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Violation Probability in Processor-Sharing Queues

Na Chen and Scott Jordan

Abstract—Processor-sharing queues are often used to model file trans-
mission in networks. While sojourn time is a common performance
metric in the queueing literature, average transmission rate is the more
commonly discussed metric in the networking literature. Whereas much
is known about sojourn times, there is little known about the average
service rate experienced by jobs in processor-sharing queues. We focus
here upon performance requirements in the form of an upper bound on
the probability of failing to achieve a specified minimum transmission rate
or a specified minimum average rate. For an M/G/1 processor-sharing
queue, we give a closed-form expression for this violation probability. We
derive closed-form expressions for the marginal service rate with respect
to the violation probability and to the minimum transmission rate, and
characterize when each is binding. We then consider the effect of using
connection access control by modeling an M/G/1/K processor-sharing
queue, and discuss the relationship between queue service rate, queue
limit, violation probability, and blocking probability. Finally, we consider
a two-class discriminatory processor-sharing queue, and discuss what
combinations of class weighting and service rate can be used to achieve
specified minimum rate violation probabilities for both classes.

Index Terms—Discriminatory processor-sharing (DPS), transmission
control protocol (TCP).

I. INTRODUCTION

We are motivated here by the goal of providing performance guaran-
tees for elastic data applications which require a specified transmission
rate or higher at least a specified proportion of time. Intuition suggests
that the cost of providing such a threshold violation probability guar-
antee should be increasing with the level of the guarantee, but this in-
tuition has not yet been grounded with a theoretical basis. In this paper,
we consider such guarantees in the context of processor-sharing queues
and a simple discriminatory processor-sharing queue.

Processor-sharing (PS) queues were originally intended to model
time-sharing computer systems, and nowadays are also widely used to
analyze the call-level performance of bandwidth sharing in communi-
cation systems (cf. [1]). Each user or job represents transmission of a
file, and the queue service rate (in bits/sec) represents the bandwidth,
which is shared equally among multiple transmissions. A user starts
transmission when it arrives and departs when the transmission has
completed. The transmission rate of each user changes whenever the
number of users in the system changes.

The processor-sharing service discipline is an appropriate model
when the time scale of interest is call-level and all objects share
bandwidth equally. The call-level time scale applies when the relevant
performance metrics are measured over the typical length of a file
transmission; if the relevant metrics are measured on a packet-level
time scale, then the scheduler is usually modeled as one that swaps
between jobs. The equal bandwidth assumption is often made when
there exists a mechanism, e.g., the Transmission Control Protocol
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(TCP), that attempts to equalize bandwidth between multiple streams
over multiple round trip times.

There is a rich literature concerning processor-sharing queues and
discriminatory processor-sharing (DPS) queues. The most important
performance metric for such queues is sojourn time. When modeling
file transmission, sojourn time corresponds to the time required to com-
pletely transmit the file, which is certainly of interest. For M/M/1-PS
queues, Coffman [2] derived the Laplace transform of the waiting time
distribution conditioned on the required service time and the number
of users in the system seen on arrival. By removing the conditioning
and inverting the Laplace transform, Morrison [3] obtained an integral
representation for the complementary distribution of the sojourn time,
which was further refined by Guillemin [4] via spectral theory to ob-
tain the sojourn time distribution conditioned on the number of users in
the system seen on arrival. For M/M/1/K-PS queues, Morrison [5] ob-
tained an asymptotic approximation to the distribution of the waiting
time. In heavy traffic, Morrison [6] also found the distribution of the
response time conditioned on the required service time, and Knessl [7]
constructed an asymptotic approximation to the sojourn time distribu-
tion.

For discriminatory processor-sharing queues, Fayolle [8] derived the
expected sojourn time conditioned on the required service time. Rege
and Sengupta decomposed the conditional sojourn time into constituent
parts which can be obtained by solving a system of non-linear integral
equations [9], and found linear simultaneous equations for moments
of the stationary distribution [10]. Borst [11] derived the sojourn time
asymptotics for a G/G/1-DPS queue with regularly varying service re-
quirements and proved that the sojourn time of a given class has the
same tail behavior as its service requirement.

