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~ Abstract— Structure in the interconnection topology among [12]. For example, distributed heuristic algorithms fore th
individuals of a multiagent system plays a fundamental role formation of geometric patterns in the plane (e.g., cireled
in the system’s steady-state and transient behaviors. Thipa- polygons) are investigated in [13]. Artificial potentialeaised

per explores how certain interconnection topologies influece t te stabl tric. f fi by i i Irt
symmetry in a multiagent system’s trajectories. It is shown © generaie stable symmetric tormalions by inserting &irtu

how circulant connectivity preserves rotation, and in paricular leaders among the agents in [14]. A method for stabilizing
instances, dihedral group symmetries in a formation of lochly —multiple agents to rigidly constrained formations, whilewn

interacting planar integrators. Moreover, it is revealed to what ing along a desired path, is examined in [15]. In [16], a hybri
extent circulant connectivity is also necessary in order tat  cqnyro| strategy is employed to achieve stability for a ki
symmetric formations remain symmetric under the multiagert formation, irrespective of its symmetry. Symmetric forioat
system’s dynamics. ! - . )
_ . _ have been considered for a variety of types of agents from
. Index. Terms— Cooperative contrql, multlagen.t formations, satellites [17] to wheeled vehicles [18], [19], [20].
information flow, symmetry groups, circulant matrices. . . . ! L
How information flow influences the stability of forma-
tions is studied in [21]. Of relevance to the current work is
[22], which exploits the symmetry in a network of coupled
“It's a basic principle: Structure always affects function identical dynamical systems to classify invariant mariobf
says Steven Strogatz in his book entitl8gnc[1, p. 237]. the overall system dynamics with respect to their stability
This paper explores how the interconnection structure @moHence, “stability in the network descends from its topolbgy
locally interacting agents influences, in particular, theari- [22, p. 67]. Symmetry in the interconnection structure soal
ance of discrete symmetries in its trajectories. Consitler texploited in [23], which studies the problem of distributed
problem of dynamic target tracking using a teamrof> 1  controller synthesis for large arrays of spatially intencected
autonomous mobile robots. This task requires that agesigstems.
act as a mobile and reconfigurable sensor array. Suppos&he present research is especially influenced by [24] and
each agent is equipped with a target-tracking sensor (e]@5], wherein a circulant interconnection structure among
an ultrasonic sensor, a laser range finder, or a CCD camera)ltiple agents is utilized to deduce the overall steady-
that, when combined with the sensor readings of other agersitate behavior of the agents. In particular, [24] studies th
can be utilized by a central observer to estimate the locatiasymptotic behavior of a collection of agents in discratest
of a target. If the sensors measure distances to the targétulant pursuit. Similarly, [25] studies the stabilitf @ertain
then it can be shown that a configuration that optimizes tiggometric patterns for a collection of continuous-time dixe
estimate is one in which the sensors are uniformly placed speed agents in cyclic pursuit.
a circular fashion around the target [2]. This optimal senso This paper studies connectivity as it relates to the problem
placement is “symmetrical,” in the sense that the configomat of choosing distributed controllers thatherently preserve
remains optimal under rotations Byt /n about the target. The symmetric formations. Designing or studying the stability
problem of symmetrical arrangement of agents in a formati@fi symmetric formations, as in [15], [16], [22], [14], [21],
has applications in area coverage [3], [4], [5], sampling & not examined here. We identify interconnection struesur
distributed data [6], antenna arrays and reconfigurabédlisat that naturally result in invariant manifolds corresporngio
dishes [7], estimation and localization [8], and in mobiléormation symmetries. This paper considers> 1 identical
communication networks to reduce power usage and increa$@nar integrators in self-pursuit, each endowed with only
the quality of transmissions [9]. relative sensing capabilities, and with a fixed sensingltupo
The problem of achieving and maintaining symmetry iit is revealed how the information flow structure among agent
multiagent formations has been widely studied [10], [11l]nfluences symmetry in the multiagent system’s trajectorie

_ _ _ , In particular we show that the only agent interconnection
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I. INTRODUCTION



Our results can be viewed as a first step toward more complexthe paper is organized as follows. Section Il begins with

frameworks such as nonlinear agent dynamics, time-varyingtation and background. Section Il introduces systems of

sensing topologies, multi-agent systems with fixed exterregents in self-pursuit and some associated concepts in al-

references, and control strategies other than linear fiursu gebraic graph theory. Next, in Section 1V, it is shown how
The motivation for studying this problem is two-fold. Onecirculant connectivity preserves cyclic group symmetiiies

is as a first step toward a more general theoretical framewarkiltiagent formations. Section V reveals to what exterdieir

for symmetry invariance in multi-agent systems. The secolaht connectivity is necessary in order that symmetric farm

is because symmetric arrangements of agents are usefutidms remain invariant under the system’s dynamics. Rnall

applications. However, we wish to emphasize that is tt&ections VI and VII discuss graph symmetry and dihedral

first motivation which is more relevant in this paper. Wesymmetry invariance, respectively.

study an idealized problem of rendezvous with an idealized

vehicle model of point mass agents, using among the simplest II. NOTATION AND BACKGROUND

communication structures: self-pursuit. Each of thesdogso

represents an abstraction of real-world situations. Oystean

size is on the theoretical question of what control behaviol

can be achieved under a severe restriction on sensor datal.am'

the literature cited above the emphasis has been on achievin

rendezvous and consensus alone, whereas the theme of Ahi®ermutations

This section introduces some notation and background ma-
rial relating to permutations and symmetry groups, pasti
cyclic and dihedral symmetries.

