as Kharitonov’s theorem [2, 3, 5].

In [9] it was observed that the frequency response of a stable polynomial features inter-
esting convexity properties, see also [3, Chapter 18]. More specifically, given a polynomial
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p(s), an arc is defined as a subset of the frequency response for a given range of the inde-
terminate, i.e. {p(jω) : ω ∈ Ω} with Ω a subset of the real line R. A proper arc is an arc
that does not pass through the origin and such that the net change in the argument of
p(jω) does not exceed π as ω increases over Ω. The Arc Convexity Theorem of [9] states
that all proper arcs of the value set of a stable polynomial are convex. Alternative proofs
can be found in [11] and [8].

The frequency response ∂P is a curve that partitions the complex plane into several
connected components. We denote by P the connected component including the origin.
It is called the inner frequency response set in [9]. In the case of a stable polynomial, the
boundary of P therefore consists of a finite union of proper arcs. Theorem 4.1 in [9] uses
the Arc Convexity Theorem to establish convexity of P.

In this note we provide a more accurate description of the geometry of P and an alternative
proof of its convexity. We derive an explicit representation of this set as a two-dimensional
linear matrix inequality (LMI). Instrumental to this derivation are standard results from
real algebraic geometry [1, 4, 7, 14] and a recent characterization of two-dimensional
convex polynomial level sets obtained in [10].

2 Algebraic description of the frequency response

The frequency response of polynomial p(s) = p0 + p1s + · · · + pns
n can be expressed as

the parametric curve

∂P = {p(jω) = x(ω) + jy(ω) : ω ∈ R} (1)

where

x(ω) =
qx(ω)

qz(ω)

y(ω) =
qy(ω)

qz(ω)

(2)

and
qx(ω) = p0 − p2ω

2 + p4ω
4 + · · ·

qy(ω) = p1ω − p3ω
3 + p5ω

5 + · · ·
qz(ω) = 1

are polynomials of the real indeterminate ω ∈ R.

Curve ∂P is rationally (here polynomially) parametrized, so it is an algebraic plane curve
of genus zero [1]. In control theory terminology, ∂P is sometimes called the Mikhailov plot
of polynomial p(s) or the Nyquist plot of the rational (here polynomial) transfer function
p(s), see [3] or [5].

Equations (1-2) provide a parametric description of curve ∂P. With the help of elimina-
tion theory and resultants, we can derive an implicit description

∂P = {x+ jy : f(x, y) = 0} (3)
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where f(x, y) is an irreducible bivariate polynomial, see [6, Section 3.3].

Lemma 1 Given two univariate polynomials g(ω) = g0 + g1ω + · · · + gnω
n ∈ R[ω] and

h(ω) = h0+h1ω+ · · ·+hnω
n ∈ R[ω], there exists a unique (up to sign) irreducible polyno-

mial b(g, h) ∈ R[g0, g1, . . . , gn, h0, h1, . . . , hn] called the resultant which vanishes whenever
g(ω) and h(ω) have a common zero.

To address the implicitization problem, we make use of a particular resultant, the Bézoutian,
see e.g. [14, Theorem 4.1] or [7, Section 5.1.2]. Given two univariate polynomials
g(ω), h(ω) of the same degree n as in Lemma 1, build the following bivariate polyno-
mial

g(ω)h(v)− g(v)h(ω)

ω − v
=

n−1
∑

k=0

n−1
∑

l=0

bklω
kvl

called the Bézoutian of g and h, and the corresponding symmetric matrix B(g, h) of size
n × n with entries bkl bilinear in coefficients of g and h. As shown e.g. in [14, Theorem
4.3] or [7, Section 5.1.2], the determinant of the Bézoutian matrix is the resultant:

Lemma 2 detB(g, h) = b(g, h).

Now we can use the Bézoutian to derive the implicit equation (3) of curve ∂P from the
explicit equations (1-2).

Lemma 3 Given polynomials qx, qy, qz of equations (1-2), the polynomial of equation (3)
is given by f(x, y) = detF (x, y) where

F (x, y) = ±(B(qx, qy)− xB(qy , qz)− yB(qx, qz)) (4)

is a symmetric pencil, i.e. a polynomial matrix linear in x, y, of size n.