However, the most common performance metric for data applica-
tions in the Internet is throughput, not sojourn time. Indeed, many In-
ternet service providers advertise a speed of some type when selling
residential broadband service, and there are many online speed tests
that measure throughput on a broadband connection. Throughput is ca-
sually perceived as the rate at which a computer or network sends or
receives data. However, a more precise definition of throughput is with
respect to a time window, as the number of bits transmitted divided by
the length of the time window. The time window is traditionally chosen
to correspond to the time scale on which users judge performance, typi-
cally ranging from tenths of a second for highly interactive applications
such as gaming, to seconds for moderately interactive applications such
as web browsing, to minutes for non-interactive applications such as
file downloads.

While there are many available results on sojourn time in PS queues,
there is little literature on the throughput in such queues. Definitions of
average rate as observed by users and of average rate as observed by
the queue were introduced in [12]. Comparisons between the two, and
the marginal costs associated with performance requirements in terms
of average rate were provided in [13]. Other common metrics include
slowdown (cf. [14]), mean slowdown (cf. [15]), and flow throughput
(cf. [1]). We have found no literature addressing threshold violation
probabilities of throughput in PS queues.

In Section II, we introduce definitions of minimum rate viola-
tion probability and minimum throughput violation probability. In
Section III, we give a closed-form expression for the minimum rate
violation probability, derive closed-form expressions for the marginal
service rate with respect to the violation probability and to the rate
threshold, and characterize when each is binding. In Section IV,
we then consider the effect of using connection access control by
modeling an M/M/1/K-PS queue, and discuss the relationship between
queue service rate, queue size, violation probability, and blocking
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probability. In Section V, we turn to a two-class DPS queue, and
discuss what combinations of class weighting and service rate can be
used to achieve specified violation probabilities for both classes.

We hope that these results may inspire researchers to consider viola-
tion probabilities of throughput when they are more closely related to
application performance than traditional metrics such as sojourn time.
The expressions for marginal service rate with respect to these metrics
may be used to guide dimensioning algorithms, and to set prices based
on the marginal cost of the required resources.

II. VIOLATION PROBABILITIES

In this section, we present definitions of minimum rate violation
probability seen by the queue and minimum throughput violation prob-
ability seen by users. Consider a processor-sharing queue. Letn(u) and
r(u) denote the number of users in the system and the transmission rate
per user at time u respectively.

From the queue’s perspective, the bandwidth is split among all users
present in the system; therefore, the transmission rate per user changes
immediately after a user arrives or departs. A violation probability as
observed by the queue is defined as the proportion of time the (instanta-
neous) transmission rate of a user in the system drops below a specified
value. We call this quantity the minimum rate violation probability

P I(x) � lim
t!1

t

0
Ifr(u)<x; n(u)>0gdu

t

0
Ifn(u)>0gdu

(1)

where x is the minimum transmission rate, and If:g is the indicator
function. Under the PS discipline, r(u) is inversely proportional to
n(u) for n(u) > 0; thus, in the steady state, P I(x) depends on the
stationary distribution of the number of users.

From the users’ perspective, the average transmission rate
(throughput) of user i, ri, is defined as its job length divided by
the time required to finish this job. A violation probability as observed
by users can be defined by the proportion of users with average
transmission rate lower than a specified value. We call this quantity
the minimum throughput violation probability

PA(x) � lim
n!1

1

n

n

i=1

Ifr <xg: (2)

In the steady state, PA(x) relies on the distribution of average trans-
mission rate, and therefore depends on the stationary distribution of the
sojourn time conditioned on the job length.

III. VIOLATION PROBABILITY IN AN M/G/1-PS QUEUE

In this section, we investigate the minimum rate violation probability
and the minimum throughput violation probability in an M/G/1-PS
queue. Starting by examining the expressions of P I(x) and PA(x),
we then turn to performance requirements in the form of P I(x) � p
and in the form of PA(x) � p.