paper is to show other desirable behaviors can be achieved.g; zr.— {1,2,...,n}. Abijections : N — A/, is called a
Ultimately, a compendium of useful collective behaviorsigo pqmutationof the set\. In general, one can write(1) = i,
be classified for a given sensor structure. A next step in t ) = i, ..., 0(n) = in, OF [31, pp. 24-25],

research is to understand how the simplifying assumptions i

our framework can be removed while retaining the same set o - ( 1 2 e ) _

of desirable collective behaviors. i 2 ot ip

In summary, the contributions of the paper are as followgissociated with every permutatioa is a square matrix,

first we study cyclic group symmetries in planar multi-agerfenotedr,, of ordern. Given ann x n matrix A = [a;x], Py
formations. We define the notion of cyclic formation symmietris sych thatP, A = las(),1) and, therefore, thaP, AP =

and relate this to a permutation applied to the agent indic%j(i) ~(k] (€.9.,11, is the matrix corresponding to(i) =
We show that this permutation is always similar (in the sengg. 1)’_ Leto!(i) := gooo---oo(i), the permutation applied

of similar matrices) to a certain power of the fundamentaliimes to elemeni € \. Everyi € N generates a subset
permutation matrix, assuming that a canonical labelindhef tof A/ called acycle of lengthl, where! is the least positive
agent indices is adopted. The idea of a canonical labeling fﬁteger such that! (i) = i. In general, a permutation can be
cyclic symmetries, which is not new [29], [30], is contrabtefactored into a product of disjoint cycles. This factoriaat
with repositioning the agents. Using this labeling, we shoi unique up to the ordering of factors (which are disjoint

that cyclic formation symmetry is invariant under a cirala cycles). A permutation is callegrimitive if it has only one
communcation structure. Invariance is obtained by showifgetor (which has full lengt).

that the agents evolve on a complex linear subspace, and the

dynamics on this subspace are explicitly characterizedt,Ne ) .

we explore the extent to which circulant communicationastruB: CYclic and Dihedral Group Symmetry

ture is necessary for cyclic formation symmetry invariarie It is assumed that the reader is familiar with some basic
way of an example, we show that a cyclic group symmetgroup theory; good references are [29], [32]. In this paper,
may be invariant even of the communication structure is nofe utilize two abstract finite groups, the cyclic and dihédra
circulant. However, if a cyclic group symmetry and all ofgroups. A group is callectyclic when all its elements are
its subgroups are invariant under the multiagent dynamiggwersg® of some one elemenj. For any elemeny in a
then the communication structure must be circulant. Negt, vgroup G, the set{¢* : k € Z} defines the cyclic subgroup of
consider the question of whether all of the above resultdeanG generated by. If ¢™ = g; for some positive integem,
explained simply by studying the topology of the sensor grapthen the group generated bys a finite group. Ifm is the least
We introduce the notion of graph symmetry - analogous fwsitive integer for which this is true, then is the group’s
formation symmetry - and the notion of a structurally ciemtl order and the group i§g;, g, 9%, . .., g™ '}. Alternatively, the
matrix - analogous to a circulant matrix - notions which mega finite cyclic group of ordern has the presentatiofy : ¢” =
only the associated graph structures. It is shown by way @f).

example that graph symmetry is not sufficient to preserve An example of the abstract cyclic group in the plane is the
cyclic group symmetries. Finally, we briefly address dilmdrrotation symmetry (here called the cyclic groughf), which,
symmetries. We define dihedral group symmetry and show, tyughly speaking, means an object looks the same after a give
way of example, that dihedral symmetries are generally naitation in the plane.

preserved by a circulant communication structure. However Definition 1 (Cyclic Group inR?): Thecyclic group inR?
special class of dihedral symmetries in which the agents ¢ orderm, denotedC,,, is the finite cyclic group generated
on a circle do have this property. by a rotation througt2w/m about the origin.



We say that a subsat C R? has symmetry’,, if the cyclic  vertices, one for each agent, along with a &edf |£] > 0
groupC,, is a symmetry group dif. Every finite subgroup of directed edges;;, = (i, k) € £, wherei, k € V. The existence
I(R?), the group of isometries &2, leaves at least one pointof an edge:;;. indicates that thé-th agent receives information
invariant [29, p. 44]. In this paper, it is assumed (withagd about thek-th agent. The adjacenty matriA associates a
of generality) that this point is always the origin. weight to each edge of the digraph: tlig k) element of

Consider two group elements: gz and g¢gr A is the weighta;; associated with the edgeg, € &, and
in G (which can be interpreted as a rotations otherwise zero. Alternatively, given an adjacency matri
and reflection in R2, respectively). Then the setA, one can define an associated digraph, dendted). If

{91, 98, 9%, 9% " 9r, GRIF, GRGF, -, G " gr} aix # 0, then there exists a directed edgdif¥) from vertex
defines the finitedihedral group of order2m. Alternatively, i to k.

this group has the presentatiogr,gr : g% = g% = Information about the formation of agents together with
(9r9r)* = g1). their interconnection topology can be combined into one

Definition 2 (Dihedral Group inR?): The dihedral group graph. At each instant, we define a set of locationg, =
in R? of order2m, denotedD,,,, is the finite dihedral group {z;(t), z2(t),..., z,(t)} and a set; of edge vectors;;(t) :
generated byn rotations througl2z/m about the origin and V; x V; — C such that an edge;;(t) := 2j(t) — z;(t) exists
m reflections about lines through the origin that make anglés&; only if there exists a corresponding edgefinWe refer
of m/m with each other. to the pair(Vy, &) =: T'(A, z(t)) as theformation graph(or

The dihedral groupD,, is the complete symmetry groupjust graphfor short). Fig. 1 provides three example formation
of an m-sided regular polygon [29, p. 46]. We say tliatC  graphs.
R? has symmetryD,, if the regular polygon groud,, is a
symmetry group of/. Note thatC,,, is a subgroup oD,,,; i.e.,
symmetryD,,, implies symmetryC,,, but not the converse.

We are interested only in finite subgroups of the isometry 5
group I(R?), since a real formation of agents (or subset §—°
U C R?), not all collocated, can have only a finite set of 3
symmetries. Given some positive integer C,,, and D,,, are 4
the only finite subgroups of (R?) [33]. Thus, cyclic and
dihedral group symmetries R? are the only groups we study.

