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Approximations of Stochastic Hybrid Systems
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Abstract—This paper develops a notion of approximation for a
class of stochastic hybrid systems that includes, as special cases,
both jump linear stochastic systems and linear stochastic hybrid
automata. Our approximation framework is based on the recently
developed notion of the so-called stochastic simulation functions.
These Lyapunov-like functions can be used to rigorously quantify
the distance or error between a system and its approximate ab-
straction. For the class of jump linear stochastic systems and linear
stochastic hybrid automata, we show that the computation of sto-
chastic simulation functions can be cast as a tractable linear ma-
trix inequality problem. This enables us to compute the modeling
error incurred by abstracting some of the continuous dynamics, or
by neglecting the influence of stochastic noise, or even the influence
of stochastic discrete jumps.

Index Terms—Approximation, bisimulation, stochastic hybrid
systems, verification.

I. INTRODUCTION

S TOCHASTIC hybrid systems are hybrid systems where
both the discrete and the continuous dynamics may contain

stochastic behavior. Their tremendous modeling expressivity
has enabled various researchers to use stochastic hybrid systems
as models in various application domains such as air traffic man-
agement system [1]–[4], systems biology [5]–[8], biochemistry
[9], and communication networks [10], [11].

There are several modeling formalisms for stochastic hybrid
systems. In [12], a general type of stochastic hybrid systems,
whose continuous dynamics is described by diffusion stochastic
differential equation [13], is presented. Mode switching occurs
when some invariant condition in the corresponding mode is vi-
olated. Earlier work on stochastic hybrid systems can be found
in [14], which features multi-modal diffusion equation called
the switched diffusion processes. A later work by Ghosh and
Bagchi [15] enriched the previous framework with reset. An-
other framework that is also popular is the piecewise deter-
ministic Markov processes [10], [16]. This framework does not
feature stochastic differential equations, but uses deterministic
continuous dynamics described by ordinary differential equa-
tions. In this framework, the discrete switching is modeled as
a Poisson process. For a more thorough survey on the various
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modeling formalisms for stochastic hybrid systems, the inter-
ested reader is referred to [2], [17].

A basic analysis problem for stochastic hybrid systems is
the so-called safety verification problem which tries to compute
the probability that the system will enter a particular region of
the state space. Since the complexity of the safety verification
problem depends on the size of the state space, a natural ap-
proach is to abstract the original systems by a simpler abstracted
model. If the modeling error between the two systems can be
quantified, then analysis can be performed on the abstracted,
simpler system and the results can then be carried over into the
original system.

Our approximation framework for stochastic hybrid systems
is inspired by the recent notion of approximate bisimulation
[18], [19], developed for non-stochastic discrete or continuous,
systems. Approximate bisimulation naturally generalize exact
notions of system refinement and equivalence [20], [21]. No-
tions of exact bisimulation have been recently developed for
some classes of stochastic hybrid systems in [22], [23]. In par-
ticular, in [22], a notion of exact bisimulation for general sto-
chastic hybrid systems is developed using notions from category
theory, whereas in [23] the issue of exact bisimulation is treated
for the so called communicating piecewise deterministic hybrid
systems.

In the context of stochastic hybrid systems, requiring that
the abstraction of a system is exactly equivalent to the original
system can be too restrictive. If we allow for some error in the
notion of equivalence, we can obtain an abstraction that is only
approximately equivalent to the original system, but has lesser
complexity than any of the systems that are exactly equivalent.
Notions of approximate equivalence of systems have been devel-
oped, for example in [18], [19], [24]. Critical to these approaches
is the use of a metric with which we measure the distance
between systems and hence the quality of the approximation.

In this paper, we consider approximate abstraction of sto-
chastic hybrid systems, using the idea of approximate bisimu-
lation, which is developed in [18], [19] for non-stochastic sys-
tems. There have been other works in the same direction. In
[25], [26], the authors develop some metrics for labeled Markov
processes and probabilistic transition systems, inspired by the
Hutchinson metric, which gives the distance between two distri-
butions of the transition probability. The approach that we take
in this paper differs from that, in two aspects. First, we use a dif-
ferent kind of metric. The metric that we use is based on the
distance between the output trajectories of the systems. Second,
the modeling formalism that we use is also different. Rather than
embedding the stochastic hybrid systems as stochastic transition
systems, we adopt the idea of bisimulation function from [18],
[19], and develop a stochastic version of it.

