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Abstract—Many applications require the interpretation of the Eu-
clidean coordinates of features of a 3-D object through 2-D images.
In this paper, the relative range and the Euclidean coordinates of an
object or camera undergoing general affine motion are determined for
paracatadioptric imaging systems via a nonlinear observer. The nonlinear
observer asymptotically determines the range information provided that
the motion parameters are known. The observer is developed through
a Lyapunov-based design and stability analysis, and simulation results
are provided that illustrate the performance of the state estimator. The
contributions of this paper are that the developed observer: 1) can be
applied to both affine and nonaffine systems; 2) can be used for both the
fixed and moving camera configurations; 3) is continuous; and 4) yields an
asymptotic result.

Index Terms—Lyapunov methods, nonlinear observer, paracatadioptric
vision systems, range identification, vision-based estimation.

I. INTRODUCTION

Conventional (i.e., planar) imaging systems are restrictive for some
applications due to limitations in the field-of-view (FOV). To improve
the FOV, researchers have proposed a variety of techniques including:
fish-eye lenses [1], rotating imaging systems [2], cluster of cameras
[3], and catadioptric systems with 3-D image surfaces (i.e., spherical,
elliptical, hyperboloid, and paraboloid mirrors) [4]. The research de-
scribed in this paper is focused on catadioptric systems. A catadiop-
tric system combines reflective (catoptric) and refractive (dioptric) el-
ements (i.e., a camera and a mirror) [5]. Catadioptric systems with
a single effective viewpoint are classified as central catadioptric sys-
tems. Central catadioptric systems are desirable because they yield pure
perspective images [6]. In [4], Baker and Nayar derived the complete
class of single-lens single-mirror catadioptric systems (e.g., paraboloid
mirror under orthographic projection) that satisfy the single viewpoint
constraint.

Catadioptric systems provide a larger FOV in a manner that is fa-
vorable over alternative technologies. For example, a rotating camera
system has a reduced effective bandwidth, moving parts, and extra care
has to be taken to eliminate blur as the acquired images are stitched to-
gether to construct a panoramic scene. For many applications the cost
of a cluster of cameras is inhibitive when compared to a catadioptric
system with a similar FOV. Moreover, the viewpoints of all the cam-
eras must coincide for a cluster of cameras to generate pure perspective
images, which is a nontrivial calibration obstacle.

Catadioptric systems also exhibit several limitations. In general, the
coordinates of an object are projected onto a mirror and then onto a
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camera lens. For cameras that use a lens that yields a perspective pro-
jection, the alignment of the lens and the mirror must be calibrated to
account for the distance between them. Paracatadioptric systems are a
special case of a central catadioptric systems that are constructed with
a paraboloid mirror and an orthographic lens. The use of the ortho-
graphic lens reduces the alignment requirements, and hence, simplifies
the calibration of the system, as well as the computation of pure-per-
spective images [7]. In comparison to other technologies that extend
the FOV, another limitation of catadioptric systems is that the use of a
curved mirror warps the image. This distorted image mapping can be
resolved through computer vision methods, but the additional nonlin-
earity in the transformation presents an additional obstacle for recon-
structing the Euclidean coordinates of observed feature points.

Many applications (e.g., autonomous vehicle guidance and naviga-
tion, visual servo control, etc.) require the interpretation of the Eu-
clidean coordinates of features of a 3-D object through 2-D images.
Reconstructing the Euclidean coordinates of observed feature points
is a challenging problem of significant interest even for conventional
planar imaging systems because range information (i.e., the distance
from the imaging system to the 3-D object) is lost in the image pro-
jection. There are generally two scenarios that are of interest: a fixed
camera viewing a moving target to estimate the range and/or motion in-
formation of the target (e.g., see [8], [9]), or a moving camera viewing
a still scene to recover the structure of the scene and/or the motion of
the camera (e.g., see [10]). For either scenario, the relative motion dy-
namics of the system can be written in the same form even though the
motion parameters have different physical meanings. Different tools
(e.g., extended Kalman filter, nonlinear observers) have been used to
address the structure and/or motion recovery problem from different
points of view. Some researchers (e.g., see [10]–[13]) have applied the
extended Kalman filter (EKF) to address the structure/motion recovery
problem. In order to use the EKF method, a priori knowledge of the
noise distribution is required, and the motion recovery algorithm is de-
veloped based on the linearization of the nonlinear vision-based motion
estimation problem.