5.
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IIl. AGENTS INPURSUIT

Agents are viewed as points in the complex plane, denoted @ (b)
C. Considern > 1 planar agentsz;(t), za(t),..., zn(t) €
C, evolving in timet. Suppose that each agent is a simple 2,6
integrator; i.e.z;(t) = u;(t) € C,i =1,2,...,n, whereu,(t)
is the control input. Assume that these kinematic agents hav
only relative sensing capabilities (i.e., the agents do not have
information about their own or other agents states in terms o
an absolute coordinate system) and, therefore, that thesnp
u;(t) are of the type

3,7 15

wilt) =3 an (540 - %(0), i = 1,2,...n. (1) 48
r ©

That is, the aggregate multiagent system is of the form
2(t) = Az(1), )

wherez(t) = (z1(t),...,2,(t)) € C™ and A is a weighted  This paper addresses the following question: What fixed
adjacency matrix describing the flow of information betweeimterconnection topologieB(A) and associated interconnec-
agents. A direct consequence of the relative sensing limita tion weights A = [a;;] preserve rotation and dihedral group
is the property that follows. symmetries in multiagent formationgt) € C™ for all t > 0?

Property 1: The adjacency matrixA has zero row-sums
(e, A[11...1]T =0).

Hence, if the agents are all collocated, then there is
motion. It will be shown in Sections IV and V that of fundamental

For the system ofn > 1 agents, the information flow significance to the topic of symmetry is a particular interco
between agents is directed, so this flow of information carection structure in the sensing topology: namelyculant
be represented by digraph denotedl’ = (V, &) [34]. The connectivity By circulant connectivity it is meant that the
digraphT consists of a finite se¥ of |V| = n enumerated adjacency or system matrit is acirculant matrix[31]; i.e.,

Fig. 1. Example formation grapHs(A, z(t)).

hAb Circulant Interconnections



of the form eI /M (t) = Pyz(t). (3)

o a1 - ln-l That s, by rotating the agentst) € C through angl@nr/m
Gp—-1 Qo - An—2 I 1 1
A= . ' ' . circ(ag, ar, .. an_1). one obtains the same set of pointsGn b_ut (generally) with
: : : a different labeling. Henceforth, we will simply say that a
ai  as - ap formationz(t) € C™ has symmetry’,,, “with P,” if the vector

z(t) satisfies Definition 3 with associated permutation matrix
5%. Following Definition 3, several remarks are in order. Let
no > 0 denote the number of agents located at the origin.
Remark 1:If at time ¢ a formation z(¢) with np = 0
has symmetryC,,, then m divides n. This is because, if

of couplingbetween vertices of the Clrcul_ant digraptid). e applies the associated constraint (3) in sequencéngtart
Denote the fundamental permutation matrix of ordefl,, = from =;() # 0, one obtains at the-th iteration =, () =

circ(0,1,0,...,0). If there exists a relabeling of the agent ;o /m, .
A : . : i(t) = z;(t). Hence,m = n or is a factor of
indices such that! is subsequently circulant, then the systerﬁ zi(t) = z(t) = orm < n

also has circulant connectivity. Further details abouleling 7, implying t.hat the cycl_m group@n Is subgroup ofC',.
. . . Remark 2:If a formation z(¢) with no = 0 has symmetry
are provided in Section IV-B.

Following a standard notion, e.g., as in [35], a matri%'”’ then the associated permutatiens primitive. For if not

A1 is said to have the samstructure as another matrix lllt(ra]"'ta h?S a cyc_le ;f Ienglilﬁ <j272}nthetn Sn;lOb;aIES a; the
A,, of the same dimensions, if for every zero entry 4f V\_/hi<:lhe<r:2rl102n(lasblen trueen:‘(a;; . it f(l a o2 (1) = 2(b),
the corresponding entry i, is also zero, and vice versa. y <nif 2(t) =0.

Accordingly, if a square matrix4 is such that there exists Remark(;B:Sup;]pose a forr?fat;]on(t) W'th”"O :dO has
a circulant matrix4, of the same order and structure 4s SYMMeyCr, wherem < n. It there are collocated agents,

then A is calledstructurally circulant Clearly, the topology of then it is possible that there exists more than one pernoatati

T'(A) is identical to that of’(A.). In particular a graph may U_SUCh that (3) is sat|sf|ed._ For Instance, the- § agents in
have a circulant connectivity because the adjacency m'a;trixF'g' 1c have symmetry’s with the primitive permutation
structurally circulant, even if it is not circulant. For enple, (1 2 - 7T 8
the graphs in Fig. 1a and Fig. 1b correspond to structurally 7 ( 2 3 -+ 8 1 ) ’
circulant adjacency matrices. This raises a question to be . .
addressed iri the seyquel: is it sufficient for the a((jqjacendyixna or, equwalen.tlyp = (1,2,...,8). However, the consraint (3)
. . ; also holds with

to be circulant, or structurally circulant, to preservenfiation
symmetries? 0:<1 234567 8)

If the degree of coupling between individuals As= 1 23416 738 5)°

and the off-diagonal element of a circulant matdxis pos- \hich has two factors and can be denoted —

itive, then (2) becomes the well-knovayclic pursuit(a.k.a., (1 2 3 4)(5,6,7,8). Following Remark 1, it is clear from the

dogs, mice, bugs, or beetles) problem; e.g., ageéptirsues” geometry of symmetry’,, that any factors of must have a
agent: + 1, modulon [36]. Cyclic pursuit has a long a”dlength that is a multiple ofn.

interesting history in the mathematics and physics litesgt
and the interested reader is referred to [37], [36] for histd

Each row is merely the row above, shifted one element
the right (modulon). The matrix is entirely determined by
its first row. Letx > 0 denote the cardinality of the set
{i e {1,...,n—1} | a; # 0}; i.e., k represents thelegree

Consequent to Remark 3, it is assumed in this paper that
, , | if a formationz(¢) has symmetn(,,, according to Definition
accounts. Finally, if the degree of coupling = n — 1, 3 4nq,,, — 0, then its associated permutationis one that
then this corresponds to what is often referred to as “all-t@,~iors into exactlyn/m cycles of lengthm. Let gedn, q)
all” coupling, since every agent can sense every other agefiote the greatest common divisor of the integemnd g.
Although not every all-to-all coupled matrid is circulant, The following is a useful fact.

every all-to-all coupledd is structurally circulant. Remark 4:1f m divides n, then there always exists an

IV. SYMMETRIC FORMATIONS AND INVARIANCE integerq € {1,2,...,n—1} such that gcth, q) = n/m since

If we consider only the agent positions and ignore thge can always choose= n/m.

interagent connections, the configuration of poinfs) € C”
at time¢ is referred to as a multiagefirmation The focus B.
of this section is on cyclic group formation symmetries, and
the principal result is Theorem 2, which states that if aeyst Before discussing symmetry invariance, this section estab
has circulant connectivity (see Section I1I-A), then synice lishes a connection between formation symmetty, and
formations remain symmetric. Dihedral symmetry is examing canonical labeling of the agents. It is shown that agents

Canonical Labeling

in Section VII. satisfying the formation symmetry constraint (3) can alsvag
relabeled such that (3) holds with, = I1¢, for an appropriate
A. Cyclic Group Formations choice ofq. Note that the permutation correspondingip =

Definition 3 (,,, Formation Symmetry)The  formation II% is o(i) = i +¢, i = 1,2,...,n. This choice of labeling
z(t) € C" at timet is said to have symmetr¢,, if there is not new; indeed, some textbooks assume it from the outset

exists a permutation : A" — A such that when discussing cyclic group symmetry; e.g., [29], [30].



