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Distributed Control: A Sequentially Semi-Separable
Approach for Spatially Heterogeneous

Linear Systems
Justin K. Rice, Student Member, IEEE, and Michel Verhaegen

Abstract—We consider the problem of designing controllers for
spatially-varying interconnected systems distributed in one spa-
tial dimension. The matrix structure of such systems can be ex-
ploited to allow fast analysis and design of centralized controllers
with simple distributed implementations. Iterative algorithms are
provided for stability analysis, analysis and sub-optimal con-
troller synthesis. For practical implementation of the algorithms,
approximations can be used, and the computational efficiency and
accuracy are demonstrated on an example.

Index Terms—Distributed control, large scale systems.

I. INTRODUCTION

T HE control of spatially distributed interconnected sys-
tems has been of great interest in practical applications

involving discretized partial differential equations (PDE’s),
such as boundary layer and transition control in fluid mechanics
[1], [2], flexible structures [3], heat conduction [4] and also in
networks of spatially discrete interconnected subsystems, such
as highway traffic control [5] and vehicle platooning [6], itera-
tive circuit networks [7], building anti-earthquake systems [8],
aircraft and satellite formation flight [9], [10], large adaptive
telescope mirrors [11], image processing [12], paper processing
[13], irrigation networks [14], etc.

The challenge has been in the computational cost of designing
effective controllers and the complexity of implementing them.
For the systems of PDE’s, when directly solving for the optimal
control is not viable, the system is often approximated as a large
but finite number of coupled ODE’s or interconnected subsys-
tems. The system matrix describing the input-state-output be-
havior of interconnected subsystems (ODE’s), each of size
(order) , will be , and thus most matrix operations
will be floating point operations, making traditional
robust or optimal controller design prohibitively expensive for
fine discretizations or large numbers of discrete subsystems. To
surmount this obstacle, three main approaches have arisen.

1) The Structured Matrix Approach: In [15], finitely many
spatially invariant subsystems connected in a certain topology
are shown to generate system matrices with an easily diagonal-
izable structure. This allows for decoupling transformations and
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corresponding control design of computational com-
plexity (where controllers, each of order are designed). In
[16] and [17] this idea is generalized to systems decouplable
by SVD and to dyadic tranfer matrices. When the system ma-
trices have a special, usually spatially invariant, structure, e.g.
circulant (see [18]–[20] for other structures and extensions), the
decoupling transformation can be done very efficiently, and the
results can be extended to many linear optimal and robust con-
trol results for such large scale systems, as in [21], where a com-
putationally efficient robust synthesis method is developed for
sheet and film processes.

Another approach to exploiting the special matrix structure in
such problems is to use iterative structure preserving techniques,
such as have been explored in the numerical methods and PDE
community, to efficiently find centralized optimal controllers.
For example, [22] has found methods for approximate
solutions of Lyapunov and Riccati equations from discretized
PDE’s, and [23] has decreased this to for stable
PDE’s approximated as Hierarchical matrices. However,
given an approximately optimal controller, there are no guaran-
tees on the closed loop stability and performance and the con-
trollers have only centralized implementations.

2) The Structured LMI Approach: In [4], an method
(where is the polynomial complexity of the LMI solver)
was developed for control of spatially invariant subsystems
interconnected on infinite arrays or finite loops. This approach
produces a centralized controller that admits a distributed im-
plementation along the same structure as the system, with the
necessary controller connectivity being less than or equal to the
connectivity of the subsystems.

Recently, this technique has been extended to spatially in-
variant reversible systems with certain types of boundary con-
ditions in similar complexity [24], to finitely many heteroge-
neous subsystems in an array with boundary conditions [25] in

, and to arbitrary interconnection topologies in [26].
There has also been a conservative extension of the results of
[4] to heterogeneous systems through robust synthesis and by
treating the heterogeneity as norm bounded uncertainty [27].

3) The Spatial Fourier Transform Approach: In [28], it is
shown that for infinite arrays of spatially invariant intercon-
nected systems, a spatial Fourier transform may be used for
solving optimal control problems, and that the optimal con-
troller may then be well approximated using spatial truncation,
allowing the designer to pick the connectivity of the controller.
These results have recently been extended in [29] to show that
the optimal controllers for infinite dimensional exponentially
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spatial decaying heterogeneous systems are also exponentially
spatial decaying, but there are not yet results on efficiently cal-
culating such controllers.

For a more thorough overview of distributed and decentral-
ized control research, see [30], [31], and the introduction to [4].

In this paper we address the analysis and control of spatially
varying systems on finite connected one-dimensional strings,
such as those discussed in [25]; the purpose being to develop a
method for computational complexity distributed
controller synthesis. We approach the problem from a structured
matrix algorithmic point of view; by showing the Sequentially
Semi-Separable (SSS) structure of the string connected system
in Section III, we reveal that efficient matrix oper-
ations are possible on such systems. The key to our approach
is that controllers with the same SSS matrix structure admit di-
rect distributed (localized) implementations, allowing the use
of structure preserving centralized control design techniques to
create distributed controllers. To this end, in Section IV we show
that using structure preserving iterative methods on SSS ma-
trices, we can efficiently check matrix stability, calculate solu-
tions to Lyapunov and Riccati equations, and synthesize
sub-optimal controllers.