Proof: Rewrite the system of equations (2) as

g(ω) = qx(ω)− xqz(ω) = 0
h(ω) = qy(ω)− yqz(ω) = 0

and use the Bézoutian resultant of Lemma 2 to eliminate indeterminate ω and obtain
conditions for a point (x, y) to belong to the curve. The Bézoutian matrix is B(g, h) =
B(qx − xqz, qy − yqz) = B(qx, qz)− xB(qy, qz)− yB(qx, qz). Linearity in x, y follows from
bilinearity of the Bézoutian. Finally, note that the sign of F (x, y) = ±B(g, h) affects the
sign of f , but not the implicit description f(x, y) = 0.�

Lemma 3 provides the implicit equation of curve ∂P in symmetric linear determinantal
form.
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3 Convexity properties of the inner frequency re-

sponse set

Curve ∂P partitions the complex plane into several connected regions. We are interested
in the connected region containing the origin, denoted by P. In order to study the
geometry of this region, we need the following result.

Lemma 4 The sign of pencil F (x, y) in (4) can be chosen such that F (0, 0) = B(qy, qz)
is positive definite if and only if p is a stable polynomial.

Proof: The signature of the Bézoutian matrix B(qx, qy), (the number of positive eigen-
values minus the number of negative eigenvalues) is equal to the Cauchy index of the
rational function qx(ω)/qy(ω) (the number of jumps from −∞ to +∞ minus the number
of jumps from +∞ to −∞), see [4, Section 9.1.2]. The Cauchy index is maximum (resp.
minimum) when B(qx, qz) is positive (resp. negative) definite. This occurs if and only if
polynomials qx and qy satisfy the root interlacing condition, i.e. they must have only real
roots and between two roots of qx(ω) there is only one root of qy(ω) and vice-versa. Since
qx(ω) = Re p(jω) and qy(ω) = Im p(jω), this is equivalent to stability of p in virtue of the
Hermite-Biehler theorem, see [2, Section 8.1] or [5, Section 1.3].�

The main result of this note can now be stated.

Theorem 1 The connected component including the origin and delimited by the frequency
response of polynomial p can be described by a linear matrix inequality (LMI)

P = {x+ jy : F (x, y) � 0}

if and only if p is stable. In the above description, F (x, y) is given by (4) and � 0 means
positive semidefinite.

Proof: First we prove that p stable implies LMI representability of P. This set is the
closure of the connected component of the polynomial level set {x, y : f(x, y) > 0} that
contains the origin, an algebraic interior in the terminology of [10]. Polynomial f(x, y) is
called the defining polynomial. By continuity, the boundary of P consists of those points
x + jy for which F (x, y) drops rank while staying positive semidefinite. Note that in
general this boundary is only a subset of the curve ∂P.

To prove the converse, namely that LMI representability of P implies stability of p, we use
a result of [10] stating that a two-dimensional algebraic interior containing the origin has
an LMI representation if and only if it is rigidly convex. Geometrically, this means that
a generic line passing through the origin must intersect the algebraic curve f(x, y) = 0
a number of times equal to the degree of f(x, y). Rigid convexity implies that x(ω)
and y(ω), the respective real and imaginary parts of polynomial p(jω), satisfy the root
interlacing property, and this implies stability of p by the Hermite-Biehler Theorem used
already in the proof of Lemma 4. �
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Figure 1: Frequency response of a stable third degree polynomial. The shaded region is
the convex component containing the origin.

4 Examples

4.1 Stable third degree polynomial

Let p(s) = s3+ s2 +4s+1. Then qx(ω) = 1−ω2 and qy(ω) = 4ω−ω3 in parametrization
(2). With the help of the Control System Toolbox for Matlab, a visual representation of
curve ∂P can be obtained as follows:

>> p = [1 1 4 1]; % polynomial in Matlab format

>> nyquist(tf(p,1)) % frequency response

>> axis([-5 2 -7 7]) % zoom around the origin

see Figure 1. The Bézoutian matrices of Lemma 3 can be computed with the following
Maple 10 instructions:

> with(LinearAlgebra):
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> qx:=1-w^2:qy:=4*w-w^3:qz:=1:

> Bxy:=BezoutMatrix(qx,qy,w,method=symmetric);

[-1 0 1]

[ ]

Bxy := [ 0 -3 0]

[ ]

[ 1 0 -4]

> Byz:=BezoutMatrix(qy,qz,w,method=symmetric);

[ 0 0 1]

[ ]

Byz := [ 0 1 0]

[ ]

[ 1 0 -4]

> Bxz:=subs(e=0,BezoutMatrix(qx,qz+e*w^3,w,method=symmetric));

[ 0 0 0]

[ ]

Bxz := [ 0 0 -1]

[ ]

[ 0 -1 0]

Note the use of the subs instruction to ensure that the last Bézoutian matrix has appro-
priate dimension 3. Matrix B(qx, qz) is negative definite, so a sign change is required to
build

F (x, y) =





1 0 −1 + x
0 3 + x −y

−1 + x −y 4− 4x





and we obtain the following determinantal polynomial:

> F:=-(Bxy-x*Byz-y*Bxz);

> f:=Determinant(F);

2 2 3

f := 9 - 3 x - 5 x - y - x

describing algebraic plane curve ∂P implicitly. The curve can be studied with the
algcurves package of Maple:

> with(algcurves):

> genus(f,x,y);

0

> plot_real_curve(f,x,y);

6
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Figure 2: Frequency response of a stable eighth degree polynomial. The shaded region is
rigidly convex.

4.2 Stable eighth degree polynomial

A more complicated example is the eighth degree stable polynomial p(s) = 336 + 198s+
496s2 + 117s3 +183s4 + 20s5 +24s6 + s7 + s8 whose frequency response is represented on
Figure 2. The rigidly convex region around the origin has the LMI description

























1 0 −20 0 117 0 −198 y

0 4 0 −66 0 298 y −336 + x

−20 0 414 0 −2510 y 4416 + x −24 y

0 −66 0 1150 y −5504 + x −24 y 6720− 20 x

117 0 −2510 y 15907 + x −24 y −29514− 20 x 183 y

0 298 y −5504 + x −24 y 28518− 20 x 183 y −39312 + 117 x

−198 y 4416 + x −24 y −29514− 20 x 183 y 58896 + 117 x −496 y

y −336 + x −24 y 6720− 20 x 183 y −39312+ 117 x −496 y 66528− 198 x

























� 0
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4.3 Unstable fourth degree polynomial

This example is taken from [11]. Let p(s) = s4 − s− 1. The implicit equation of ∂P is

f(x, y) = det









0 0 1 y
0 1 y 0
1 y 0 0
y 0 0 1 + x









= −1− x+ y4 = 0.

The component P including the origin is convex, see Figure 3, but it is not rigidly convex
since a generic line passing through the origin cuts the quartic ∂P only twice. Hence
this region does not admit an LMI representation, and by Theorem 1, polynomial p(s) is
unstable.

Note however that P can be represented as the projection of an LMI set:

P = {x+ jy : ∃z :

[

1 + x z
z 1

]

� 0,

[

z y
y 1

]

� 0}

by introducing a lifting variable z, but such constructions are out of the scope of this
note.

5 Conclusion

Convexity of the connected component containing the origin and delimited by the fre-
quency response of a stable polynomial was already established in [9]. In this note we
give an alternative proof of this result based on Bézoutians and we give a more accurate
characterization of the geometry of this region. Namely, the region is rigidly convex in
the sense of [10], a property which is stronger than convexity, and which is equivalent to
the existence of an LMI representation of the set.

In the terminology of convex analysis, the polynomial f(x, y) defining implicitly the fre-
quency response in (3) is hyperbolic with respect to the origin. Equivalently, f(x, y) can
be expressed as the determinant of a symmetric pencil which is positive definite at the
origin. See [13] for a tutorial on hyperbolic polynomials and [12] for connections with the
results of [10]. This note therefore unveils a link between polynomial hyperbolicity and
stability.
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Figure 3: Frequency response of an unstable fourth degree polynomial. The shaded region
is convex, but not rigidly convex.
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