Theorem 1:Consider a formatio(t) that has no agents at Finally, agents at the origin play no role in symmetry;
the origin. Suppose that(t) has symmetryC,, at timet and they merely complicate the labeling. Hence, for the sake of
letqg € {1,2,...,n—1} satisfy gcdn, ¢g) = n/m (cf. Remark simplicity, it is assumed that, = 0 throughout the remainder
4). Then, there exists a permutatienof the agent locations of this paper.

z(t) = P-Z(t) such that (3) holds withP, = TIZ.
Example 1:Consider the formation of agents in Fig. 2ac, symmetry Invariance

which has symmetry’s since the constraint (3) holds with The focus of this paper is on identifying certain intercarmne

m =5 and ~ _ tion structures that inherently result in invariance offiation
0000010000 symmetries. Following Section IV-B, this naturally leads t
000000O0O0O01 the next definition.

0100000000 Definition 4 (,,, Formation Symmetry Invariance):et m
0010000000 be a divisor ofn. Formation symmetryC,, is said to be
p,—| 000 100070700 invariantunder the dynamics (2) if for everye {1,2,...,n—
0000001000 1} such that gcth, ) = n/m and for every initial formation
000000O0CT1TO00 2(0) € C" having symmetry”,,, with P, = I1¢, the formation
000000O0O0OT1O®O0 z(t) has formation symmetrg,,, with P, = I1¢ for all ¢ > 0.
1000000000 The next result shows that givenproperly labeled agents,
000010000 0] every possible cyclic group symmetry of a formation is ifwvar

In Fig. 2, the angle between adjacent dotted lines of eq@lt when the dynamics are circulant. .
length is27/5. Theorem 2:If A is a circulant matrix, then formation

Let ¢ = 4, which satisfies gad0,4) = 10/5 = 2. By SymmetryCy, is invariant under the dynamics (2) for every
Theorem 1, there exists a permutationf the agent locations " that dividesn.

such that (3) holds with the permutation matfl$,, as in Fig. Proof: For everym that dividesn, associated with the
2b. After this repositioning, the new permutatiod (i) = i+4 constraint (3) at timet = 0 is a complex linear subspace
factors asy = (1,5,9,3,7)(2,6, 10,4, 8). o M={zeC":Mz=0}CC", whereM = I1¢—e/2"/™,.
SinceA is a circulant matrix, it commutes witfi,, [31, p. 68].
06 ©5 Thus,
7 ' 9 2 , ,
o' S o 6 MA = (1 — /™1, ) A= A (T = /", ) = AM.
o 02 o 02 o : o
5 s 1 T 0 - 1 This implies M is invariant under the dynamics (2), implying
O i O O O the constraint (3) holds wit#, = I1¢ for all ¢ > 0. n
o Og o Og Example 2:Consider then = 8 agents depicted in Fig.
o O, o O, 3a. This formationz(0) has symmetryCy with associated
8 . 3 . permutations = (1, 3,5,7)(2,4,6,8). Let
Og O7 _
@ ® A =circ(—-1,-1,0,0,0,0,2,0) 4)

be the corresponding multiagent system matrix. Thus, every
agenti € V is repelled from agent+ 1, but doubly attracted
Let 7 denote the permutation of Theorem 1 that relabels the agenti + 6. Fig. 2b shows the evolution of the formation
agents. Notice that by substitutiagt) = P, z(t) into (3), one starting atz(0) under the dynamics (2) with (4). The fact
obtains that the agents converge to the origin is not of interest.here
J2m T i e Rather, the dashed and dotted lines connecting the agents
¢ (1) = PrP P 2(t) = 5z (1). {1,3,5,7} and {2,4,6,8}, respectively, form a square at
Remark 5:1f a formation z(t) has symmetryC,,, then regular intervals during the simulation, highlighting th@,
any permutation that relabels the agent indices does ®ymmetry is preserved. ©
change the symmetry; it changes only the permutatiavith Corollary 1: Given a permutatiorr, let 7 be such that
which (3) holds. Howeverepositioningthe agents (generally) P-P» P, = 112 (cf. Theorem 1). Letn be any divisor ofn
constitutes a change in the initial formation. For examplénd suppose(0) € C" has symmetryC,, with permutation
swapping the locations of agents 2 and 3 in Fig. 1b will changeatrix P,. If P, AP, is a circulant matrix, then the formation
the group’s transient behavior. Instead, if one simultasgo z(t) has symmetnC;, with P, for all ¢ > 0.
permutes the rows and columns.fy P, AP, one can now Proof: If z(0) has symmetryC,,, with P,, Theorem 1
view this change as merely a transformation of coordinatéays that there always exists a relabeling of the ag&its=
given by P; or, equivalently, simply @elabelingof the agents. £-z(0) such that
Henceforth, we will simply say that a formatiarit) € C" om /MmN TTa &
has symmetry”,, “with P, = 114" if the vector z(t) satisfies 7 E(0) = M Z(0), ©®)
Definition 3 with P, = 119 for someq € {1,2,...,n — 1} whereq € {1,2,...,n — 1} satisfies gcth,q) = n/m.
satisfying gcdn, q) = n/m. Viewing zZ(t) = Prz(t) as a transformation of coordinates

Fig. 2. A formation ofn = 10 agents withC's symmetry.



(b) Simulation demonstrating symmetry invariance.