The caveat emptor is that for practical use, the extreme com-
putational efficiency will come at the cost of successive matrix
approximations during the iterative methods, to be discussed in
Section V. However, the convergence to the solutions may be
checked along the way, and the stability and performance of the
synthesized controller may be verified a posteriori with the help
of an LMI relaxation, in in a manner which is robust to
these approximations. We also show methods for efficient con-
troller communication order reduction (Section V-C) including
spatial truncation.

To allay fears brought on by such an iterative approxima-
tion approach, in Section VI we will conduct an example of
distributed control of a discretized wave equation and compare
the results to the standard Q-Z based methods used by
MATLAB, and to the LMI based distributed control methods de-
scribed in [26].

We note that no difficult mathematical abstractions or tech-
nical results are used in this paper; a few recent advances in nu-
merical linear algebra are incorporated, but the concepts from
linear systems and control theory are all standard. Some of the
integral results of this paper would be very space consuming to
prove, but are trivial to verify by the reader, which should only
involve substitution and some paper.

II. NOTATION/PRELIMINARIES

The sets of real, complex, and natural numbers will be
represented by , , and respectively, and the real and
imaginary parts of a complex number will be denoted by
and . Given some vector , its size will be indicated by :
for example, . will be an appropri-
ately sized matrix with elements , possibly non-square
matrices, running down the diagonal and 0’s elsewhere.
will denote the usual hermitian positive definiteness:
and , and will represent the spectral radius:

. will indicate the matrix trace and
and

will indicate the Frobenius norm and induced 2-norm, or spec-
tral norm, respectively. will indicate the condition
number.

We will use and to represent lower and upper linear
fractional transformations, respectively (for more information,
see [32]). The time and Laplace variables will be indicated by
and respectively, while will be a spatial index.

For transfer functions, will indicate the
set of proper, real, rational, stable transfer func-
tions, and for some , will
indicate the operator induced norm:

, where
is the set of Lebesgue integrable functions with norm

.
, , , and will be used throughout on a context dependent

basis, usually to represent a transformation or substitution, and
will always be locally defined. The super script ‘ ’ will be used
to simplify notation, where in each term it will be held constant
as either or .

To represent computational complexity, we will use ‘big O’
notation,

Definition 1: [33] A positive function is if
there exist finite positive constants, such that

.
Informally, we will say that a procedure ‘is’ if it can

be computed in flops. For example, dense
matrix-matrix multiplications in are while some
very special structured matrix operations are of ‘linear compu-
tational complexity’, .

Given no other choice, occasionally we will use bisection
on a line to find an upper bound on some optimal value. For
a function on with a single unknown discontinuity:

and a test of whether or not

, bisection can be used to find arbitrarily narrow upper
and lower bounds on the location of the unknown discon-
tinuity in an efficient manner:

Lemma 1: Given some desired tolerance of solution,
, bisection will require at most iterations

to find upper and lower bounds such that
.
Proof: See Appendix A.

Other notation will be introduced along the way.

III. SUBSYSTEM MODEL/INTERCONNECTION STRUCTURE

The subsystem models considered will most generally consist
of state space realizations of the sort:

(2)

where and are interconnections to other subsystems (see
Fig. 1), and the exogenous inputs and outputs are left out for
now. The terms represent information feedthrough between
subsystems and . This type of subsystem has ap-
peared in [4], [25] and associated papers, and is also similar to
subsystems considered earlier in [7] and [12]. As in these works,
we will assume that the subsystem interconnections and
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Fig. 1. Subsystem string interconnection.

are ideal, without any delay. A consideration of the effects of
delays in these interconnections on system well-posedness, sta-
bility, and performance is important for the practical application
of these results on real systems (see e.g. [26], [34] for a discus-
sion within the LMI framework) but are out of our current scope.

We will generally allow each subsystem to be arbitrarily
different from every other subsystem, even having different
state, input, and output dimensions, as long as the intercon-
nections are of correct size. An example of such a subsystem
model will be shown in Section VI, and others are available
in the literature, such as multiple vehicle systems [27], flight
formations [9], offshore bases [35], and discretizations of
various PDE’s [3], [4], [36] etc.

Due to the non-zero and terms, the interconnection
between subsystems (2) might not be well-posed (see [4] for
a discussion). Fortunately, there exist sufficient conditions for
well-posedness of interconnected subsystems that can be ver-
ified in , for example:

Lemma 1: The interconnection of subsystems for
is well-posed and may be converted to spatially

strictly-proper form:

(3)

if, for the iteration:

(4)

with initial condition, , the inverse of exists
.

Proof: The constructive proof is in Appendix B.
For structural reasons to be revealed shortly, spatially strictly

proper subsystems of the form (3) (without the ’s) will be
considered throughout the rest of the paper, assuming that the
system is inherently in this form (as in the case of discretizations
of PDE’s), or has been converted to this form using a method
like that in Appendix B.