In this paper, we develop a theory of approximate bisimu-
lation for a class of stochastic hybrid automata, in which the
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continuous dynamics is modeled by stochastic differential equa-
tions and the switches are modeled as Poisson processes. The
model that we consider in this paper is thus close to the sto-
chastic hybrid systems in [15], with the exception that we al-
ways associate reset with a switch in the discrete state. Estab-
lishing approximate bisimulation between two stochastic sys-
tems amounts to constructing a Lyapunov-like stochastic bisim-
ulation function. We first develop a general framework for sys-
tems with potentially nonlinear dynamics and resets. In order
to make our framework computational, we then focus on a spe-
cial class of stochastic hybrid systems with linear continuous
dynamics and linear reset maps. This class of systems is called
the Jump Linear Stochastic Systems (JLSS) [27]. We show that
for the class of jump linear stochastic systems, the problem of
constructing a stochastic bisimulation function in the class of
quadratic functions can be posed as a linear matrix inequality
problem, which can be efficiently solved using available com-
putational tools.

In modeling deterministic hybrid systems, an automata-based
framework called hybrid automata is very popular [28]. In this
paper, we also introduce an automata-based class of hybrid
systems with linear stochastic dynamics and random switches
called Linear Stochastic Hybrid Automata (LSHA). This class
is introduced because it is generally more intuitive for the users
to formulate hybrid model in an automata-like structure, where
different continuous dynamics can be explicitly specified for
different discrete states. We then show that a class of stochastic
hybrid automata with linear dynamics can be ’flattened’ and
reformulated as jump linear stochastic systems.

The rest of this paper is organized as follows. In Section II
we present the modeling framework that we consider and the
concept of stochastic simulation function. In Section III, we
present a subclass of the systems presented in the preceding sec-
tion, namely Jump Linear Stochastic Systems (JLSS). We also
develop the method for the computation of stochastic simula-
tion functions for JLSS. In Section IV, we introduce the class of
Linear Stochastic Hybrid Automata (LSHA), and show how an
LSHA can be reformulated to an equivalent JLSS. In Section V,
we present some numerical examples where stochastic simula-
tion functions are calculated based on the procedures described
in the preceding sections. We conclude the paper with some dis-
cussion on potential further extensions of the research.

II. STOCHASTIC HYBRID MODELS

A. Modeling Formalism

In this paper, we discuss stochastic systems of the following
form:

(1)

(2)

(3)

where is continuously differentiable and , and
are locally Lipschitz continuous functions.

The process is the observation of the process , the signal
is a smooth input taking value in a compact set , the process
is a standard Brownian motion, while is a Poisson process

with a measurable state dependent rate . We assume that

the Poisson processes and the Brownian motion are independent
of each other. The input can be thought of as an internal dis-
turbance that generates nondeterminism in the systems, rather
than external control input.

Notation: We denote the class of smooth function taking
value in the compact set as .

A Poisson process with a state dependent rate is a piecewise
constant, monotonously nondecreasing process

(4)

where are random time instants are called
event times. Poisson processes are commonly used in modeling
stochastic arrival processes (see [16], [29]).

The system described in (1) then can be interpreted as
follows. In between the event times generated by the Poisson
process , the process is described by the stochastic differential
equation

(5)

(6)

At the event time , the process undergoes a jump

(7)

We use a Poisson process to model the occurrences of an
event. The effect of an occurrence of the event is expressed as a
reset (7). However, it is possible that we need to include more
than just one kind of events in the model. Thus, generally the
model (1) can be slightly extended to be

(8)

That is, we model kinds of events whose occurrences are
independent one from the others. The function , ,
parametrizes the jump associated with event . We also assume
that the Poisson process has the rate of .

Remark 1: Note that the modeling framework (1) that we
introduce here is a special class of that introduced in [15], [17].
The existence, uniqueness and strong Markov property of the
solution of (1) has been shown, and the infinitesimal generator
has also been given.

B. Stochastic (Bi)Simulation Function

In this subsection we present the main machinery that is used
in approximate abstraction of stochastic hybrid systems in this
paper. That is, the stochastic (bi)simulation function.

Given two systems in the form given in (8). For , the
system is given by

(9a)

(9b)

(9c)

We assume that and are of equal dimension.
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By defining the following processes:

(10)

we can define the following system.