Fig. 3. Initial formation graph and simulation results foxample 2.

implies that (2) becomes

Z(t) = PLAP] (t). (6)

positions. Hence, the relabeling that tak@s into the form
11,, is given by

S O =

PT = (7)

s}

o = o o
o o= O
= O O O

Moreover, the relabeling yieldB, AP, = circ(—2,1,2, —1).

Therefore, following Corollary 1, the formatior(¢) has
symmetryCy for all ¢ > 0. o

4
@ (b)
Fig. 4. Circulant formation graphB(A, z(t)).

In conclusion, if the multiagent system (2) has an undegyin
circulant structure (possibly after a change of coordisiate
a.k.a., a relabeling), then every cyclic group symmetnarof
initial formation, is invariant under the system’s dynasic

D. Decomposition of the Dynamics

Before moving on to necessity, this section briefly explores
the complex linear subspace that corresponds to formation
symmetryC,,, in the proof of Theorem 2.

It was shown in the previous section that, given a canonical
labeling, circulant systems preserve cyclic group symieetr
(Theorem 2). The complex linear subspadd = {z €
C" : Mz = 0} c C*, where M = M¢ — ¢/?7/™], and
which characterizes cyclic group symmetries, correspaads
n — n/m independent complex constraints on the motion of
the multiagent system (2). In other words, dimEére= n/m.

If the new system matri®, AP, is circulant, then (5) and (6) One way to see this is graphically. For example, consider the
satisfy the conditions of Theorem 2. Therefore, the foromati » = 10 agents with symmetry’s in Fig. 2b. The associated

Z(t) has symmetnyC,, with permutationll¢ for all ¢ > 0. If
Z(t) has symmetry’,, for all t > 0, thenz(t) = P z(¢) also

permutation factors into two disjoint cycles; namety, =
(1,5,8,3,7)(2,6,10,4,8). By selecting only two agents, one

has symmetry”,,, (with P,) for all ¢ > 0. This is because the from each cycle, one can determine the locations of all the
change of coordinates given byis merely a permutation of remaining agents by performing rotations throdgh'5. More
the agent locations, which does not alter the symmetry of tBenerally, one can always write out the cycles generated by a

formation (cf. Remark 5). [ |

givenC,,, formation of agents, 2, ...,n/m. These cycles are

The following example illustrates the previous corollary. the disjoint factors ot (i) = i + g, where gcdn, q) = n/m.

Example 3:Consider a system (2) of = 4 agents with

2 2 1 -1
2 —2 -1 1

A=\ _4 1 o 9
1 -1 2 -2

which is not circulant. Suppose the grapli4, z(0)) is the

same as in Fig. 4a, but with agertsand 3 having swapped () =

Since we are allowed to independently specify the locatadins
the firstn/m agents, we have exactly/m complex degrees
of freedom. Hence, there exist— n/m independent complex
constraints on the system.

Let p := n/m and definew(t) := (z1(t), z2(t), . . ., zp(t)).
For everyz(t) € M, z(t) can be written as
w’ (t)

-
ej27r/mwT(t) (ejQﬂ/m)m_le(t) :| .



Observe that if the system matrix is circulant and of order It can be verified by simulation that, under the dynamics (2)
n = p-m, it can be partitioned into precisely:? blocks, with (10), the formationz(¢) has symmetnyC, for all ¢ > 0.
each of orderp. This partitioning causesi to become a However, it can also be verified that there exists an initial

block circulantmatrix, denotedd = circ(A4y, A1, ..., Am—1), formation having symmetrgs; (a subgroup o’,) with P, =
where the blocksdy, A1, . .., A,,_1 are of orderp; see [31, II? such that symmetry’, is not preserved for alt > 0. In
Section 5.6]. This partitioning allows one to write thg¢m- particular, if we select the initial condition (0) = 25(0) and
dimensional dynamics oM as z2(0) = z4(0), then the agents remain colinear for gllbut
) B for sufficient smallt > 0, agents 1 and 3 pursue 2 and 4,
w(t) = | ‘éio Av e Ao [2(0) @) while agent 2 moves away from 1 and 3 and agent 4 moves
— , i toward 2 and 3. Thus}; symmetry is instantaneously broken
_ 27 /m )
= Z (ej ) Asw(t). ©)  aftert — 0.
=0

<
Example 4:Consider the special case of cyclic pursuit (see
Section IlI-A), with A = circ(—1,1,0,...,0). Suppose(t) €
C™ has symmetny(C,, with P, = II,,. Hence, the dimension
of the complex dynamics oM is simply 1 (i.e., there are
n — 1 complex constraints). Let(t) = z1(¢), yielding the
dynamics onM,

i(t) = (27" 1) w(t).

Next, consider the agents in Fig. 1a. The formatidt) of 4
n = 6 agents has symmeti§/, with P, = II3. Suppose the
agents are in cyclic pursuit witll = circ(—1,1,0,...,0),
which is consistent with the gragh( A, z(¢)) in the figure. In
this casew(t) = (21(¢), 22(t), z3(t)). The dynamics onM ) )
have dimensior6/2 = 3, and are given by B. A Special Class of Formations
In studying the necessity of circulant connectivity, it is

Fig. 5. Non-circulant figurd’(A, z(0)) for Example 5

. -1 Lo helpful to employ a special class of formationg); namely,
w(t) = 0 —1 1 |w(t). : )
1 01 those given by the constraint
Using (8), the3 x 3 matrix in the above equation i, — A, wiz(t) = Mn2(1), (11)
where 4, is the upper-left3 x 3 block of A and A4, is the for someq € {1,2,...,n — 1} and wherew := ed2m/n
upper-right3 x 3 block of A. ©  Notice that the locations;(t), i = 1,2,...,n, generated by
the constraint (11) all have the same magnitude, and hence
V. CIRCULANT NECESSITY lie on a common circle. The following lemma associates a

Thus far, it has been proved that circulant multiagef@rmation satisfying (11) with its symmetry.
systems preserve cyclic group symmetries. The questidn thak€mma 1:Supposev?z(t) = IL,z(t) holds for somey €
is addressed in this section is: To what extent is circulaht:2;---,n—1}andz(t) € C". Then, the formation(t) has
connectivity also necessary? It is revealed in Theorem &lwh SymmetryCy,,, wherem = n/gcdn, q).