If of these subsystems (3) are connected together in a string
(see Fig. 1) with zero boundary inputs ( , ) and

the interconnection variables are resolved, we obtain the inter-
connected system: where the indicates a
‘lifted’ variable; for vectors: , and the
interconnected system matrix has a very special structure,
called ‘Sequentially Semi Separable’ (SSS) [37]. For example,
for , we have (1), shown at the bottom of the page. As
such matrices will be used often, we will create a special nota-
tion for them:

(5)

where the arguments of are called the ‘generator’ ma-
trices of . This type of data-sparse structured matrix has re-
cently been studied with respect to LTV systems theory and in-
version [38], scattering theory [37], and for their own sake [39],
[40]. The facts in which we are interested are that SSS matrices
can be stored using only memory, there exist algorithms
of only computational complexity for SSS matrix-matrix
addition and multiplication, inversion, LU, and QR factoriza-
tion, and further, that the class of SSS matrices is closed under
these operations, that is, they are structure preserving. These
properties (many of which are similar to those possessed by
matrices) are especially important, since they allow the effective
use of iterative algorithms incorporating inverses, in contrast to
other classes of data sparse matrices (such as banded), which
are not closed under inversion.

Since we are interested in the control of interconnected sys-
tems, we will now consider the augmented subsystem model,

:

(6)

which is the same as the subsystem in (3), but augmented to
include a performance channel and disturbance input ( and

), and a measured output and controlled input ( and ).
If we again resolve the interconnection variables, we obtain an
interconnected system with SSS state space matrices:

(7)

where the SSS notation for each matrix is listed in Appendix D,
and the lifted vectors have the same structure as before.

(1)
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Fig. 2. Distributed controller implementation.

This of course leads to one of the fundamental problems in
linear control research, extended to SSS distributed systems:

Problem 1 ( Synthesis): Given , find a stabilizing con-
troller with SSS structure to solve the optimization problem:

Because a distributed implementation of the controller is de-
sired, not a centralized one, the controller is constrained to
have a realization of SSS matrices, as we will now explain.

Suppose that some method has been used to design a con-

troller , for the distributed

system (7), where the SSS generators of each matrix are:

then it can be verified that such a controller can be directly dis-
tributed into subcontrollers :

(8)

where

where is held constant as either or in each term. This
is obviously the same structure as the subsystems, connected
as in Fig. 2, where the channels represent the communica-
tions between each subcontroller. This illustrates a key advan-
tage of SSS over matrix or frequency domain controller de-
sign methods for distributed systems: SSS structured controllers
admit a simple distributed controller implementation, similar in
structure to those sought in [4] and [25], without any additional
computation.

In the next section we will illustrate how the characteristics
of SSS matrices can be exploited to allow for structure pre-
serving algorithms for some very useful control prob-

lems, building up to sub-optimal synthesis of controllers
with SSS structure, and thus a distributed implementation.

IV. COMPUTATIONAL METHODS

In this section we will discuss iterative methods which may
be conducted very efficiently for SSS matrices. The key to the
method is that there are ‘fast’ converging iterative algorithms
for solving these problems, and that each iteration may be com-
puted using SSS arithmetic algorithms in only . We will
begin with a discussion of some of the properties of SSS ma-
trices under arithmetic operations, which are important to un-
derstanding our techniques.

A. Orders

For an SSS matrix:
, many matrix-matrix operations have linear

computational complexity in , but cubic in the sizes of the gen-
erator matrices. For example, if

, , then computing will take
flops or less [37].

However, under the original LTV interpretation of SSS ma-
trices ([38]), in which an SSS matrix, was used to represent
the truncated input-output map: of a mixed causal
Linear Time Varying (LTV) system:

where and are lifted over time steps, SSS matrix addition
has the interpretation of adding two mixed causal LTV systems
in parallel, and SSS matrix multiplication has the interpretation
of connecting them in series. It should thus be apparent that
the sum or product of two SSS matrices will also be SSS, but
of a maximum ‘order’ of the sum of the orders of the original
systems.

To be explicit, we define:
Definition 2: The maximum upper and lower order of an SSS

matrix are the largest sizes of its upper and lower multiplier
terms ( and in ), respectively. The class of SSS matrices
of maximum lower and upper orders and with diagonal
terms is denoted as .

As discussed above, the growing order of SSS matrices under
certain operations can be related as:

Lemma 3: For conformably partitioned matrices
and , then
where , , and

where , .
Proof: This can be seen from the addition and multiplica-

tion algorithms [37], [39].
This is important since we intend to use iterative algorithms

for controller synthesis, and evidently each iteration will cost
more than the previous. In the following subsections we will
derive a set of fairly weak assumptions, independent of , that
can be made on the class of interconnected systems considered
to guarantee an upper bound on the number of iterations, , nec-
essary for convergence of each algorithm, thus yielding
computation, although with a very large multiplicative constant
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in front. To remedy this, in Section V we will show that for prac-
tical purposes, low order approximations may be used to con-
siderably cut down on the order growth.

B. Matrix Sign Function

The matrix sign function [41], [42], defined for a square ma-
trix with no eigenvalues on the imaginary axis, will be im-
portant in our computations.

Definition 3: [42] Given a matrix with Jordan decompo-

sition where and ,

,the matrix sign of is defined as

where and are the same size as

and , respectively.
The matrix sign is typically calculated using Algorithm 1,

Algorithm 1: Sign Iteration [41]

which has been proven to be equivalent to a Newton’s method,
and correspondingly converges quadratically near the solution,
but may start out slower. However, from the condition and
damping of the spectrum of , the number of iterations, , to
convergence can be bounded:

Lemma 4: For a matrix with no purely imagi-
nary eigenvalues, the number of sign iterations to
reach for will
be , where

.
Proof: [23], Lemma 3.5.