(11)

where

We also define

(12)

Observe that if and the distribution of the initial state
are known, then is a stochastic process.

Definition 2: A continuous function
is a stochastic simulation function of by if

i) For any , ;
ii) For any , there exists a such that the sto-

chastic process is a supermartingale1 for any initial
state .

The significance of a stochastic simulation function can be in-
tuitively stated as follows. Condition (i) states the is an upper
bound for the distance between the observations of the two sys-
tems and . Condition (ii) states that for any decision
that makes, can make another decision such that the
expectation of is nonincreasing, which hints at the ability of

to track .
A precise statement about the significance of the stochastic

simulation function is given as follows.
Theorem 3: Given a system described by (11), and a

stochastic simulation function. For any there exists a
such that the following relation holds:

(13)

Proof: Following Definition 2, for any there ex-
ists a such that is a supermartingale. Since
is a nonnegative supermartingale, we have the following result
[30], [31]:

(14)

Moreover, since by construction, we also have
that

(15)

1i.e. its expectation is monotonously nonincreasing.

Remark 4: Simulation for nonstochastic systems is typically
seen as a two-player tracking game [18], [32], [33]. For sto-
chastic systems, one can think of the stochasticity as a third
player in the game. In this point of view, there are multiple in-
terpretations about the order, with which the game is played.
That is, when the third player (stochasticity) makes its deci-
sion. There are three possibilities, namely before the other two
players, in between, or after them. The definition of simulation
that we adopt in this paper is based on the interpretation that the
third player makes its decision after the other two players, that
is, the inputs and . Our choice is mainly based on computa-
tion consideration, although we can see later that this choice also
leads to a sensible relationship between bisimulation and safety
verification. That being said, we acknowledge that exploring the
relations between all three interpretations of simulation is a sep-
arate interesting research direction.

A symmetric version of a stochastic simulation function is
called a stochastic bisimulation function.

Definition 5: A function is a sto-
chastic bisimulation function between and if it is both
a stochastic simulation function of by and of by .

It is straightforward to infer that a stochastic bisimulation
function satisfies the symmetric version of Theorem 3.

Supposed that we are given a complex stochastic system
and its abstraction in the form of (9). Theorem 3 tells us
that a stochastic simulation function can be used to quantify
the distance between the two systems and . For a better
illustration, consider the following corollary.

Corollary 6: Given two systems and as in ((9)–(11)),
and suppose that is a stochastic simulation function of
by . We have the following relations. For any there
exists a such that

(16a)

(16b)

Thus, we can say can simulate (by selecting appropriate
input ), such that the supremum of the difference in the ob-
servations will not exceed and with
90% and 95% confidence respectively.

Notice that given two systems, the stochastic simulation be-
tween them is not unique. For example, if is a stochastic
simulation function, then , where is a real number larger
than 1, is also a stochastic simulation function. As mentioned in
Theorem 3 and Corollary 6, the stochastic simulation function is
used to construct an upper bound on how much the observations
can differ. In general, we would like to have a tight upper bound,
which corresponds to small stochastic simulation function.

This idea can be used in conjunction with stochastic safety/
reachability analysis of hybrid systems, which is one of the main
challenges in the field [28], [34]. Suppose that is a sto-
chastic simulation function of by , and that the initial con-
dition of the composite system is . Given the
open unsafe set for the original system , , we can
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construct another set , which is the neighborhood of
for some . That is,

(17)

If we define the events and as func-
tions of the external input signal, for ,2

(18)
then we have the following theorem holds.

Theorem 7:

(19)
Proof: We start with the following relation. Take any

, let be such that is a supermartingale (see
Definition 2). We then have the following relation:

(20)

where denotes the complement of the event
. Now, notice that

(21)

and because of Theorem 3

(22)

Thus we have that for any

The term gives us the risk
of unsafety of in the worst scenario. That is, we choose
the input so as to maximize the risk. Similarly, the term

gives us the risk of unsafety of
in the worst scenario. Theorem 7 tells us that we can get an
upper bound of the risk of the complex system by performing
the risk calculation on the simple abstraction and adding a
factor that depends on the stochastic simulation function.

The infinitesimal generator of the process is given in [15],
[29] as

(23)

assuming that is in the domain of the generator.
The following theorem gives a sufficient condition for the

construction of a stochastic simulation function of by .