follows, that circulant connectivity is necessary if synirye Proof: Let p := gcdn,q) and definem := n/p and
C,, is to be invariant under the multiagent system’s dynamiés := ¢/p- To show that the formation has symmedy,, we
for everym that dividesn. must show there exists a permutation matfix such that (3)

holds. From (11),

A. Counterexample (ej27r/n)q () = (ejQﬂ'/m)kq 2() = T2(t) 12)
For any singlem dividing n, the condition of Theorem 2

that A be circulant is not, in general, necessary for symmetRY Bézout's identity, there exist integers, and!,, such that

invariance. The following example illustrates this fact. 1 = gedkg,m) = lgkq + lmm. This fact together with (12)
Example 5:Consider a system (2) of = 4 agents, where Yields

the inputs (1) are chosen such that the corresponding system

I,k
27 /m _ j2m/m\ 41 717!
matrix A is the non-circulant matrix /M (1) = (67 / ) z(t) = 1L2(t).  (13)

-1 0 0 By letting P, = 1%, one obtains the desired result. |
A= -10 0 1 (10) Notice that the proof of Lemma 1 also reveals how forma-
(1) 8 _(1) i tions satisfying the special constraint (11) have symmeétry

. - . . 1Given two nonzero integers andb, Bézout’s identity says that there exist
Consider the initial formation(0) and grapH’(A4, z(0)) given  jyegerse andd such that gcth, b) = ac + bd [38, Section 1.2, Theorem

in Fig. 5. The formatiorz(0) has symmetry’, with P, = I1,. 1.7].



with the canonical labeling introduced in Section IV-B;.j.efor all ¢ > 0, using Lemma 2 again in the last step. In

(3) holds with P, = TI%.

Example 6:Consider the example grapli§A4, z(0)) with
wiz(0) = II,2(0) given in Fig. 6, wheren = 6. In Fig.
6a, ¢ = 1 and the formation has symmetty; sincem =
6/gcd6,1) = 6/1 = 6. In Fig. 6b,¢ = 2 and the formation
has symmetr's sincem = 6/gcd6,2) = 6/2 = 3. o

2,5

1,4

3,6

@qg=1 (b)g=2
Fig. 6. Example graph¥ (A, z(0)) with w?z(0) = IIsz(0).

Let v, := (1,w?,w??, ..., w®"1D9) which happens to be
the (¢ + 1)-th column of\/nF}, where F},, denotes the well
known Fourier matrix [31, p. 32].

Lemma 2:For everyq € {1,2,...,n—1}, z € C" satisfies
wiz =1II,z if and only if z = vy2;.

Proof: The statemenb?z = II,,z is equivalent to

20 = wiz

25 = wlzg = Wiz

Zn = w(n—l)qz17

with w™?z; = z;. Equivalently,z = v, 2. [ |

C. Necessary Conditions for Invariance

Theorem 3:If formation symmetryC,, is invariant under
the dynamics (2) for everyn that dividesn, then A is a
circulant matrix.

Proof: Theorem 3.1.1 of [31] says that anx n matrix A

particular, sincez; (0) # 0, (I, A — AIL,)vy = 0.

By Property 1,A has zero row-sums. Thusiy, = 0.
Also, becausey, is an eigenvector ofl,, with corresponding
eigenvector\ = 1, II,vg = vo [31, pp. 72-73]. Therefore,
one finds

(HnA — AHn) Vo = HnAUO — AHnUO = —AUO =0.

Recall that,[vo v1 -+ v,—1] = /nF}, where F, is the
Fourier matrix [31, p.32]. Therefore, we have shown that
(I1,,A — AIl,,)F; = 0. SinceF: is invertible,I,, A — AIl,, =
0. Therefore,A is circulant. [ |

The following example highlights the significance of the
assumption that not only is symmet€y;, invariant, but also
all of its subgroups are invariant under the system’s dynami
(further to Example 5).

Example 7:Considern = 6 agents initially configured
such thatwz(0) = IIgz(0). Suppose the graph (4, z(0))
is coupled in an all-to-all fashion, as in Fig. 6a. Lét=
circ(—5,1,1,1,1,1) and let A be the matrixA but with its
second row replaced byl/2,—4,1/2,1/2,2,1/2). For the
initial formation wz(0) = IIsz(0), Fig. 7a shows how the
cyclic groupCs is invariant under the dynamics (2), despite the
fact thatA is not circulant. In Fig. 7a, the dashed lines connect
agents{1,2,3,4,5,6}, in sequence, at regular intervals during
the simulation.

However, consider a different initial formatian?z(0) =
II2(0), which has symmetryCs (since gcd6,2) = 2,
implying that m = 6/2 = 3). C3 is a subgroup ofCs.
The associated formation graph is given in Fig. 6b. Formatio
symmetry(Cjs is not invariant under the dynamics (2), as one
can see from the simulation results of Fig. 7b, where the
dashed lines connect agen{s, 2,3}. As time evolves, the
initially equilateral formation becomes only isosceles. <

VI. GRAPH SYMMETRY AND INVARIANCE

We have shown that multiagent systems with circulant con-
nectivity have the attractive property that formation syaty
C,, and all of its subgroups are invariant under the system'’s
evolution. Moreover, circulant connectivity among the rige
is also necessary to obtain this invariance property. Aigfo

permutation matrixIl,,. Therefore, it suffices to show thatthe condition that4 is circulant implies the graph is also

11, A — All, =0.
If formation symmetryC,, is invariant for everym that

divides n it must be that, in particular, initially symmetric

formations satisfying (11) are symmetric for all> 0, after

Lemma 1. Letq € {1,2,...,n — 1} be arbitrary and pick
an initial formationz(0) = v,21(0), wherez;(0) # 0. By

Lemma 2,2(0) satisfiesv?z(0) = II,,2(0). By Lemma 1,2(0)

has symmetryC,, with m = n/gcdn,q). By assumption,
the formationz(t) has symmetryC,, for all ¢ > 0. By

differentiating the formation constraint?z(t) = I1,,z(¢) with

respect to time, one obtains

WIAz(t) = T, Az(t) L2 (11, A — AIL,) 2(t) = 0
— (II,,A — AIL,) vyz1(t) = 0,

symmetric. This result is offered in Proposition 1, but a
definition and example are helpful first.