So, given some of size with SSS structure, we may com-
pute iterations, each of only (since SSS addition, inver-
sion, and scalar multiplication are ), to compute the ma-
trix sign of . However, to claim sign computation, we
must also upper bound with a constant, independently of ,

, using the following assumptions:
• A1:
• A2:
• A3: for

A1 and A2 imply that in Lemma 4 will always be finite, but
do not seem very restrictive, as they just imply some analytic
continuity around the imaginary axis and a finitely bounded
spectrum. A3 is the least intuitive, but keep in mind that
can be very large without unduly increasing , for example

. From now on the set of matrices that
satisfy A1, A2, and A3 will be denoted as . We can thus state:

Lemma 5: For the set of SSS matrices ,
, an approximation, to

can be calculated to within some prespecified positive tolerance
in .

Remark 1: A motivating example for a set of matrices ,
might be certain Toeplitz matrices with asymptotic

spectral properties (see e.g. [43]), associated with spatially in-
variant systems [44], although we do not restrict ourselves to
such cases. See [45] for other examples and counterexamples.

We will use the conservative Frobenius norm to check con-
vergence of the sign iteration, since we can calculate it exactly
in for SSS matrices . For conve-
nience, for the rest of Section IV we will refer to SSS
‘solutions’ of the matrix sign function, since can be made
arbitrarily small, even though in exact arithmetic, Algorithm
1 will never converge exactly to in finite unless

. In practice, we say that Algorithm 1 has con-
verged to when . The effects of
using these and other approximations will be discussed in Sec-
tion V.

C. Stability Check by Matrix Sign

From the definition, it is easy to see that:
Lemma 6: For some matrix , if and only if

.
Because of the fast, size independent, convergence of the sign

iterations, this can be used as an check on the stability of
SSS matrices , . In addition, through the Cayley
transform , it is well
known that , so we can also
check the spectral radius, or spectral norm
of SSS matrices for which or in

, which will be useful for synthesis.

D. Structure Preserving Permutation

Since we will be designing controllers, it is also necessary to
check the stability of closed loop systems, which will have ma-
trices with SSS blocks. Using block matrix algebra to compute
the matrix sign iteration could fail when using Schur comple-
ments to calculate the inverses, so instead the rows and columns
of block SSS matrices are permuted to form single SSS matrices,
similar to how block Toeplitz matrices may be permuted to ob-
tain matrices with Toeplitz blocks. The following result is for 2

2 blocks, but it can be easily extended to other dimensions.
Lemma 7: Given matrices with SSS representa-

tions:

and lifted vectors , the relations
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are equivalent, to within row and column permutations, where
with

and the ’s are held constant as or in each term.
The transformation from could be called a

‘shuffle’ permutation, since and are shuffled like a deck of
cards to get . The reverse operation is also possible:

Lemma 8: Given an SSS matrix
with conformably partitioned generators:

, the relations

are equivalent, to within row and column permutations, where:

and everything is assumed conformably partitioned.
This result will allow us to permute a closed loop or block SSS

matrix, calculate the matrix sign, and then repermute to obtain
the sign solution of the original block matrix. This technique
will be implicitly used in the sequel.

E. Lyapunov and Riccati Equations With the Matrix Sign

In [23] it is shown that the matrix sign function can be used to
find fast solutions of -matrix Lyapunov and Riccati equations.
Lemmas 7 and 8 allow the extension of these methods to SSS
matrices.

For a stable, continuous time Lyapunov equation,
, it has been shown ([41]) that

. For ,

, this provides an method for solving Lyapunov
equations:

Lemma 9: For the set of SSS matrices
such that , and , the
solution to the Lyapunov equation , will also
be . Further, it can be calculated in .

Proof: This follows from Lemmas 5, 7, and 8.
The matrix sign function can also be used to solve symmetric

algebraic Riccati equations ([41]) (as it was originally intended)
of the form

(9)

where , , by applying sign iterations to

the Hamiltonion matrix , to calculate

and solving the linear system of

equations:

(10)

which, following [46], we will call the ‘matrix sign equations of
’. In [46] the following Lemma was proven:
Lemma 10: The Riccati equation (9) has a unique symmetric

stabilizing solution if and only if has no eigenvalues on the
imaginary axis and is full rank.

Thus we have an efficient method for solving Riccati equa-
tions:

Lemma 11: For the set of SSS matrices
such that the corresponding Hamiltonian , ,
the unique symmetric solution to the Riccati equation (9), if it
exists, will also be . Further, it can be calculated
in .

Proof: This follows from Lemmas 5, 7, and 8. The calcula-
tion of the unique solution, under the conditions of Lemma 10,
is done by solving (10), which can be computed in using

the pseudo-inverse: , since is
full rank.

F. Norm Bounding

To continue our development with Riccati equations, we can
restate a result of the bounded real lemma as:

Lemma 12: For some , , we have
if and only if , and the

Riccati equation corresponding to the Hamiltonian matrix:

(11)

(where ) has a stabilizing solution.
Proof: It is well known that

if and only if and has no eigenvalues on the
imaginary axis, which in turn implies that the Riccati equation
has a stabilizing solution [32]. Conversely, if then

, and then the existence of a stabilizing Riccati
solution implies that has no eigenvalues on the imaginary
axis [47].