Users arrive as a Poisson process with rate � (jobs/sec), and job
lengths are i.i.d. random variables with a general distribution with mean
l (bits). The bandwidth (in bits/sec) is denoted by R, the queue ser-
vice rate (in jobs/sec) is given by � = R=l, and the offered load
is denoted by � � �=� = �l=R. We assume that the queue is er-
godic, namely � < 1. Then the stationary distribution of the queue
length is geometric, given by �n � PrfN = ng = (1 � �)�n =
(1 � �l=R)(�l=R)n; n 2 [16].

Theorem 1: In an M/G/1-PS queue, the minimum rate violation
probability for x is given by P I(x) = �bR=xc = (�l=R)bR=xc, where
b:c is the floor function.

Fig. 1. P (x), P (x) or G (x) versus x in an M/M/1-PS queue (� = 0:5).

Proof: Since the bandwidth is equally shared among all active
users, the transmission rate per user, denoted by X , equals the band-
width R divided by the number of users N for N > 0. It follows that
PrfX = R=ng = �n=(1� �0) = (1� �) �n�1; n 2 +. Under the
assumption of ergodicity, P I(x) can be expressed as the probability of
a user receiving an transmission rate lower than x during a busy pe-
riod, i.e., P I(x) = PrfX < xg = 1

n=bR=xc+1PrfX = R=ng =

�bR=xc. The theorem follows.
The minimum throughput violation probability PA(x) depends

on the stationary distribution of sojourn time conditioned on the
job length. The unconditional distribution of sojourn time for an
M/M/1-PS queue has been presented in [3] and [4]; however, the
conditional distribution of sojourn time given the job length for an
M/G/1-PS queue, even for an M/M/1-PS queue, is unknown. As a
result, the minimum throughput violation probability is unavailable in
closed form and must be obtained from simulation results.

Fig. 1 shows P I(x) and PA(x) versus x (normalized by the
bandwidth R) in an M/M/1-PS queue with load � = 0:5. For
x 2 (R=n;R=(n + 1)) 8n 2 +, P I(x) remains constant at
P I(R=n), whereas PA(x) is monotonically increasing with x and
crosses above P I(x). Both P I(x) and PA(x) are discontinuous
at the points where R is a multiple of x, and we observe that
PA(x) > P I(x) at all these points, i.e., the minimum throughput
threshold is more likely to be violated than the same level of minimum
rate threshold. (Given that PA(x) is monotonically increasing with x
in between these steps, this behavior seems natural, but we have not
been able to analytically prove it.) When x = R, a simple calculation
shows that PA(R) = 2�=(1 + �) > P I(R) = � for 0 < � < 1.

We now consider performance guarantees on violation probability of
the form P I(x) � p and of the form PA(x) � p with p denoting the
maximum allowed violation probability. We will examine the marginal
cost of bandwidth with respect to p and to the rate threshold x, and
show that this cost is monotonically and convexly decreasing with p
in both minimum rate and minimum throughput cases, consistent with
our intuition.

We start by considering the performance guarantee of the form
P I(x) � p. As P I(x) is discontinuous and nondifferentiable at
some points, to calculate the marginal cost, we use an approximation
GI(x) � �R=x = (�l=R)R=x; x � R, of P I(x). The approximation
GI(x) is continuous and differentiable except at x = R. For purposes
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Fig. 2. R or R versus p in an M/M/1-PS queue.

of discussion, we assume that the user arrival rate � and the average job
length l are fixed, but that the bandwidth R can be chosen to satisfy the
performance requirement. We expect that satisfaction of GI(x) � p
thus requires that R exceeds a related lower bound, denoted by RI

min.
The first results are expressions of the marginal bandwidth RI

min with
respect to the maximum allowed violation probability p and to the
minimum required transmission rate x.

Theorem 2: In an M/G/1-PS queue

@RI
min

@p
= ln( )�1

; 0 < p < min �l
x ; 1

0; min �l
x
; 1 < p < 1

(3)

@RI
min

@x
=

ln p

ln( )�1
; x<�l

p

1; x>�l
p .