Definition 5 (Graph Symmetry)The graphT'(A4,z(t)) =
(W, &) is said to have the symmetry group at time ¢
if it has the property that for every elemept € G, if
v(t) € Vy, thengu(t) € Vi, and ife(t) € &, thenge(t) € &;.
Moreover, the induced mapgt) — gv(t) ande(t) — ge(t)
are permutations.

Note that Definition 5 is consistent with the standard notion
of symmetry introduced in Section 1I-B, which is that every
elementy € G leaves the set of points in question unchanged.
Here, we have only been more explicit about the fact that
vertices map only to vertices, and edges to edges. It should
also be emphasized that this definition applies equally tb bo



the dihedral groupD; but not D, because a reflection about
the line through the center with andde /4 reverses the edge
directions. Fig. 1c has symmetiy;, but notC, because a
rotation throughr changes the edge directions. o

Proposition 1: Suppose:(t) has symmetry,, with P, =
I1Z. If A is a structurally circulant matrix, then the graph
T'(A4, z(t)) has symmetny(,,.

Proof: As per Definition 5, it is enough to show that the
map induced by a generator of the cyclic grop, maps
vertices in), (respectively, edge vectors &)) to vertices in
V; (respectively, edge vectors i}) by a bijection. Rotation
through2m/m is a generator of the cyclic groug,, (cf. Def-
inition 1). Constraint (3) implies the mag(t) — e/2™/™z(t)
is a bijection onV;, which means that vertices(t) € V, are
mapped to vertices i, by a bijection. Consider the rotation
of an arbitrary edge vectar;(t) € & through angle2r/m,
yielding

I Men(t) = M (2(t) — z(1))
= 2ktq(t) = Zitq(t) = €itqhrq(t)-

Sincee;, € &, a; # 0. But, sinceA is structurally circulant,
Qitqk+q 7 0, IMplying thate; 41+ € €. Hence, by the
constraint (3), edge vectors,(t) € & are mapped to edge
vectors in&; by a bijection. [
Example 9:Fig. 4 gives two more example graphs, each
with a (structurally) circulant interconnection topolodpe-
tween agents. In each case, one can compare formation sym-
metry with graph symmetry. Both the formation and graph
in Fig. 4a have symmetry’,. In this case, the associated
permutation iss (i) = ¢+ 1, which is primitive. In the case of
Fig. 4b, the formation:(¢) has symmetryCy, but the graph
has only symmetry’s. In this case, the permutation associated
with C symmetry iso (i) = i+ 4 ando can be factored into
exactly four distinct cycles = (1,5)(2,6)(3,7)(4, 8). ©
The following important example illustrates the fact that
graph symmetry is not sufficient to preserve cyclic group
symmetries. It also highlights, once again, the importaofce
the canonical agent labeling described in Section IV-B.
Example 10:Consider a system (2) of = 4 agents with
A = circ(—2,1,2,—1). The information flow between agents
together with their locations at time = 0 is illustrated by

(a) Cs symmetry preserved.

(b) C5 symmetry not preserved. T'(A,2(0)) in Fig. 4a. Notice thafl'(A, z(0)) has symme-
try Cy4. Clearly, (3) is satisfied with?, = II,. Following
Fig. 7. Simulations for Example 7. Theorem 2, this formation’s symmetry is invariant under the

dynamics (2). But, consider a new initial formation, given
by a permutation of the original oné(0) = P-z(0), where
symmetry Cy,, and D,,. The requirement that the maps inp_ s given by (7). Note that this is a repositioning, not a
Definition 5 be permutations (hence, bijections) guaranteg|abeling (cf. Remark 5). Since the coupling is all-tq-tile
that two agents (respectively, edges), possibly collatatgew graphr(4, 2(0)) still has symmetryC; (any permutation
cannot be mapped to the same agent (respectively, edggkhe agent locations leaves the graph unchanged). However

Notice that graph symmetry;,, (Definition 5) implies forma- (3) does not hold with?, = I1¢ for any g, since
tion symmetryC,, (Definition 3), but not the converse. For

instance, the formatiog(¢) in Fig. 1b has formation symmetry

C4 (the constraint (3) holds witlr = (1,4,2,3)), but the PI1,P =

graphT'(A, z(t)) has only symmetry’;. !
Example 8:Consider the graphB(A, z(t)) of Fig. 1. Fig.

la has symmetry’;, but notCy because a rotation through 2 e, . o —. A7 be a bijection and define : A x A" — A’ x A" such

/2 does not map vertices to vertices. Similarly, Fig. 1b hasat (i, j) — (0(i), o(j)), i, € N. Then,r is also a bijection.

3

— o o o
o= OO

0
1
0
0

o O O
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is not of the formII%. It can be shown by simulation thatA. Counterexample
symmetryC’; in the formation starting af(0) is not invariant e have already seen that circulant connectivity is sufficie

under the dynamics:(t) = Az(t), despite the fact that to preserve formation symmetty,, for everym that divides
I'(A,2(0)) has symmetryC. ¢ n. Therefore, does a similar result hold for dihedral group
symmetries? The following counterexample illustrates tha
VIl. DIHEDRAL GROUP FORMATIONS answer is, in general, no.