Due to restrictions with linear methods, researchers have developed
various nonlinear observers (e.g., see [8], [9], [14]–[16]). For example,
several researchers have investigated the range identification problem
for conventional imaging systems when the motion parameters are
known. In [15], Jankovic and Ghosh developed a discontinuous ob-
server, known as the identifier based observer (IBO), to exponentially
identify range information of features from successive images of a
camera where the object model is based on known skew-symmetric
affine motion parameters. In [14], Chen and Kano generalized the
object motion beyond the skew-symmetric form of [15] and developed
a new discontinuous observer that exponentially forced the state
observation error to be uniformly ultimately bounded (UUB). In
comparison to the UUB result of [14], a continuous observer was
constructed in [8] to asymptotically identify the range information for
a general affine system with known motion parameters. That is, the
result in [8] eliminated the skew-symmetric assumption and yielded
an asymptotic result with a continuous observer. More recently, a state
estimation strategy was developed in [17], [18] for affine systems
with known motion parameters where only a single homogeneous
observation point is provided (i.e., a single image coordinate). In
[16], a reduced order observer was developed to yield a semi-global
asymptotic stability result for a fixed camera viewing a moving object
with known motion parameters for a pinhole camera.

Motivated by the benefits of an improved FOV, Ma et al. explored
the application of the IBO of [15] to various 3-D imaging surfaces with
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a single center of projection, including the sphere, ellipsoid, and parab-
oloid. The results in [19] indicate that the IBO could be applied to de-
termine range information for image dynamics that maintain an affine
form such as when an object feature is projected onto a sphere or el-
lipsoid. However, [19] points out that, in general, the projection onto
a 3-D image surface with a single center of projection may not main-
tain an affine form. A projection model for a paracatadioptric system
was then considered in [19] that was derived based on features pro-
jecting to the surface of a paraboloid, and the fact that the projection of
a 3-D point can only be observed up to a homogenous line. The spe-
cific selection of the state variables resulted in a nonaffine form that
motivated Ma et. al. to propose a range identification method based
on a sequence of linear approximation-based observers. More recently,
Gupta et al. constructed a nonlinear observer in [20], based on the work
in [8], to asymptotically identify the range for the nonaffine paracata-
dioptric system considered in [19].

The contribution of the current paper (and our preliminary work in
[20], [21]) is the development of a nonlinear estimator to extract the
range information (and hence, the Euclidean coordinates) from a para-
catadioptric system where the image dynamics are expressed in affine
or nonaffine forms. The contributions in this paper are that the devel-
oped nonlinear observer can be applied to both affine and nonaffine
systems; can be applied to both the fixed and moving camera con-
figurations; is continuous; and leads to an asymptotic result. A Lya-
punov-based analysis is used to prove that the 3-D Euclidean coordi-
nates of an object or camera moving with general affine motion are
asymptotically identified provided sufficient observability conditions
are satisfied. Numerical simulation results are provided to illustrate the
performance of the observer.

II. OBJECT MOTION MODEL

A. Affine Euclidean Motion

For the development in this paper, we consider the scenario of a fixed
camera viewing a moving target to estimate the range and/or motion
information of the target (cf., [8], [9], [14], [16]–[19] and therein) and
the scenario of a moving camera viewing a static scene to recover the
structure of the scene and/or the motion of the camera (cf., [10], [22],
[23], and therein). In both scenarios, the relative motion dynamics can
be written in the same form, although the motion parameters have dif-
ferent physical meanings. Specifically, for both scenarios, the affine
motion dynamics can be expressed as

_x1
_x2
_x3

=

a11 a12 a13

a21 a22 a23

a31 a32 a33

x1

x2

x3

+

b1

b2

b3

(1)

where x(t) = [x1(t), x2(t), x3(t)]T 2
3 denotes the unmeasur-

able Euclidean coordinates of either the moving target or the moving
camera along the X , Y , and Z axes of a camera fixed reference frame,
respectively, where the Z axis is colinear with the optical axis of the
camera. In (1), the parameters ai;j(t) 2 8 i; j = 1; 2; 3 of the matrix
A(t) 2 3�3 and b(t) = [b1, b2, b3]T 2 3 denote the motion param-
eters. The affine motion dynamics introduced in (1) are expressed in a
general form that describes an object motion consisting of a rotation,
translation, and linear deformation [24].