(4)

Proof: Taking the derivative of GI(x) = (�l=R)R=x with re-
spect to R and simplifying yields @GI(x)=@R = (ln ��1)�R=x=x <
0; R � x; R > �l: Hence GI(x) decreases monotonically with R for
a fixed x � R. To satisfy GI(x) � p, it is required that R � RI

min.
The minimum bandwidth RI

min is determined by the fixed point equa-
tion p = (�l=RI

min)
R =x; RI

min � x. When taking the derivative
of RI

min with respect to p or x, two cases apply. When RI
min = x, the

fixed point equation simplifies to p = �l=RI
min = �l=x, and hence

@RI
min=@p = 0 and @RI

min=@x = 1. However when RI
min < x,

taking first partial derivatives of the fixed point equation and solving
for @RI

min=@p and @RI
min=@x gives the first case in (3)–(4).

The expressions given in (3)–(4) can be used to guide dimensioning
algorithms, as they relate the minimum required bandwidth RI

min to
the traffic intensity �l and the violation probability requirement p for
a given threshold x. In addition, it is common in the research literature
to suggest pricing of service based on the marginal cost of the required
resources. In this context users would be charged a joint function of
x and p. If price is based on the marginal cost of resources required
to provide the performance guarantee, then the price would be based
on (3)–(4), the cost per unit R, and perhaps a fixed cost to ensure that
revenues covers average costs.
RI
min versus p is shown in Fig. 2, where each curve corresponds

to a constant value of x=�l. The required bandwidth RI
min decreases

monotonically and convexly over 0 < p < min(�l=x; 1), and then

Fig. 3. R or R versus x in an M/M/1-PS queue.

remains constant at x for higher values of p. The convexity comes
from the fact that the second partial of RI

min with respect to p is pos-
itive. We use the term p-limited to denote the case in which RI

min de-
creases monotonically with p, and the term x-limited to denote the case
in which RI

min = x. In the x-limited case, the performance bound
simplifies to a guarantee that the user obtains the full bandwidth with
probability p or higher. Given that the user is in the system, there are
no other users with probability �l=RI

min, and hence the x-limited case
only occurs when p � �l=x.
RI
min versus x is shown in Fig. 3, where each curve represents a con-

stant value of p. The required bandwidth RI
min is concavely and then

linearly increasing as x increases. The concavely increasing portion,
i.e., x < �l=p, corresponds to the p-limited case discussed above; the
linearly increasing portion, i.e., x � �l=p, corresponds to the x-lim-
ited case, and RI

min = x.
We now proceed to the performance bound on the minimum

throughput violation probability. We expect that satisfaction of
PA(x) � p requires that R exceeds a related lower bound, denoted
by RA

min. The required bandwidth RA
min versus p, obtained via simu-

lation, is plotted (curves with markers) in Fig. 2. The characterization
of RA

min is similar to that of RI
min, except that RA

min is discontinuous
when it is a multiple of x. These discontinuous portions correspond to
the jumps in PA(x) in Fig. 1. As before, there are two cases: x-limited
and p-limited. In the x-limited case RA

min = x, each user requires the
full bandwidth throughout its transmission. A user fails to achieve that
if there exists another user in the system during its transmission. It can
be derived that this probability is 2�l=x

1+�l=x
. In the p-limited case, we

observe that RA
min decreases with p over 0 < p < min( 2�l=x

1+�l=x ; 1).
RA
min versus x for different values of p is also plotted in Fig. 3. The

required bandwidth RA
min is monotonically increasing with x. When

x < �l(2 � p)=p, the system is p-limited and RA
min is increasing

with p; when x � �l(2 � p)=p, the system becomes x-limited, and
RA
min = x.

IV. VIOLATION PROBABILITY IN AN M/G/1/K-PS QUEUE

In the M/G/1-PS queue, the system provides a higher level of per-
formance guarantees by increasing the bandwidth. However, in many
practical situations, the available bandwidth is physically limited and
can not be increased, or increasing bandwidth may not be the most ef-
ficient manner to satisfy the performance requirements. In this case,
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connection access control (CAC) is commonly used to maintain ac-
ceptable performance for admitted jobs, at the cost of blocking some
jobs. This approach can be modeled by an M/G/1/K-PS queue, where
K denotes the queue limit, i.e., the maximum number of users that can
transmit simultaneously. CAC gives the network designer additional
flexibility, by allowing for a tradeoff between the bandwidth and the
blocking probability.