Theorem 8: Suppose that satisfies

then is a stochastic simulation function of by .
Proof: Condition (i) in Definition 2 is trivially satisfied. To

show that is a supermartingale, we use Dynkin’s formula [30]

(24)

In the rest of the paper, we are going to impose certain as-
sumptions on the structure of the dynamics of the system, such
that this condition can be put into a computationally tractable
framework.

III. JUMP LINEAR STOCHASTIC SYSTEMS

A. Definition

In this section, we shall focus on a specific class of the sys-
tems discussed in the previous section. We shall assume that the
underlying dynamics and the reset map of the systems in this
class are linear.

A jump linear stochastic system (JLSS) can be modeled as a
stochastic system that satisfies the following stochastic differ-
ential equation:

(25a)

(25b)

(25c)

Here, is the observation of the process , the signal is
an input taking value in a compact set , the process is a
standard Brownian motion, while is a Poisson process with a
constant rate .

The JLSS described in (25) can be interpreted as follows. In
between the event times generated by the Poisson process ,
the process behaves like a linear stochastic system

(26)

(27)

At the event time , the process undergoes a jump

(28)

Notice that with we can parametrize any linear jump. Hence
the name, jump linear stochastic system.

As is the case in the previous section, the JLSS model (25)
can be slightly extended to include multiple events

(29)
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That is, we model kinds of event whose occurrences are in-
dependent one from the others. The matrices , ,
parametrize the jump associated with event . We also assume
that the Poisson process has the rate of .

B. Construction of the Stochastic Simulation Functions

Given two JLSS, for ,2

(30)

We define the following composite process:

Hence we have the following process:

(31)
A stochastic simulation function of by can be con-

structed following Definition 2. We assume that a stochastic
simulation function can be constructed as a quadratic function
of the (composite) state, that is, a function of the following form:

(32)

where is symmetric nonnegative definite.
Using the infinitesimal generator given in (23), we obtain

(33)

(34)

Denote

then we have that

(35)

Lemma 9: The function is a stochastic simulation function
of by if and only if the following relations are satisfied:

(36)

and for almost all

(37)

for any distribution of the initial state .
Proof: (if) Suppose that (36) is satisfied, then we know

that condition (i) of Definition 2 is satisfied by . Moreover,
if (37) is satisfied, then from (35) and the Dynkin’s formula we
know that is a supermartingale as required by conditions (ii)
of Definition 2.

(only if) We can see that (36) is clearly a necessary condition,
otherwise condition (i) of Definition 2 will not be satisfied. The
condition (37) is also necessary, because otherwise we can select
some input such that there is no that will make

a supermartingale, as required by condition (ii) in Definition
2

The reason why we focus on systems with linear dynamics, is
because we want to actually compute the stochastic simulation
function. In (37) we can see that in order to compute a stochastic
simulation function, we need to solve a game, which is computa-
tionally difficult. In order to make the problem computationally
more tractable, in the remaining of the paper, we shall impose
the following assumption.

Assumption: Hereafter, we assume that the disturbances are
absent. That is

(38)

This assumption leads to the absence of the nondeterminism.
As a consequence, the composite system is essentially a sto-
chastic process and (37) is reduced to an inequality (instead of
a game). A function is a stochastic simulation function of
by if and only if

(39)

and for all

(40)

Notice that, by symmetry, such a function is also a stochastic
bisimulation function between and .

The problem of constructing a matrix that satisfies (39),
(40) is a linear matrix inequality problem (LMI) that can be
solved using some available tools, such as YALMIP [35] and

[36].
Remark 10: If we think of the stochastic bisimulation func-

tion (32) as a stochastic Lyapunov function, then the strict in-
equality version of (40) together with (39) guarantee that con-
verges to 0 in probability [37].

IV. LINEAR STOCHASTIC HYBRID AUTOMATA

A. Definition

In this section, we present a class of stochastic hybrid sys-
tems, called the linear stochastic hybrid automata (LSHA).
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An LSHA has an automata-like structure similar to that of
the widely known hybrid automata [28], [34]. This class is
introduced because it is generally more intuitive for the users
to formulate hybrid model in an automata-like structure. We
formally define a linear stochastic hybrid automaton (LSHA)
as a 5-tuple , where

• is a finite set, which is the set of locations or discrete
states. The number of locations is denoted by ;

• , where for every , is the dimension
of the continuous state space in location ;

• , is the dimension of the output of the automaton ;
• is the set of random transitions. A transition

can be written as a 4-tuple . This is a tran-
sition from location to that is triggered by
a Poisson process with intensity . The matrix

is the linear reset map associated with
the transition . The number of transitions is denoted by

;
• Dyn defines the continuous dynamics in each location. For

every , is a triple , where
, and .