Example 11:Consider two squares of different side-lengths

By building on the work presented thus far, this last seguntred at the origin (hence, = 8), as shown at = 0 in
tion of the paper considers the invariance of dihedral grogy 3p. This initial formationz(0) has symmetryD,. Let

formation symmetries. Let(t) denote the complex conjugatey _ circ(—1,—1,0,0,0,0,2,0). Simulation results demon-

of Z(t)_- - _ ) strate that symmetrg’, is preserved (i.e., the squares remain
Definition 6 (D, Formation Symmetry)The —multiagent squares), but that the two squares (shown as dashed versus

formationz(¢) € C" at timet is said to have symmetr),,  dotted lines, at regular intervals, in Fig. 3b) rotate afedént

if there existm lines of symmetry rates. Honoe. the formation Symmeiy prosent at — 0 is
Ck:{ze(C:z:reij,reR}C(C7]g:1’27___’m’ broken. N
with 61 = 60 + ©/m, andm permutationss;, : N' — A B. Dihedral Invariance
such that Despite the aforementioned counterexample, a circulant
% 2(t) = Pry2(t), k=1,2,...,m. (14) system matrix does preserve dihedral group symmetries for

the special class of formations introduced in Section V-Be T

Fig. 8 helps to illustrate how these constraints relate ¥8llowing lemma extends Lemma 1 to symmetby,,
reflection about a given line passing through the origin i th Lemma 4: Supposew?z(t) = II,.=(¢) holds for sémeq c

complex plane. If this definition oD,,, formation symmetry (1,2 n—1} andz(t) € C*. Then, the formation(¢) has
is to pe consistent with the fact théi;n C D,, (see Sec_:tl(_)n symmetryD,,, wherem = n/gcdn, q).
II-B), it must be that every(/) satisfying (14) also satisfies *  proot- Following Definition 6, we need to show that there

(3). existm lines of symmetry andn corresponding permutations
that satisfy (14). The proof is by construction. Pigk :=
Arg(z1(t)), which is the principal argument of;(¢t) € C.
5 r Therefore 11 =0 +7/m, k=1,2,...,m — 1.
First, we show that (14) holds wheh = 1 for some
permutationo; : AN — N. By applying the left-hand side
of (14) to z,(t), one obtains

7?0z )
M0 (t) = 21 (b). (16)
By doing the same foe;(t), wherei € A is arbitrary, one
Re obtains
g a+0+60—a=20 €j201 Z’L(t) = ej291w(i*1)qu (t) — €j201w(lii)q21 (t)
@O =09, (1) = 2p_i4a(t). (17)

Therefore, the permutation associated with reflection alSou

iso(i)=n—i+2,i=1,2,...,n.

2 By definition 8, = 61 + n(k — 1)/m, k = 1,2,...,m.

Therefore, by applying the left-hand side of (14):tdt), one

Fig. 8. The reflection ot € C about£ C C. obtains

20T 7 3201 j2m(k—1)/m T 1 16) jom(k—1)/m

Lemma 3:If z() € C" satisfies (14), ther:(t) also a(f) = PTG (1) = P (18)

satisfies (3). But, from the proof of Lemma 1 we know that formations sat-
Proof: It is well known the product of two reflectionsisfying wz(t) = II,,z(t) also satisfye’?™/™z(t) = Hﬁ{’z(t),

yields a rotation [29, p. 35]. Let, be the permutation of where [, satisfiesl = [k, + l,m, ky = g¢/gcdn,q),

agent indices that corresponds to reflection abGutwhere 1[4, 1, € Z. This implies that (18) is equivalent to

k € {1,2,...,m}. Theno; and the formation:(¢) satisfy

(14). Now, if we reflectz(t) aboutLy, followed by £, we

obtain Hence, doing the same fox;(t), wherei € N is arbitrary,
P, =(1). (15) Yields
Let P, := P,

f . 6.720kz_—(t)
oip1 Loy Sinceby1 — 0, = m/m, the desired g o
constraint (3) is obtained. m W gizmb-t)/m ) = oo (1),

ej29k l(t) _ ej?ﬂ'(k*l)/mzl(t) _ Zl+lq(k71) (t)

720141 0526, (t) = ej2(9k+1*9k)z(t) =P,

_ ej2016j27r(k—1)/mzi(t)
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Therefore, the permutation associated with a reflectioruabo[3] J. Cortes, S. Martinez, T. Karratas, and F. Bullo, “Cagg control
Lrisop(i) =n—i+2+1(k—-1),i=1,2,...,n k =

L,

2.

2,...,m, concluding the proof. |

. [
Therefore, Lemma 4 and Lemma 3 together yield the fol-
lowing corollary to our principal sufficiency theorem, Thiem

Corollary 2: SupposeA is a circulant matrix and the for-

mation z(0) € C™ has symmetrnyD,,, with w?z(0) = II,,2(0)
for someq € {1,2,...,n — 1} satisfying gcdn,q) = n/m.
Then z(t) has symmetryD,,, with w9z(t) = II,,2(t) for all
t>0.

Proof: Since z(0) has symmetryD,, at ¢t = 0 with

w?z(0) = I1,,2(0), by definitionz(0) has symmetry,,, with
P, = I as in (13) in the proof of Lemma 1. By Theorem

25
wiz(t) = I, z(¢), for all t > 0. However, by Lemma 4, this

z(t) has symmetryC,, with P, I equivalently

implies thatz(¢) has symmetryD,,, with w?z(t) = II,,2(t)

for all £ > 0, concluding the proof.

Moreover, we have observed that although graph symmet&g
is not sufficient, it does play a necessary role in symmetry
invariance. Finally, dihedral group formations are gelhera

VIIl. CONCLUSION

(5]

(6]

(7]

(8]
El

[10]

[11]

By combining the sufficiency result of Theorem 2 and the
necessity result of Theorem 3, we have shown that for a
multiagent system of the form (1)-(2), formation symmetry
C,, is invariant under the system’s dynamics for everythat
dividesn if and only if the system has circulant connectivity.

not preserved under circulant connectivity.
A few open questions exist, in light of our results. Firstly,
one might naturally wonder about the necessity of the canoni

cal labeling introduced in Sec. IV-B and assumed in Definitid1®]
3.
Do there exist other classes of labeling for which there s6]

[12]

(14]

Is this labeling assumption without loss of generality?

symmetry invariance if and only if the system matrix is

circulant? Secondly, to what extent are the presentedtsesﬂﬂ

specific to the simple integrator model (1)—(2)? And finally,

multiagent systems design is often presented as the problem

of synthesizing local control strategies that generatéreids
global behaviors. Instead, the contributions of this paper
emphasize the importance of structure. It seems reasondb¥ H. Yamaguchi, “A distributed motion coordination g&gy for mul-
that structure could be exploited towards design. Given a
set of fixed agent behaviors, can we control a multiagepb) H. Yamaguchi and J. W. Burdick, “Time-varying feedbackntrol
system’s function (e.g., its steady-state and transidm\iers)
by intelligently switching the agent interconnection ttygy?
At present, these questions remain as future work.
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