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Stability Optimization of Hybrid Periodic

Systems via a Smooth Criterion
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Abstract

We consider periodic orbits of controlled hybrid dynamic systems and want to find open-loop

controls that yield maximally stable limit cycles. Insteadof optimizing the spectral or pseudo-spectral

radius of the monodromy matrixA, which are nonsmooth criteria, we propose a new approach based

on the smoothed spectral radiusρα(A), a differentiable criterion favorable for numerical optimization.

Like the pseudo-spectral radius, the smoothed spectral radius ρα(A) converges from above to the exact

spectral radiusρ(A) for α → 0. Its derivatives can be computed efficiently via relaxed Lyapunov

equations. We show that our new smooth stability optimization program based onρα(A) has a favourable

structure: it leads to adifferentiablenonlinear optimal control problem with periodicity and matrix

constraints, for which tailored boundary value problem methods are available. We demonstrate the

numerical viability of our method using the example of a walking robot model with nonlinear dynamics

and ground impacts as a complex open-loop stability optimization example.

Index Terms

stability, periodic orbits, Lyapunov equation, eigenvalue optimization, smoothed spectral radius,

robotic motion, robustness

I. INTRODUCTION

Stability optimization of nonlinear periodic systems withhybrid dynamics is a difficult but

very important task. It arises when a technical system is best operated periodically and has to

be controlled in such a way that itscyclic steady stateor periodic orbit is stable, robust against
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perturbations, and optimized with respect to certain desirable features. A typical example is

human or robotic running, where the periodic motion has to berobustly stable and allow the

runner to move as fast as possible. The dynamics of running orhopping are often described by

hybrid dynamics due to the ground impacts.

Other examples are periodically operated simulated movingbed (SMB) processes [25], looping

kites [15], or iterative feedback tuning with time and frequency domain constraints [3], [7].

Periodic systems can be stabilized in two ways: one based on sensors, actuators, and feedback

control, the second based on intrinsicallyopen-loopstable orbits [19], [20]. Here we treat the

second, where system parameters – for example limb lengths in the case of a running robot –

and time varying inputs, orcontrol functions– for example periodic torque commands – are

simultaneously optimized to yield inherently stable periodic orbits, along with other operational

constraints or performance objectives. We note that the first case – feedback control – can

be addressed by our approach by including the unknown feedback controller gains among the

decision variables.

II. M ODELS OF PERIODIC HYBRID DYNAMIC SYSTEMS AND SENSITIVITIES

Hybrid dynamical systems include both continuous phases and discrete jump events. Each

continuous phase is described by its own set of differentialequations and each jump is described

by its own discrete equations. Writing the system state asy(t) ∈ R
n, free model parameters as

p ∈ R
np, time varying control functions, i.e. external inputs, asu(t) ∈ R

nu, and time ast, the

dynamics of allnph phases can be written as

ẏ(t) = fj(t, y(t), u(t), p) for t ∈ [τj−1, τj],

j = 1, ..., nph, τ0 = 0, τnph
= T (1)

y(τ+
j ) = y(τ−

j ) + Jj(y(τ−

j ), p) for j = 1, ..., nph, (2)

Here the right hand sidesfj are classC2 within phases, but discontinuitiesJj may occur at

junctions betweenfj andfj+1. The Jj are twice continuously differentiable, andτj denote the

phase boundaries, which are the roots of the switching functions

sj(τj , y(τj), p) = 0. (3)
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If T is the overall cycle time,T -periodic systems have to satisfy periodicity constraintsof the

form

y(T ) = y(0). (4)

Stability is determined by the sensitivity of the solution of the hybrid dynamic system with

respect to perturbations in the initial valuesY (t) = dy(t)
dy(0)

, and in particular, its value at the end

of the cycleY (T ). This can be computed by solving the variational differential equation

Ẏ (t) =
∂fj

∂y
(t, y(t), u(t), p) · Y (t). (5)

For hybrid dynamical systems, the above equation is used forthe continuous phases (with

Y (0) = I), and updates of form

Y (τ+
j ) =

((

fj+1(τ
+
j ) − fj(τ

−

j ) −
∂Jj

∂t
−

∂Jj

∂y
fj(τ

−

j )

)

·

1

ṡj

∂sj

∂y

T

+ I +
∂Jj

∂y

)

Y (τ−

j ) for j = 1, ..., nph (6)

at phase changes. Eq. (6) takes into account that theτj change under a perturbation of the initial

values. Despite the non-smoothness of the trajectory (exhibiting jumps in time), bothy(t) and

the end valuesy(T ) are twice continuosly differentiable with respect to the initial valuesy(0),

and with respect to the controlsu(t) and the parametersp. This is true as long as the ordering

of the phases is not changed.

III. STABILITY OF HYBRID DYNAMICAL SYSTEMS

Stability of periodic solutions of nonlinear periodic systems can be defined according to

Lyapuov’s first method, based on the eigenvalues of the so-called monodromy matrix

A = Y (T ) =
dy(t)

dy(0)

∣

∣

∣

∣

t=T

, (7)

which is the Jacobian of the Poincaré map of the periodic system; cf. [16]:

Theorem 3.1 (Stability of Nonlinear Periodic Systems):A T -periodic solution of aT -periodic

nonlinear system is locally asymptotically stable if the spectral radius of the monodromy matrix

A satisfiesρ(A) < 1. It is unstable ifρ(A) > 1.