To bound the norm of a transfer function, one need not
actually compute the solution to the Riccati equation, but just
verify that has no eigenvalues on the imaginary axis. As
is suggested in [48] we can use this condition for narrowing
bounds on the norm of transfer functions by bisection, but
we should note that for SSS matrices, using the sign iteration
to find the norm exactly will not work in , since as ap-
proaches from above, the eigenvalues
of (11) will approach the imaginary axis, thus breaking assump-
tion A2, but we may compute an upper bound to within some
fine tolerance:
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Lemma 13: For the set of SSS matrices:
with and :

1) :
2) : the corresponding Hamiltonian (11)

an upper bound for the norm can be computed to within
some in .

Proof: At each , the blocks of the Hamiltonian matrix in
(11) will be due to the closure of SSS matrices under
addition, multiplication, and inversion. Since each step of the bi-
section only requires a spectral norm bound and a sign iteration
for which we may use the results of Lemma 6 and Algorithm 1,
this procedure will be , where is the necessary number
of bisections. The proof of Lemma 1 can then be adapted to show
that in this case bisection will take
steps to find an upper bound. We have set and indepen-
dently of , so the entire procedure will be .

We note that , and thus , can be set arbitrarily small by
manipulating the bounds in assumptions A1, A2, A3.

When working with closed loop SSS block matrices, we can
use Lemma 7 to permute the closed loop state vectors to obtain
single SSS matrices, then use it again to form the Hamiltonian
for sign iterations.

G. Control Synthesis

To simplify our discussion of synthesis for SSS matrices,
we will first restate versions of some well known results in cen-
tralized synthesis, specialized to suit our situation. For a
state space system:

(12)

if we define as the set of controllers such that is
internally stable, then specifically, we would like to find some
sub-optimal controller such that
where . For
some and under some general assumptions on , we have the
existence result:

Lemma 14: [49] For the system , with the assumptions of
the ‘general problem’ [49] of stabilizable and de-
tectable, full column rank and full row rank (all of the
measurements are corrupted by noise, and all of the inputs
are present in the cost term, ), and the transfer function ma-
trices of and have no invariant zeros
on the imaginary axis, there exists a controller such that

if and only if ,
and

1) The Hamiltonian matrices:

(13)

have no eigenvalues on the imaginary axis.

2) The matrix sign equations (10) of and have unique
solutions, ,

3) .
where the and matrices in (13) are similar to those in [49] and
are again defined in Appendix C.

Proof: This follows from the Riccati equations formulation
in [49], and the proof of Lemma 10 in [46].

As suggested in [50], for some we will perturb the
Hamiltonians (13) by subtracting from the (2,1) blocks,
or equivalently, adding to the matrix of the corresponding
Riccati equations (9), where is small enough such that there
exist stabilizing solutions: and . The scaled in-
verses of these perturbed solutions will satisfy the Riccati
Inequalities ([50]), allowing the computation of explicit con-
trollers using LMI results:

Lemma 15: Given some sub-optimal and positive defi-
nite stabilizing solutions to the perturbed Riccati equations,

a stabilizing controller: such that

may be constructed as follows:
Set and define:

(14)

where

Then the state space matrices of can be computed as:

(15)

where is assumed to exist.
Proof: The controller formulas follow from the LMI

methods in [51] for the central controller and under our regu-
larity assumptions, with a slight change of notation, and picking
the free parameters such that and need not be inverted.
The conversion from to is to reparameterize the controller
to the case.

From these results, we can now state an SSS synthesis result.
Lemma 16: For the set of generalized plants (12) with SSS

matrix realization
, that satisfy the ‘general problem’ conditions of

Lemma 14, and in addition, :
1) :
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2) : the corresponding perturbed
Hamiltonians , , Riccati solutions: , , and

are all .
for , a controller with closed loop norm less
than , with state space matrices

exists, and can be calculated in .
Proof: As can be seen in the Appendix, at each , the

blocks of the Hamiltonion matrices in (13) will be
due to the closure of SSS matrices under addition, multiplica-
tion, and inversion. The proof is apparent from the construc-
tion of the controller matrices, since and are SSS as
shown in Lemma 11, and , , , are all calculated
with arithmetic matrix operations from other SSS matrices. At
each bisection iteration, the perturbed Riccati equations can
be solved efficiently and the positive definite, spectral norm, and
spectral radius conditions can be converted to stability prob-
lems and efficiently checked, using the results of Lemma 11,
Lemma 6 and Algorithm 1. Due to the bounds and , bisec-
tion will converge in a finite number of iterations, independent
of , , as in the proof of Lemma 13.

Remark 2: We have not specified any method of checking the
assumptions of the ‘general problem’ in Lemma 14 because we
do not actually have an efficient method for explicitly checking
stabilizability, detectability, and the location of transmission
zeros. Instead, we suggest performing the SSS synthesis
calculations and checking the closed loop stability and perfor-
mance of the resulting controller (if the Riccati equations have
solutions!) using Lemmas 6 and 13 to see if it is valid.

It is now apparent why we do not attempt to find an
optimal controller. As approaches from above, it has
been shown [49] that the eigenvalues of , , , ,
or could asymptotically approach the imaginary
axis, thus necessarily breaking assumption A2, and we will no
longer be able to use the sign iterations efficiently. The other
possible failure, the ill-conditioning of (10), will also make
SSS calculations difficult. However, we can make in Lemma
16 small by manipulating the bounds in A1, A2, and A3, and
thus calculate a controller in that is arbitrarily close to
achieving the optimal solution in Problem 1.