Assumption 1: The motion parameters in A(t) and b(t) introduced
in (1) are assumed to be known, bounded functions of time that are
second order differentiable (cf. [8], [12], [14]–[21]).

To illustrate how the affine dynamics in (1) represent both the sta-
tionary camera moving object scenario and the moving camera sta-
tionary object scenario, consider a feature point attached to a target as
in Fig. 1. For stationary camera moving object scenario, Fc denotes an
inertial coordinate frame attached to the camera, and x(t) (expressed

Fig. 1. Problem scenario of a camera and a target.

in Fc) denotes the coordinates of the target feature point Oi. The time
derivative of x(t) can be expressed as

_x = � [!t]
�

x� vt = Ax + b (2)

where vt(t); !t(t) 2
3 denote the linear and angular velocities of

target with respect to the inertial camera frameFc, respectively. Poten-
tial applications for this scenario under the restriction of Assumption 1
include examples where the object is moving with a known/measurable
linear and angular velocity where the goal is to estimate the Euclidean
position of the moving target in time, such as: parts moving on a con-
veyor belt on assembly line, vehicles on a railway or subway, air and/or
ground traffic monitoring from a fixed location.

For the moving camera stationary object scenario, Fc denotes a
body-fixed coordinate frame attached to the camera, and Ft denotes
an inertial coordinate frame. The linear and angular velocities of the
target (i.e., vt(t) and !t(t)) with respect to the camera (expressed in
Fc) can be written as

vt = �Rvc !t = �R!c (3)

where R(t) 2 3�3 denotes the corresponding rotation between Fc

and Ft, and vc(t) and !c(t) denote the linear and angular velocity of
the camera, respectively. Based on (3), the relationship in (2) can be
rewritten as

_x = [R!c]
�

x+Rvc = Ax + b: (4)

Potential applications for this scenario under the restriction of Assump-
tion 1 include examples where the camera is moving with a known/
measurable linear and angular velocity where the goal is to estimate
the Euclidean position of the moving camera in time, such as: inertial
navigation in GPS denied environments and simultaneous localization
and mapping (SLAM).

Remark 1: The implications of Assumption 1 for the stationary
camera moving object scenario are that vt(t) and !t(t) must be
known/measurable, and the implications of Assumption 1 for the
moving camera stationary object scenario are that vc(t) and !c(t)
must be measured along with R(t).

B. Projection

The projection of the coordinates x(t) onto a paraboloid mirror with
its focus at the origin (see Fig. 2) can be expressed as [25]

y [ y1 y2 y3 ]
T =

2f

L
[ x1 x2 x3 ]

T (5)

where f 2 denotes the constant known distance between the focal
point and the vertex of the paraboloid, and L(x) 2 is defined as

L �x3 + x2
1
+ x2

2
+ x2

3
: (6)

Because the projection from the paraboloid mirror to the camera is or-
thographic in nature (i.e., reflected light rays are parallel to the optical
axis), y1(t) and y2(t) correspond to the measured pixel coordinates
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Fig. 2. Euclidean point projected onto paraboloid mirror and then reflected to
an orthographic camera.

of the camera. Also, because the paraboloid is rotationally symmetric,
y3(t) is computed from the measured pixel coordinates as

y3 =
y21 + y22

4f
� f: (7)

To facilitate subsequent development, the auxiliary signal y4(t) 2 is
defined as

y4
2f

L
(8)

and contains the unknown range information. Substituting (8) into (5),
yields the following relationship:

y = y4x: (9)

Taking the time derivative of (9) and utilizing (1), the following PDS
can be determined:

_y = 
1 + g; (10)

where
1(y1y2; y3; t) 2
3 denotes a vector of measurable and known

signals defined as


1

3

j=1
a1jyj +

1

2f
a3jy1yj

3

j=1
a2jyj +

1

2f
a3jy2yj

3

j=1
a3jyj +

1

2f
a3jy3yj

(11)

and the unmeasurable signal g(t) [g1(t); g2(t); g3(t)] 2
3 is de-

fined as

gi 
0yi + biy4 8 i = 1; 2; 3; (12)

where 
0(y1y2; y3; t) 2 is defined as


0

b3

L
�

y1 _x1 + y2 _x2 + y3 _x3
2f(L+ x3)