The state space of the automaton can be written as

(41)

We also define the functions and
, such that if is then

(42)

The semantics of the linear stochastic hybrid automaton
can be explained as follows. The state trajectory
of the LSHA is inherently a stochastic process. Every state
trajectory that the automaton executes is a realization of the
process. In each location , the continuous state of the
system satisfies the following stochastic differential equation
(SDE):

(43a)

(43b)

(43c)

The process is a standard Brownian motion. The valued
stochastic process is the output/observation of automaton .

Remark 11: In general, it is possible to incorporate multi
dimensional Brownian motions in the framework. In this
case, the term in (43a) would be replaced by

to incorporate an -dimensional Brownian
motion. Hereafter, we use one dimensional Brownian motion
for simplicity.

Denote the set of outgoing transitions of a location as

(44)

Fig. 1. Illustration of the execution of an LSHA. The solid bold arrows repre-
sent transitions between locations that occur. The dotted bold arrows indicate
transitions that do not occur, since the associated Poisson process do not gen-
erate a point fast enough. The dotted arrows denote the linear reset maps asso-
ciated with the transitions that occur.

and as the number of outgoing transitions from location
. While the system is evolving in a location , each transi-

tion in is represented by an active Poisson process. Each
of these Poisson processes has a constant rate indicated by the
transition. The first Poisson process to generate a point triggers a
transition. Suppose that is the transition that
corresponds to the first process that generates a point (at time ),
then the evolution of the system will switch to location . The
matrix defines a linear reset map

(45)

where .
Fig. 1 illustrates a realization of the execution of an LSHA.

In Fig. 1, the execution starts in location by following the
SDE that defines the dynamics in the location. The set of out-
going transitions from , . In this particular
realization, the Poisson process associated with generates a
point before that of . Hence, a transition occurs that brings the
trajectory to location . The continuous state of
the trajectory is reset by the linear map . In the new location,
the continuous dynamics proceeds with the SDE that defines the
dynamics in location . The set . In this par-
ticular realization, the Poisson process associated with gen-
erates a point before that of . Hence, a transition occurs that
brings the trajectory to location . The continuous state of the
system is then subsequently reset by the linear map .

B. Casting LSHA as JLSS

In this subsection, we demonstrate how an LSHA can be cast
as a jump linear stochastic system (JLSS), defined in the pre-
vious section. We shall then use the tools that have been devel-
oped for JLSS to construct stochastic bisimulation functions for
LSHA.

Given an LSHA as defined in the pre-
vious subsection, the following is an algorithm to define a JLSS,
structured as in (25), that represents .

• The state space of the JLSS has the dimension of
, .
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• The and matrices of the JLSS has a block diagonal
structure, with blocks. That is

...
...

. . .
...

...
...

. . .
...

where and are the and matrices
of the LSHA in location .

• The matrix of the JLSS is structured as
, where is the matrix

of the LSHA in location .
• There are independent Poisson processes. Thus,

. Each Poisson process represents a transition in .
Denote the transitions as and

. Then the Poisson process has the rate
of , and the matrix has a block diagonal structure as

and , where

...
. . .

...

...
. . .

...

(46)

that is, almost all the blocks are zero, except for two blocks:
i) the diagonal block associated with , which is

, and
ii) the block whose row is associated with and its

column with , which is .
The idea behind this procedure is as follows. We formulate a

JLSS with invariant dynamics. That is, the state space can
be written as the direct sum of subspaces, each of which is
invariant with respect to the following dynamics:

(47)

Each invariant subspace represents a location in the LSHA. Fur-
ther, we can observe that the origin is also invariant with respect
to (47). As the result, if we start the evolution of the system in
one of the invariant subspaces (hence, in one of the locations of
the LSHA), the trajectory will remain in the subspace. Let us
call the location . When a Poisson process generates a point,
if the process does not correspond to a transition whose source
location is , then the reset map does not change the continuous
state of the system. This is due to the construction of (46). If the
source location is and the target is, say, , then the continuous
state is reset to another invariant space that corresponds to the
location .