V. APPROXIMATIONS

In contrast to the final result of Section IV, in practice we
usually do not want to compute a centralized almost-optimal
controller, for the following reasons.

As mentioned in Section IV-A, for SSS matrix multiplication
and addition, the order of the resulting SSS matrix will grow
with each operation. Thus we cannot go on adding and multi-
plying SSS matrices in an efficient manner forever, as the com-
plexity of SSS operations is cubically dependent on the orders.
Since we have bounded the number of iterations needed for con-
troller synthesis independently of , the overall procedure will
be , as stated, but the hidden constant ( in Definition 1)
may be prohibitively large for practical computation.

Furthermore, we see from the controller synthesis (15), (15),
that the SSS controller matrices will result
from many SSS additions and multiplications, resulting in high
SSS orders, and that therefore the subcontroller coupling chan-
nels, and from (8), being the size of the sums of the lower

and upper SSS orders of , , , , may be very large,
placing difficult requirements on the inter-controller communi-
cation.

In other words, the procedure described in Section IV for
control synthesis for SSS systems will produce distributed

controllers in , but due to the SSS order growth, the dis-
tributed implementation will be impractical and the com-
putational complexity will be slow. The solution to these prob-
lems lies in the use of order-reducing SSS approximations, to
be discussed in the next subsection.

A. Optimal Order Reduction

Many infinite dimensional distributed systems can be shown
to have exponentially spatially decaying (ESD) [29] operators,
a characterization that basically implies that the norm of the
couplings between subsystems is bounded by some exponential
decay in space.

In [28] it is shown that quadratically optimal controllers for
ESD spatially invariant distributed systems are also ESD, and in
[29] this is extended to the spatially varying case for the solu-
tions of Lyapunov and Riccati equations of ESD systems. This
leads to arguments for spatially truncating the controller for an
almost optimal distributed implementation [28].

For very large finite dimensional systems, we may
also take this route: given a finite dimensional Riccati or Lya-
punov equation solution with SSS structure, , we could com-
pute a spatial truncation approximation of SSS structure by
calculating the middle diagonals, and then finding the
generator matrices of the truncation using the
construction algorithm [37] specialized to banded matrices in

. Alternatively, within the SSS framework, there is also a
Hankel norm optimal approximation [37], [38]. That is, given
some SSS matrix , we may calculate that
achieves:

(16)

where and are the Hankel
blocks [38] of , and . The matrix Hankel norm is in-
timately related to the spectral norm as

for some , and there exist al-
gorithms for computing the solution to (16). We find that the

optimal method often works better than spatial truncation
in practice (see Section VI) and its use for order reduction will
be implicit for the rest of the discussion.

This also provides an answer to the problem of the SSS order
growing after each operation; after every few order-increasing
operations, we can do an SSS order reducing approximation,
making the iterative schemes very efficient in practice.

B. Numerical Issues Relating to the Approximations

Of course, iteratively approximating SSS matrices using
lower orders will call into question the use of the sign function
methods for checking stability and solving Riccati equations.
With respect to rounding and truncation errors, the sign func-
tion has been found to often work just as well as invariant
subspace techniques, but it can be shown that occasionally
ill-conditioned sign iterations will cause numerical instability
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([52], [53]), and with intermediate low order approximations,
such numerical difficulties are even more prominent. Hence
we cannot ‘solve’ the Lyapunov and Riccati equations; there
will always be non-zero residuals, , , the norms of
which are not necessarily a good measure of the backwards
error [54], [55], and the suggested criteria are not easily cal-
culable using SSS methods. Furthermore, due to the potential
fragility of optimal controllers [56] it is not acceptable to
blindly use an approximated controller and assume that it will
have the expected closed loop stability and performance; some
kind of closed loop test is needed.

For checking matrix stability using Lemma 6, it is usually
not feasible to run Algorithm 1 approximation-free, since the
orders of grow as , but an unsuitable low-order approx-
imation could bump an unstable eigenvalue into the left half
plane, or vice-versa, falsifying the result. For stable matrices,

, the SSS order necessary to represent exactly
will eventually approach 0, since

, but for non-symmetric , due to the erratic
behavior of the spectrum during the iterations, any ap-
proximation, , must be extremely accurate:

to guarantee that no eigenvalues cross the imaginary
axis.

However, in the symmetric case, , ,
standard perturbation theory [57] shows that

and for symmetric sign iterations, it can be shown that any
eigenvalues initially inside the unit circle will be
transported outside of the unit circle after the first iteration:

, , , allowing the use of
aggressive approximations without the danger of eigenvalues
crossing the imaginary axis. Fortunately, using Lyapunov sta-
bility theory, we can convert non-symmetric stability problems
into symmetric problems as follows.

It is well known [58] for some , with
, that if and only if .

Hence for SSS matrices, one can use the matrix sign function as
in Section IV-E to solve for using iterative
approximations. If the resulting and ,
which are both symmetric stability problems (and thus robust to
approximation errors) then it is guaranteed that .