: (13)

From (12), the signal y4(t) containing the range information can be
expressed as

y
2

4 =
(y2g1 � y1g2)

2 + (y3g1 � y1g3)
2 + (y3g2 � y2g3)

2

(y2b1 � y1b2)2 + (y3b1 � y1b3)2 + (y3b2 � y2b3)2
: (14)

Assumption 2: In contrast to the systems examined in [19] and [20],
the development in this section is based on the more general (and more
practical) assumption that the focal point is not at the vertex of the
paraboloid (i.e., f > 0). Moreover, the focal point is not a vanishing
point (i.e., f 2 L1).

Assumption 3: The image-space feature coordinates y1(t), y2(t) are
bounded functions of time; hence, (7) can be used to conclude that
y3(t) 2 L1.

Assumption 4: The object feature is not a vanishing point (i.e., L 2
L1, therefore y4(t) 6= 0). We assume that L 6= 0 (i.e., x1; x2 6= 0
simultaneously); hence, the object feature does not intersect the optical
axis of the imaging system. Since L 6= 0, (8) can be used to conclude
that y4(t) 2 L1.

Assumption 5: If g(t) can be identified, then y4(t) can be deter-
mined from (14), provided b1; b2; b3 6= 0 simultaneously. This observ-
ability assumption physically means that the object must translate in at
least one direction.

Remark 2: Based on Assumptions 1–5, the expressions given in
(10)–(14) can be used to determine that _y(t), 
1(t), and g(t) 2 L1.
Given that these signals are bounded, Assumptions 1–5 can be used to
prove that

kg(�)k � �1 k _g(�)k � �2 k�g(�)k � �3 (15)

where �1, �2, and �3 2 denote known positive constants.

III. RANGE IDENTIFICATION FOR AFFINE SYSTEMS

A. Objective

The objective of this section is to extract the Euclidean coordinate
information of the object feature from its projection onto the paracata-
dioptric system. From (9) and the fact that y1(t), y2(t) and y3(t) are
measurable, if y4(t) could be identified then the complete Euclidean
coordinates of the feature can be determined. To achieve this objective,
an estimator is constructed based on the unmeasurable image-space dy-
namics for y(t). To quantify the objective, a measurable estimation
error, denoted by e(t) [e1(t); e2(t); e3(t)]

T 2 3, is defined as
follows:

e = y � ŷ (16)

where ŷ(t) [ŷ1(t); ŷ2(t); ŷ3(t)]
T 2 3 denotes a subsequently de-

signed estimate. An unmeasurable1 filtered estimation error, denoted
by r(t) [r1(t); r2(t); r3(t)]

T 2 3; is also defined as

r = _e+ �e (17)

where � 2 3�3 denotes a diagonal matrix of positive constant gains
�1, �2, �3 2 . Motivation for the development of the filtered estima-
tion error in (17), is that the subsequent observer is based on the PDS
given in (10). If g(t) in (10) can be identified, the fact that the feature
point coordinates yi(t) 8 i = 1; 2; 3 are measurable can be used along
with (14) to compute y4(t) provided the observability condition in As-
sumption 5 is satisfied.

B. Estimator Design and Error System

Based on (10) and the subsequent analysis, the following estimation
signals are defined:

_̂y = 
1 + ĝ (18)

where ĝ(t) [ĝ1(t); ĝ2(t); ĝ3(t)]
T 2 3 denotes a subsequently de-

signed estimate for g(t). The following error dynamics are obtained
after taking the time derivative of e(t) and utilizing (10) and (18):

_e = g � ĝ: (19)

1The filtered estimation signal is unmeasurable due to a dependence on the
unmeasurable terms g (t), g (t), g (t).
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Based on the structure of (17) and (19), _̂g(t) is designed as follows [8]:

_̂g = �(ks + �)ĝ + 
sgn(e) + �kse (20)

where ks, 
 2 3�3 denote diagonal matrices of positive constant es-
timation gains, and the notation sgn(�) is used to indicate a vector with
the standard signum function applied to each element of the argument.
The structure of the estimator in (20) contains discontinuous terms;
however, as discussed in [8], the overall structure of the estimator is
continuous (i.e., ĝ(t) is continuous). After using (17), (19), and (20),
the following expression can be obtained:

_r = � � ksr � 
sgn(e) (21)

where �(t) [ �1 �2 �3 ]
T 2 3 is defined as

� = _g + (ks + �) g: (22)

Based on (15) and (22), the following inequalities can be developed:

j�(�)j � �4 j _�(�)j � �5 (23)

where �4 and �5 2 denote known positive constants.
Remark 3: Considering (14), the unmeasurable signal y4(t) can be

identified if ĝ(t) approaches g(t) as t ! 1 (i.e., ŷ1(t), ŷ2(t) and
ŷ3(t) approach y1(t), y2(t) and y3(t) as t!1) since the parameters
bi(t) 8 i = 1; 2; 3 are assumed to be known, and y1(t), y2(t) and
y3(t) are measurable. After y4(t) is identified, (9) can be used to extract
the 3-D Euclidean coordinates of the object feature (i.e., determine the
range information). To prove that ĝ(t) approaches g(t) as t!1, the
subsequent development will focus on proving that k _e(t)k ! 0 and
ke(t)k ! 0 as t ! 1 based on (16) and (19).

IV. ANALYSIS

The following theorem and associated proof can be used to conclude
that the observer design of (18) and (20) can be used to identify the
unmeasurable signal y4(t).

Theorem 1: For the paracatadioptric system in (10)–(13), the un-
measurable signal y4(t) (and hence, the Euclidean coordinates of the
object feature) can be asymptotically determined from the estimator in
(18) and (20) provided the elements of the constant diagonal matrix 


introduced in (20) are selected according to the sufficient condition


i � �4 +
1

�i

�5 (24)

8 i = 1; 2; 3, where �4 and �5 are defined in (23).
Proof: Consider a non-negative function V (t) 2 as follows

(i.e., a Lyapunov function candidate):

V =
1

2
r
T
r: (25)

After taking the time derivative of (25) and substituting for the error
system dynamics given in (21), the following expression can be
obtained:

_V = �r
T
ksr + ( _e+ �e)T (� � 
sgn(e)) : (26)

After integrating (26) and exploiting the fact that

�i � sgn(�i) = j�ij 8 �i 2

the following inequality can be obtained:

V (t) � V (t0)�
t

t

r
T (�)ksr (�) d�

+

3

i=1

�i

t

t

jei (�)j (j�i (�)j � 
i) d� + �i (27)

where the auxiliary terms �i(t) 2 are defined as

�i =
t

t

_ei (�)�i (�)d� � 
i

t

t

_ei (�) sgn(ei (�))d� (28)

8 i = 1; 2; 3. The integral expression in (28) can be evaluated as

�i = ei (�)�i (�)j
t

t

�
t

t

ei (�) _�i (�)d� � 
i jei (�)j j
t

t

= ei (t)�i (t)�
t

t

ei (�) _�i (�)d� � 
i jei (t)j

� ei (t0)�i (t0) + 
i jei (t0)j (29)

8 i = 1; 2; 3. Substituting (29) into (27) and performing some algebraic
manipulation yields

V (t) � V (t0)�
t

t

r
T (�)ksr (�) d� + �4 + �0

where the auxiliary terms �4(t), �0 2 are defined as

�4 =

3

i=1

�i

t

t

jei (�)j j�i (�)j+
1

�i

j _�i (�)j � 
i d�

+

3

i=1

jei (t)j (j�i (t)j � 
i)

�0 =

3

i=1

�ei (t0)�i (t0) + 
i jei (t0)j :

Provided 
i 8 i = 1; 2; 3 are selected according to the inequality intro-
duced in (24), �4(t) will always be negative or zero; hence, V (t) can
be upper bounded as

V (t) � V (t0)�
t

t

r
T (�)ksr (�) d� + �0: (30)

From (25) and (30), the following inequalities can be determined:

V (t0) + �0 � V (t) � 0;

hence, r(t) 2 L1. The expression in (30) can be used to determine
that

t

t

r
T (�)ksr (�) d� � V (t0) + �0 <1: (31)