In this section, our goal is to explore the relationship between CAC
and performance requirements on the violation probability. After pre-
senting a closed-form expression for the minimum rate violation prob-
ability, we numerically investigate the relationship between the band-
width, the queue limit, the violation probability and the blocking prob-
ability. In particular, we demonstrate the nature of binding constraints
on the violation probability and on blocking probability.

The stationary distribution of queue length for an M/G/1/K-PS queue
is given by �n = PrfN = ng = (1 � �)�n=(1 � �K+1), n =
0; 1; . . . ; K , where � = �l=R[16].

Theorem 3: In an M/G/1/K-PS queue, the minimum rate violation
probability is given by

P I(x;K) =
� ��

1��
; x > R=K;

0; otherwise.
(5)

where the load � = �l=R.
Proof: With the ergodicity assumption, P I(x) can be ex-

pressed as the probability of a user receiving a transmission rate
below x during a busy period, i.e., P I(x;K) = PrfX < xg =

K
n=bR=xc+1 �n=(1 � �0). The theorem follows by substituting �n

by the expression above.
Corollary 1: For R=K < x < R, the minimum rate violation

probability P I(x;K) increases with K , with an upper bound �bR=xc,
and decreases with R.

Proof: From (5), P I(x;K) = 1 � 1��
1��

, x > R=K.
As K increases, P I(x;K) also increases; as K approaches infinity,
the queue reduces to an M/G/1-PS queue, and P I(x;K) reaches
its maximum, �bR=xc. When R increases by �R, it follows that
P I(x;K;R+�R)�P I(x;K;R) < 1��

1��
� 1�(����)

1�(����)
<

0, where �� = �l�R
R(R+�R) . The last inequality holds for K > bR=xc.

The corollary follows.
The blocking probability is given by PB = �K = (1� �)�K=(1�

�K+1) where � = �l=R. It is readily shown that PB decreases as R
increases or as K increases.

We now consider a performance bound on the minimum rate viola-
tion probability in the formP I(x;K) � pv . The bandwidth is assumed
fixed and the queue size is determined by the performance requirement.
From (5), the maximum number of users KI

max is given by

KI
max =

R
x

; pv < a;

b 1
ln �

ln p ��
p �1

c; a � pv < �bR=xc;

+1; otherwise

(6)

where a = P I(x; bR=xc+1) is the minimum rate violation probability
at K = bR=xc + 1.

The first case in (6) comes from the second case in (5). When K �
R=x,P I(x;K) = 0. We can view this as pv = 0 implies thatKI

max =
bR=xc. As pv increases, we remain in this case until pv = a, where
the first case in (5) and the second case in (6) apply. As pv increases,
KI
max is monotonically and convexly increasing. When pv > �bR=xc,

which is the upper bound of P I(x;K), K can be any positive integer.
We next consider the joint selection of the bandwidth R and the

queue limit K to satisfy performance requirements on the violation
probability P I(x;K) � pv and on the blocking probability PB � pb.
We are interested in the feasible region of such pairs (R;K).

Fig. 4. Two cases of feasible region for R and K (x=�l = 0:5).

Theorem 4: When x � (1�pb)�l=pb, the feasible region of (R;K)
depends only on pv and can be determined by (6); otherwise, the fea-
sible region of (R;K) relies on both pv and pb, which is the intersec-
tion of the set determined by (6) and the set of f(R;K) : K � bg
where b = ln[pb=(1� � + �pb)]= ln �.

Proof: Using the expression for PB above, it is readily shown
that satisfaction of PB � pb iff K � b. When � < p

1�p
, b < 1;

hence K � b which implies that PB � pb. Since R � x, i.e., � � �l
x ,

we have that if �l
x
< p

1�p
, the blocking probability requirement can

be always satisfied for K � 1 and R � x. Therefore, in this case
the feasible set can be determined only by the violation probability
requirement pv .