As for the solutions to the Riccati equations, as discussed in
Section IV-G for synthesis, due to the analyticity of the Ric-
cati equation [59], there exists some small such that we may
add a perturbation and still have a stabilizing solution ,
and this will also be a symmetric solution to the corresponding
strict algebraic Riccati inequality for synthesis [50]. Under
the same reasoning, given some stabilizing approximate solu-
tion to the perturbed Riccati equation via the matrix sign func-
tion: , with small non-zero residual , if ,
which is simply a symmetric stability problem, then will
still satisfy the Riccati strict inequality(and similar arguments
hold for ). The controller matrices are also
computed using approximations, but the closed loop per-
formance may also be verified a posteriori, with another Ric-

cati equation in the bounded real lemma (13), on which similar
arguments may be applied.

Thus, the use of iterative low-order approximations in
checking matrix stability, calculating solutions to Lyapunov
and Riccati equations, and synthesizing sub-optimal
controllers is acceptable, since the a posteriori verifications
of closed loop stability and performance may be converted to
symmetric matrix stability problems, and thus efficiently and
robustly (with respect to approximation errors) checked.

C. Controller Communication Order Reduction

Even if the order of the SSS matrices of the Riccati solutions
and state space matrices computed from con-
troller formulas (14) are limited using optimal approxi-
mation, the distributed controlle (8) might still be very ineffi-
ciently represented (especially considering the construction of
the terms). Thereby, the large size of the communication vec-
tors might surpass the abilities of the controller communication
links.

However, through Lemmas 7 and 8, the input-output and state
dynamics of the controller (8) may be expressed as a single

block SSS matrix: with

(17)

And by doing either a spatial truncation, or an SSS Hankel-
norm optimal model order reduction on this matrix, the size of
the terms may be reduced without destroying the distributed
structure.

This also illustrates a useful feature of the controllers pro-
duced within the SSS framework: the communication links

may by large if desired, corresponding to a more
centralized and higher performance controller. In fact, it can
be shown that any centralized controller can be distributed in
the form of (8) using large enough communication channels:

. Of course, for implementation, smaller is
better, and as we will see in the next section, the freedom to
pick the size of the communication links may be very useful in
terms of design trade-offs.

However, it should be noted that neither the spatial trunca-
tion nor the optimal approximation of is guaranteed to
preserve closed loop stability and performance, which should
be checked for each order-reduced controller. There do exist
distributed system model order reduction methods with guaran-
teed stability and error bounds such as [60], but these are similar
in technique and complexity to the LMI synthesis methods de-
scribed in [25], and thus too computationally expensive for our
purposes.

VI. EXAMPLE

One might suspect that the order-reducing approximations
discussed in Section V, used after every few matrix operations
during the iterative algorithms of Section IV, would produce
controllers with very bad closed loop performance, or even
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instability. However, using the discretized heterogeneous
undamped wave equation as an example, we will see that
the method described can produce low communication order
controllers with closed-loop performance nearly that of the
centralized optimal controller, computationally much more
efficiently.

A. Introduction/Discretization

Consider the 1-dimensional spatially heterogeneous wave
equation with position-fixed boundary conditions:

with some performance and measurement outputs:

where , , , , , , and are in
Hilbert spaces defined on . Using a finite difference
approximation, can be restricted to be in
some finite dimensional Euclidean space , where we approx-
imate the spatial derivative to 4th order accuracy [61]:

where and with new discrete indices
. The approximated system can be written in

the form of (6) where

and the other terms are 0. These parameters can then be used
to form the lifted system of SSS matrices in (7), allowing
the use of the computational tools described in Section IV to
perform controller synthesis. The second computational
subsection will demonstrate the computational com-
plexity for nearly centrally optimal controllers, and the third
will show how the communication-order reduction described in
Section V-C can be used to approximate these controllers with
very small sized communication channels.

B. Synthesis

To demonstrate the application to heterogeneous systems, the
system parameters will be chosen to vary randomly in space.
This is not meant to represent systems actually encountered
in practice, but instead to demonstrate that there is no loss of

Fig. 3. Average computational time comparison of SSS vs MATLAB � vs
distributed LMI synthesis routines. Error bars indicate maximum and minimum
times.

algorithmic performance or gain in conservatism for the very
heterogeneous case. Each coefficient
was taken independently to be 1, plus a value picked from a
uniform random distribution at each ; for ex-
ample, . To show the consistency of
the iterative methods, 25 random systems were generated for
each problem size , and
sub-optimal controllers produced using MATLAB’s hinfsyn
(using the Riccati solver option) and the SSS based solver with

. The values ranged between 2 and 3, and
both the MATLAB and SSS based closed loop norm values,

and , were within the tolerance for each trial of each
problem size. In Fig. 3 we see a comparison of the synthesis
computation times, where the bars show the maximum and min-
imum time for each value of , and the linear complexity of the
SSS approach becomes an advantage after about .

The LMI based distributed control method as imple-
mented in the Graph Control Toolbox [26] was also used to
synthesize controllers for the reduced set of problem sizes

, with the same tolerance as before.
The results in Fig. 3 roughly confirm the polynomial com-
putational complexity estimated in [25] (The number of LMI
variables in [25] and [26] are about the same for this type of
problem).

For reference to the algorithm discussions, SSS orders of
were used in all iterative schemes, the sign

iterations took about 10 iterations to converge, was taken to
be , and was the most prominent constraint for
the greatest lower bound for . To produce distributed con-
trollers with nearly centrally-optimal performance, a small
was chosen, but if this constraint were made less severe, lower
order approximations could be used, with a consider-
able decrease in computation time.