One apparent difference between the JLSS realization of the
system and the original LSHA is that in the LSHA, only the
Poisson processes in the active location are active. However, this

difference does not affect the probabilistic properties of the tra-
jectories, since Poisson processes are memoryless [16]. When
we enter a location, it does not matter if we assume that the
Poisson processes in the location are just started or that they
have been running before.

V. NUMERICAL EXAMPLES

In this section, we present some numerical examples, where
the computation of the stochastic bisimulation functions is per-
formed. We present two examples. The first example is about
approximate abstraction of a JLSS. The second example is about
approximate abstraction of an LSHA.

A. Approximate Abstraction of JLSS

The original system is a JLSS with sixth order linear dy-
namics. The system is given as

(48)

where

The rate of the Poisson process is 0.5.
We construct three kinds of abstraction, namely:

1) abstracting the continuous dynamics (4th order instead of
6th);

2) neglecting the influence of the Brownian motion;
3) neglecting the influence of the jump events (Poisson

process).
For each of the above mentioned cases, we compute a sto-

chastic bisimulation function between the original system and
its abstraction. We then simulate several realizations of the com-
posite system for the first 500 seconds of the evolution and plot
the realizations of the error (between the observations). We then
use Corollary 6 to establish a 90% confidence interval for the
error.

1) Abstraction of the Continuous Dynamics: We construct
a JLSS with simpler linear dynamics. Namely, we remove the
last two modes of the original linear dynamics and hence create
a fourth order linear system. Thus, we compute the stochastic
bisimulation function between and where

(49)
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Fig. 2. Top: One realization of � (dashed) and � (solid). Bottom: Five real-
izations of �� � � �. The dashed line indicates the 75% confidence bound.

In the simulation, the initial state of the original system is chosen
as and the initial state of the approximation
is the same as that of the original system without the last two
components.

The computed bisimulation function is a quadratic function
, where

is a symmetric matrix with

Fig. 2 shows the simulation results. On the top part of the
figure we see a realization of the observed process, and . On
the bottom part, we see five realizations of . The dashed
line denotes the 75% confidence bound given by the computed
stochastic bisimulation function (see Corollary 6).

2) Abstraction of the Brownian Motion: We construct an ab-
straction of by neglecting the Brownian motion. We therefore
create another system , where

In the simulation, the initial state of the original system is chosen
as and the initial state of the approximation is
the same as that of the original system.

Fig. 3. Top: One realization of � (dashed) and � (solid). Bottom: Ten real-
izations of �� � � �. The dashed line indicates the 75% confidence bound.

Fig. 4. Top: One realization of � (dashed) and � (solid). Bottom: Ten real-
izations of �� � � �. The dashed line indicates the 75% confidence bound.

On the top part of Fig. 3, we see a realization of and . On
the bottom part, five realizations of are shown with
the 75% confidence bound (see Corollary 6).

3) Abstraction of the Jump Events (Poisson Process): We
construct an abstraction of with zero . That is, in the abstrac-
tion, we neglect the effect of the Poisson process. We therefore
create another system , where

In the simulation, the initial state of the original system is chosen
randomly and the initial state of the approximation is the same
as that of the original system.

Fig. 4 shows the simulation results. On the top part of the
figure, we see a realization of and . On the bottom part, five
realizations of are plotted with the 75% confidence
bound (see Corollary 6). In this plot we can see clearly that and

coincide until the Poisson process generates a jump, which is
accomodated in the original system, but not in the abstraction.

4) Discussion: As mentioned earlier, the stochastic bisimu-
lation function can be used to provide an upper bound on how
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Fig. 5. Chain-like automaton � with 21 locations.

much the observations can differ. The 75% confidence interval
that we constructed can be used to indicate how tight the upper
bound is. We can observe that while the bound is not very tight,
it is still in the right order of magnitude. Computation of tighter
valid bounds can probably be obtained by considering more gen-
eral construction of the stochastic bisimulation functions, i.e.
not necessary quadratic functions, which might involve more
complicated computation. Candidates for such a bisimulation
function are matrix polynomials with degree higher than two.