By definition, (31) can now be used to prove that r(t) 2 L2. From the
fact that r(t) 2 L1, (16) and (17) can be used to prove that e(t), _e(t),
ŷ(t), and _̂y(t) 2 L1. The expressions in (18) and (20) can be used to
determine that ĝ(t) and _̂g(t) 2 L1. Based on (15), the expressions in
(21) and (22) can be used to prove that �(t), _�(t), _r(t) 2 L1. Based
on the fact that r(t), _r(t) 2 L1 and that r(t) 2 L2, Barbalat’s Lemma
[26] can be used to prove that kr(t)k ! 0 as t!1; hence, standard
linear analysis can be used to prove that ke(t)k ! 0 and k _e(t)k ! 0 as
t!1. Based on the fact that ke(t)k ! 0 and k _e(t)k ! 0 as t!1,
the expression given in (16) can be used to determine that ŷ1(t), ŷ2(t)
and ŷ3(t) approach y1(t), y2(t) and y3(t) as t ! 1, respectively.
Therefore, the expression in (19) can be used to determine that ĝ(t)
approaches g(t) as t ! 1. The result that ĝ(t) approaches g(t) as
t ! 1, the fact that the parameters bi(t) 8 i = 1; 2; 3 are assumed
to be known, and the fact that the image-space signals y1(t), y2(t) and
y3(t) are measurable can be used to identify the unknown signal y4(t)
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from (14). Once y4(t) is identified, the complete Euclidean coordinates
of the object feature can be determined using (9).

V. RANGE IDENTIFICATION FOR NONAFFINE SYSTEMS

As pointed out by [19], the image projection from a general 3-D sur-
face with a single center of projection may not maintain an affine form
in general. A contribution of the observer proposed in this paper (along
with our preliminary work in [20], [21]) is that it can be used to extract
the range information for both affine and nonaffine dynamics. To illus-
trate this point, we consider the paracatadioptric example provided in
[19]. In [19], the projection of an object feature x(t) onto a paraboloid
mirror is expressed as

[ y1 y2 y3 y4 ]
T =

1

x2
1
+ x2

2

[ x1x3 x2x3 x23 1 ]T (32)

where y3(t) can be computed from the measured pixel coordinates as

y3 = y21 + y22 : (33)

The time derivative of (32) yields

[ _y1 _y2 _y3 ]
T = 
3 + �g (34)

where 
3(y1; y2; y3; t) 2 3 denotes a vector of measurable and
known signals defined as


3

3

j=1
a1jyj +

y y

y
[a3j � 2 (a1jy1 + a2jy2)]

3

j=1
a2jyj +

y y

y
[a3j � 2 (a1jy1 + a2jy2)]

3

j=1
fa3jyj + yj [a3j � 2 (a1jy1 + a2jy2)]g

(35)

and the unmeasurable signal �g(t) [�g1(t); �g2(t); �g3(t)]
T 2 3 is

defined as

�g 
2 y1
y

y
y2

y

y

p
y3y4

T

(36)

where 
2(y1; y2; y3; t) 2 3�3 is defined as


2

(b3 � 2b1y1) �2b2y1 b1
�2b1y2 (b3 � 2b2y2) b2
�2b1y3 �2b2y3 2b3

: (37)

Based on the particular selection of y4(t) in (32), the projected dy-
namics in (34)–(37) are in a nonaffine form. Since the projective rela-
tionship in this section is different from that in Section III, the observ-
ability conditions in Assumption 5 need to be modified as in Assump-
tion 6.

Assumption 6: The matrix 
2(y1; y2; y3; t) introduced in (37) is
invertible provided

b3 6= 0 (38)

and

b23 � 2b2b3y2 + b22y3 � 2b1b3y1 + b21y3 6= 0: (39)

After utilizing (33), the condition in (39) can be written as

(y1 � k1)
2 + (y2 � k2)

2 6= 0 (40)

where k1(t) and k2(t) 2 are auxiliary terms defined as

k1 =
b1b3

b2
1
+ b2

2

k2 =
b2b3

b2
1
+ b2

2

: (41)

Geometrically, the observability condition in (40) indicates that the pro-
jection of the object feature cannot intersect the point (k1; k2). For the
special case when b1 = b2 = 0, (39) reduces to (38). If the conditions
in (38) and (40) are violated, then the range to the feature point can
not be determined because the feature point is projected to the mirror
tip (i.e., y1 = y2 = 0), which is a known point of ambiguity. It is in-
teresting to note that in most commercial paracatadioptric systems, the
mirror is mounted to the camera lens in such a manner that the mirror
tip is covered.