C. Distributed Implementation

For a typical example with , Fig. 4 shows the de-
crease in closed loop norm with the increase in communica-
tion order, using a simple suboptimal SSS order reduction algo-
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Fig. 4. Closed loop performance of communication-reduced controllers.

rithm (see [37]) similar in result to the more complicated
optimal solution discussed in Section V-C. Putting the system
matrix (17), into the appropriate ‘proper’ ([37]) form for re-
duction took 0.45 seconds (the process is ), and thereafter
each order reduction consisted of simply truncating the appro-
priate matrices in (17) to the reduced dimension, taking negli-
gible time. All reduced controllers with communication links
of size at least 2 were stable, and as we see, there is an expo-
nential-like decrease, with high performance controllers even
for very small communication links. For comparison, using the
truncation-based distribution method, it was necessary to trun-
cate out to 17 spatial indices for a stabilizing controller, and 19
spatial indices to get decent performance .

On this same example we used the LMI method as imple-
mented in the Graph Control Toolbox [26], and obtained a
closed loop performance of , with communi-
cation size 6 (although it should be possible to reduce this
to 2 [26]). This is somewhat surprising: while the original
high SSS-order controller should be non-conservative with
respect to the centralized methods, it is unexpected that the
communication-reduced controllers would still have superior
performance to the dedicated LMI technique, and this is likely
not a general result (although it occurred for all examples tested
by the authors).

VII. CONCLUSION

To summarize, we have exhibited the Sequentially Semi-Sep-
arable matrix structure of a certain type of interconnected
system distributed in a single spatial dimension. This structure
was then exploited to find efficient computational
complexity algorithms for stability analysis, analysis and
synthesis, and communication-order reduction of distributed
controllers for spatially heterogeneous systems under some
mild assumptions.

For heterogeneous systems, the method was found to be
computationally much more efficient than centralized synthesis
techniques with a negligible decrease in performance, and also

more efficient than distributed LMI methods [25], [26], al-
though we note that these techniques do not yet take advantage
of any structure in the calculations (and indeed are applicable to
much more general system structures). Exploiting this structure
for distributed computing as discussed in [26], or combining
the SSS framework with other LMI solution techniques (e.g.
[62]) to approach such problems seems promising, and should
be investigated.

Subsystems of the form (6) connected in a ‘loop’ instead of
a string also can be lifted to form an interconnected system
with SSS state space matrices (although with much more com-
plicated generators), and thus some of the results herein de-
scribed (such as stability and performance analysis) should also
be readily applicable to these systems. However, for such sys-
tems, after a controller, , with SSS matrix realization is com-
puted, it is not yet clear how to extract subcontrollers, , that
are also interconnected in a loop, instead of a string with very
large feedthrough terms. This problem will be the subject of fu-
ture research.

We also note that the techniques described herein can be ap-
plied to large spatially homogenous systems, as a special case of
heterogeneous systems, although techniques dedicated to spa-
tial invariance (e.g. [4], [15] for strings and loops) will be more
computationally efficient, and may be more easily extended to
robust or LPV control [3], [21].

As for extensions, our development has been for continuous
time, but there is a discrete time counterpart to solving the Ric-
cati equation with the matrix sign function [63], so many results
should be easily extendable. Our methods for stability analysis
and control should extend to matrices [23], but it is not
clear for the distributed implementation problems or the applica-
tion to more general interconnected systems. Note that for sim-
plicity we have used only fixed boundary conditions in the ex-
ample, but by using ‘ghost points’, fairly arbitrary Neumann or
Dirichlet conditions can be imposed within the SSS structure.

In this paper we have chosen the problem as a kind of ex-
position of the usefulness of SSS matrices in distributed prob-
lems, but the ability to efficiently solve Lyapunov and Riccati
equations for distributed systems is useful for other techniques
as well. The use of SSS matrices for distributed control is
discussed in [64] and similar results should hold for e.g. posi-
tive real synthesis [65], or LQG control with bound [66].
It is also likely that certain types of robustness analysis may be
possible within this framework. Future research will be devoted
to extending these results to multiple dimensions.

APPENDIX A
PROOF OF LEMMA 1

1) First assume that we have initial upper and lower bounds,
, and define the ‘span’ as .

At bisection , it is easy to see that
, so for

.
2) Now assume that we don’t have initial upper and lower

bounds, just . First we check . If
then we have lower and upper bounds and we
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are finished in one step, alternatively if then
we set and check , and so on,
until we find the smallest such that we have an
upper bound or equivalently
which will obviously take steps. We now
set and , thus

, and since , then and
it will take to narrow
the bounds to , just as in part (1). Since the doubling
procedure to first obtain , and the bisection thereafter are
both , thus so is the whole procedure.

APPENDIX B
PROOF OF LEMMA 2

We will first show the conversion method, and then discuss
the proof. We will first eliminate the terms through a change
of variables, and then eliminate the terms.

After running the iteration (4), define
and ,

and the new set of subsystems:

(18)

where

which will be equivalent to the interconnection of (2), but is
spatially strictly proper in one direction.

Now perform the backwards Stein iteration:

starting with , and define the new set of subsystems:

(19)

where

and these will obviously be spatially strictly proper. The suffi-
ciency thus comes from the equivalence of (19) to (2) and since
(19) will always be well-posed.

APPENDIX C

We define:

APPENDIX D
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