There exist two possible cases for the feasible region of (R;K) given
a pair of performance requirements (pv; pb), as shaded areas shown in
Fig. 4. The first case occurs when x > (1�pb)�l=pb. In this case, only
the constraint on P I(x;K) is binding; as a result, the minimum cost
solutions lie on the left boundary of the shaded region, on the curve
for which P I(x;K) = pv . The minimum bandwidth occurs when
K = 1. In the second case, both constraints are binding; as a result,
the minimum cost solutions lie on the left boundaries of the shaded
region, on either or both curves. The minimum bandwidth occurs at
the intersection of P I(x;K) = pv and PB = pb. This minimum
bandwidth increases along the upper boundary when a lower blocking
probability is required and increases along the lower boundary when a
lower violation probability is required.

V. VIOLATION PROBABILITY IN AN M/M/1-DPS QUEUE

In this section, we consider the system’s ability to serve multiple
classes that may require different violation probabilities. This can be
modeled by a discriminatory processor sharing (DPS) queue, which is
a multi-class generalization of the PS queue. Under the DPS discipline,
each class is associated with a weight, and the transmission rate of a
user present in the system is controlled by this vector of weights. By
varying the weights, the achievable performance can be varied over a
wide range. Our goal here is to explore the relationship between the
bandwidth, class weights and violation probabilities, and to explore
how to set system parameters to meet performance requirements. We
discuss these issues in a two-class system.

In a two-class M/M/1 DPS queue, the arrivals of each class inde-
pendently constitute a Poisson process with rate �1 or �2, and job
lengths are assumed to be i.i.d. exponentially distributed with mean
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Fig. 5. P (x) or P (x) versus x in an M/M/1-DPS queue (� = 0:5, c = 2).

l1 or l2. The transmission rate of a user depends on the user numbers
of both classes and on their assigned weights. Specifically, denote the
user numbers by (n1; n2) and the weights by (w1; w2). The transmis-
sion rate of a class-j user is given by wjR=(w1n1 +w2n2), j = 1; 2.
The queue is ergodic when the system is nonsaturated, i.e., when the
total load � = (�1l1 + �2l2)=R < 1.

The minimum rate violation probability of class j is given by

P I
j (x)=

f(n ;n )jn 6=0g�n n Ifw R=(w n +w n )<xg

f(n ;n )jn 6=0g�n n
; j= 1; 2:

Unfortunately, (n1(t); n2(t)) is an irreversible Markov chain and
its joint stationary distribution is unavailable in closed form. Our
following discussion is based on numerical computation.

Define c � w2=w1. Without loss of generality, we assume that
c > 1, i.e., a class-2 user can transmit at a higher rate than a class-1
user when both are present in the system. To focus on the effect of c,
let �1 = �2 and l1 = l2. Fig. 5 plots P I

1 (x) and P I
2 (x) versus the rate

threshold x when � = 0:5 and c = 2. Since class 2 is given preferen-
tial treatment, intuition leads one to expect that P I

1 (x) > P I
2 (x) 8 x.

However, our numerical computation results show that while P I
1 (x) >

P I
2 (x) for x � c

c+1
R, the order is reversed for x > c

c+1
R. To under-

stand this, we investigate the effect of the increase in c on the stationary
distribution of queue length. For x > c

c+1
R, the corresponding min-

imum rate violation probabilities are given by

P I
1 (x) = 1�

�10
1

m=1

1

n=0

�mn

; P I
2 (x) = 1�

�01
1

m=0

1

n=1

�mn

:

When c = 1, the system reduces to a two-class PS queue, and
P I
1 (x) = P I

2 (x) 8 x. As c increases, numerical results show
that P I

1 (x) > P I
2 (x) for x > c

c+1
R and c > 1. In contrast,

if the minimum throughput violation probabilities are considered,
PA
1 (x) > PA

2 (x) 8x 8c, since the conditional sojourn times are
stochastically ordered according to the DPS weights [17].