B. Approximate Abstraction of LSHA

Here we present an example, where we apply the framework
of approximate abstraction of linear stochastic hybrid automata.
The original automaton has a chain like structure, with 21
locations. See Fig. 5.

Chain-like automata is a structure that can be found, for
example in modeling of systems that involve birth and death
process. That is, each location represents the number of a
certain object in the system, for example, persons in a queue
or molecules in a chemical reaction. The underlying dynamics
of the system is influenced by the number of such objects.
However, it is usually reasonable to assume that the continuous
dynamics does not abruptly change with the change in the
number of objects. Researchers have been working towards
approximating such systems in a way that allows for both fast
and accurate simulations [9], as well as faster computation [38].

Adjacent locations in the automaton are connected by a
pair of transitions with constant rate . The continuous
dynamics of is such that the dynamics changes gradually from
location to location . The stochastic differential equation
that describes the dynamics in location , , is as
follows:

We are going to apply the procedure for several values of .
We can easily observe that the continuous dynamics in

each location is a damped 2-dimensional oscillator driven by
Brownian motion. A realization of the output of is plotted
in Fig. 6. As we go from location to , the frequency of
the oscillation increases. We want to see if we can approximate

with another automaton that has only one location by
abstracting the influence of the Poisson process. The contin-
uous dynamics of is the same as that in location of .
Hence we compute a stochastic bisimulation function between

Fig. 6. Realization of the output trajectory (top) and the location (bottom) of
the linear stochastic hybrid automaton �.

Fig. 7. Ten realizations of the error trajectory for each of the � value. The
parallel lines indicate the 90% confidence interval stipulated by the stochastic
bisimulation functions.

and . The computation is done by solving the linear matrix
inequality problem explained in the previous section.

Three different values for are used, namely , ,
and . For these values of , the ratio between the os-
cillation frequency in location and are 1.1, 1.2, and 1.4 re-
spectively. We simulate the execution of the original automaton

and its abstraction . In the simulation we use as
the initial condition for the continuous dynamics, and assume
that automaton starts in location . With the computed sto-
chastic bisimulation function, we can also compute the 90%
confidence interval for the error between the outputs of and

(see Corollary 6).
In Fig. 7 we can see ten realizations of the error trajectory for

each of the value of . The 90% confidence intervals are also
shown. We can observe that the quadratic stochastic bisimula-
tion function seems to give a good estimate for the error, as the
confidence intervals seem quite tight. We can also observe that
as the dynamics in the locations vary more, the error in the ap-
proximation becomes larger.
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VI. CONCLUSION

In this paper we present a framework for approximate abstrac-
tion of a class of stochastic hybrid systems. The idea is based on
the construction of the so called stochastic (bi)simulation func-
tions that can be used for establishing an upper bound on how
much the observations of a system and its abstraction can differ.

For the two classes of systems presented in this paper, the
jump linear stochastic systems (JLSS) and the linear stochastic
hybrid automata (LSHA), we can assume that a stochastic simu-
lation function assumes the form of a quadratic function. Based
on this assumption, the computation of a stochastic simulation
function can be cast as a linear matrix inequality (LMI) problem,
that can be solved using available tools. We demonstrate the use
of the methodology presented in this paper by presenting sev-
eral numerical examples in the previous section.

The assumption that we can find a stochastic simulation func-
tion in the form of a quadratic function is a consequence of the
linear dynamics and linear reset map of the systems. If we want
to relax this assumption, then we need to resort to a more general
computational framework, most likely at a cost of higher com-
putational complexity. For example, if we assume that all the
functions involved are polynomials, then a stochastic simulation
function can be searched in the space of polynomial functions,
using tools such as SOSTOOLS [39]. This idea stems from the
fact that for polynomial functions, the inequalities in Theorem
8 can be written as sum-of-squares program.

In the computational results that we reported in this paper, we
assume that nondeterminism is not present. This assumption is
taken in order to simplify the computation. However, the general
result presented in this paper is not restricted to that particular
case. We identify the issue of finding a suitable computational
implementation of the theory, where nondeterminism is taken
into account as a challenging research direction. We also reit-
erate the statement in Remark 4 that in the presence of nonde-
terminism, there can be more than one interpretation of (bi)sim-
ulation. The relation between these interpretations is also an in-
teresting research topic, as it can lead to multiple interpretation
of approximate abstraction of stochastic systems[40], [41].
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