Based on (32) and the fact that y1(t), y2(t) and y3(t) are measurable,
if y4(t) could be identified then the complete Euclidean coordinates of
the feature can be determined. From (36), it is clear that identifying
�g(t) is equivalent to identifying y4(t) provided the observability con-
ditions in Assumption 6 are satisfied. Comparisons between (10) and
(34) indicate that both PDS can be written in the same form; hence, the
observer in (18) and (20) can also be applied to the nonaffine system
in (34)–(37).

VI. NUMERICAL SIMULATION

In this section, numerical simulation results are provided to illustrate
the performance of the range identification observer for the paracata-
dioptric system. The object feature is assigned the following affine mo-
tion dynamics [8]:

_x1
_x2
_x3

=

�0:2 0:4 �0:6
0:1 �0:2 0:3

0:3 �0:4 0:4

x1
x2
x3

+ [ 0:5 0:25 0:3 ]T

with the initial Euclidean coordinates

[ x1(0) x2(0) x3(0) ]
T = [ 0:4 0:6 1 ]T :

By arbitrarily letting f = 1=2, the expressions in (5), (6), and (8) can
be used to determine that

ŷ1(t0) = y1(t0) = 1:72 ŷ3(t0) = y3(t0) = 4:29

ŷ2(t0) = y2(t0) = 2:58 y4(t0) = 4:29
:

The estimates for g(x) were initialized as follows:

ĝ1(t0) = 1 ĝ2(t0) = 1 ĝ3(t0) = 1:

After adjusting the observer gains as

ks = diagf50; 50; 50g � = diagf15; 15; 15g

 = diagf1; 1; 1g � 10�5

the resulting mismatch between g1(t) and ĝ1(t), g2(t) and ĝ2(t), and
g3(t) and ĝ3(t) (i.e., _e1(t), _e2(t), and _e3(t) respectively) is depicted
in Fig. 3. The mismatch between y4(t) and ŷ4(t) is provided in Fig. 4.
The y4(t) term is obtained from numerical integration of the _y4(t)
term, while the estimated value is obtained by replacing g(t) with ĝ(t)
in (14).

Additive-white-Gaussian-noise (AWGN) was injected into the mea-
surable image-space signals y1(t), y2(t) via the awgn() function in
MATLAB, while maintaining a constant signal-to-noise-ratio of 20 .
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Fig. 3. Estimation error of auxiliary signals: (a) _e (t), (b) _e (t), and (c) _e (t)
in [pixels/sec].

Fig. 4. Mismatch between y (t) and ŷ (t).

Without changing any of the other simulation parameters, the mismatch
between g1(t) and ĝ1(t), g2(t) and ĝ2(t), and g3(t) and ĝ3(t) (i.e.,
_e1(t), _e2(t), and _e3(t), respectively) is provided in Fig. 5, while the
mismatch between y4(t) and ŷ4(t) is provided in Fig. 6.

The results depicted in Figs. 3–6 indicate that the proposed observer
can be used to identify range, and hence, the Euclidean coordinates of
an object feature moving with affine motion dynamics projected onto a
paracatadioptric system provided the observability conditions are sat-
isfied. These results are comparable to the results obtained in [8] for a
planar image surface.

VII. CONCLUSION

The results in this paper focus on the use of a nonlinear estimator to
determine the range and the Euclidean coordinates of an object fea-
ture undergoing general affine motion. Motivated by the benefits of
an improved FOV, the object motion is obtained from measurements
by a paracatadioptric system. The nonlinear estimator is proven, via a
Lyapunov-based analysis, and numerically demonstrated to asymptot-
ically determine the range information for a paracatadioptric system

Fig. 5. Estimation error of auxiliary signals in the presence of noise: (a) _e (t),
(b) _e (t), and (c) _e (t) in [pixels/sec].

Fig. 6. Mismatch between y (t) and ŷ (t) in the presence of noise.

with known motion parameters. If specific observability conditions are
satisfied, the identified range can be used to reconstruct the Euclidean
coordinates of the moving object or camera.
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