We now consider the joint selection of the bandwidth R and the
weight ratio c to satisfy the requirements on the minimum rate violation
probability for both classes. Fig. 6 plots combinations of R and c that
attain constant P I

1 (x) and P I
2 (x), given a fixed x, as solid and dashed

curves, respectively. The minimum rate violation probability is denoted
on each curve. Some curves are monotonic, e.g.,R=�l is monotonically
decreasing with c atP I

1 (x) = 0:5. However, some curves display more

Fig. 6. c versus R for fixed p or p in an M/M/1-DPS queue (� = 0:5; x =
1:5�l).

Fig. 7. P (x) versus c in an M/M/1-DPS queue (� = 0:5; x = 1:5�l).

complex behavior, e.g., at P I
1 (x) = 0:3 R=�l initially increases with

c and then decreases with c. This complex behavior is caused by the
variation of the minimum rate violation probability with c. Fig. 7 dis-
plays P I

1 (x) versus c at various values of R=�l. Each curve consists
of positive jumps and intervals of monotonically decreasing P I

1 (x).
To illustrate this behavior, consider a set f(n1; n2)j R

n +n c
< xg.

If the set does not change membership, P I
1 (x) decreases monoton-

ically (and P I
2 (x) increases monotonically) with c. However, when

the set increases in size as c increases, this causes a positive jump in
P I
1 (x) (and a negative jump in P I

2 (x)). The pairs of (R; c) that satisfy
P I
1 (x) � p1; P

I
2 (x) � p2 are the intersection of the areas to the right

of the pairs of corresponding contours.

VI. CONCLUSION

We have focused on the threshold violation probability of the
transmission rate or the average rate as a performance metric in
processor-sharing or discriminatory processor-sharing queues. We
introduced definitions of threshold violation probability as observed by
users or by the queue. In an M/G/1-PS queue, we found the minimum
bandwidth and marginal bandwidth needed for a given performance
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guarantee on P I(x), and showed that under a constraint on the min-
imum rate violation probability, the required system bandwidth might
be limited by either the probability p or by the threshold of the rate
requirement x, and gave conditions explaining when each case occurs.
In an M/G/1/K-PS queue, we discussed the relationship between
total transmission rate, queue limit, threshold violation probability,
and blocking probability. We finally considered a two-class DPS,
and discussed what combinations of class weighting and bandwidth
can be used to achieve specified threshold violation probabilities of
transmission rate for both classes.

We believe such results are useful in dimensioning processor-sharing
queues when performance is measured by tail probabilities. In partic-
ular, we expect such results can be used within networking to design
scheduling and connection access control policies for data services.
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Improvement on Stability Analysis for Linear
Systems Under State Saturation

Xiaofu Ji, Yukun Sun, and Tailiu Liu

Abstract—This note considers the problem of stability analysis for linear
systems under state saturation. With the introduction of set coverage that
gives less constraint on the free matrix , a less conservative sufficient
global asymptotic stability condition is obtained and the corresponding it-
erative linear matrix inequality algorithm is given. A numerical example is
given to show the effectiveness of the proposed method.

Index Terms—Iterative linear matrix inequality, linear systems, state sat-
uration.

I. INTRODUCTION AND PROBLEM STATEMENT

In this note, we consider the following linear system under state sat-
uration:

_x = h(Ax) (1)

where x 2 n := fx = [x1 x2 � � � xn]
T 2 n : �1 � xi � 1; i 2

[1; n]g is the state vector, A = [aij ] 2
n�n is a constant matrix, and

h(�) is a saturation function defined as

h(Ax) =

h1
n

j=1
a1jxj

h2
n

j=1
a2jxj

...
hn

n

j=1
anjxj

(2)

with, for each i 2 [1; n]

hi

n

j=1

aijxj

=

0; if jxj j = 1

and n

j=1
aijxj xi > 0

n

j=1
aijxj ; otherwise.

(3)

Global asymptotic stability of this system has been studied recently
[1]–[3], and discrete counterpart [4], [5]. In [3], Fang et al. introduced a
diagonally dominant matrix G with negative diagonal element to con-
fine the system state under saturation to a convex polyhedron, based on
which, a less conservative stability condition was obtained. In fact, G
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