Remarks:(a) As shown in [20], this theorem can be generalized to the case of hybrid dynamic

systems, if the differentiability assumptions onfj andJj stated in section II are satisfied. The

computation ofA for hybrid systems follows eqns. (5) and (6). (b) If not all entries of the vector
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y are periodic, e.g. in walking motion, the non-periodic directions have to be eliminated from

the matrixA before application of this criterion. (c) For autonomous systems the above stability

criterion is not directly applicable, becauseA always has an eigenvalue one, and only orbital

asymptotic stability can be achieved. However, by eliminating the eigendirections associated with

this eigenvalue, i.e., computing the projectionA′ of A on the complement of the eigenspace,

autonomous systems can be treated in a similar way. The analogous condition is then that the

eigenvalues ofA′ have to have modulus< 1.

IV. OPTIMAL CONTROL PROBLEM INVOLVING STABILITY

Optimal control problems for hybrid dynamical systems witha stability related criterion are

based on the augmented system dynamics (i.e trajectoriesy(t) and their sensitivitiesY (t)),

and typically comprises additional path constraints (8b) and pointwise equality and inequality

constraints (8c) and (8d), cf. [20].

min
y(·),Y (·),u(·),τ,p

Φstab(Y (T )) (8a)

s.t. (1), (2), (5), (6) - augmented hybrid system dynamics

gj(t, y(t), u(t), p) ≥ 0 for t ∈ [τj−1, τj] (8b)

req(y(0), .., y(T ), p) = 0, e.g. (3), (4) (8c)

rineq(y(0), .., y(T ), Y (T ), p) ≥ 0 (8d)

The stability objectiveΦstab depends on the monodromy matrixA = Y (T ), and will be further

discussed below.

A. Numerical Optimal Control Methods and Resulting Nonlinear Optimization Problem

If all problem data are twice differentiable, problem (8) can be solved by the direct boundary

value problem approach [8] based on multiple shooting. Thistechnique discretizes both state

and control variables and transforms the optimal control problem into a nonlinear mathematical

program (NLP), which can be written as

min
x

Φstab(A(x)) s.t. gE(x) = 0, gI(x) ≤ 0. (9)
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Here the vectorx ∈ R
nx collects all optimization variables of the discretized optimal control

problem. The dynamic system equations haven statesy(t) plus then×n sensitivity statesY (t).

If the control and state variables are discretized on a grid with nint intervals, the dimension of

x is nx = (n + n2)(nint + 1) + nunint + np + nph. NLP (9) could in principle be solved by any

standard NLP software, but since it is sparse and - due to the discretization - very structured,

for efficiency reasons it is solved by a tailored structure-exploiting SQP method. For details, see

[8], [17], [18].

The stability functionΦstab could be chosen in various ways. While any induced matrix norm

of A could be used to evaluate contraction of perturbations, thespectral radius is particularly

appealing, since it is the most stringent criterion. Unfortunately it has two major drawbacks when

it comes to minimizing instability: (a)ρ(A) is typically a non-smooth (and even non-Lipschitz)

function of the entries of matrixA [9]. (b) ρ(A) is not robust against parametric uncertainties

in the system. For this reason, more robust criteria have been proposed, like the pseudo-spectral

radius [11], [26] which however still suffers from non-smoothness and from high computational

costs within an optimization procedure, where the objective function needs to be evaluated many

times. It is the goal of this paper to discuss an alternative to the spectral radius, which is also

suited as objective within optimal control problems for hybrid dynamic systems.

V. THE SMOOTHED SPECTRAL RADIUS

In this note we propose a criterion for stability, which is both smooth and computationally

attractive. At its core is a well-known observation.

Lemma 5.1:Let ‖ · ‖ be any matrix norm. ThenA ∈ R
n×n is stable (i.e.ρ(A) < 1) if and

only if the series
∑

∞

k=1 ‖A
k‖2 converges.

Proof: If the sum
∑

∞

k=1 ‖A
k‖2 converges, then in particularlimk→∞ Ak = 0. This implies for

any eigenvalue and -vector pair(λ, v) with v 6= 0 that limk→∞ Akv =
(

limk→∞ λk
)

v which

implies that|λ| < 1, i.e. we have shown thatρ(A) < 1. Conversely, ifρ(A) < 1 we use the

spectral radius formula [14] that states for any matrix normthat ρ(A) = limk→∞ ‖Ak‖
1
k . This

implies that for anyε > 0 there exists ak0 ∈ N so that
∑

∞

k=k0
‖Ak‖ ≤

∑

∞

k=k0
(ρ(A) + ε)k. By

chosingε small enough, the upper bound is a converging sum.
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Inspired by this observation, we now introduce a relaxed andweightedH2-norm, namely the

matrix functionf : R
n×n × R → R ∪ {∞}

f(A, s) :=

∞
∑

k=1

s−2k ‖Ak‖2
F,V,W , (10)

where‖B‖2
F,V,W := ‖V

1
2 BW

1
2‖2

F = Tr(V BWBT ) is a scaled Frobenius norm with symmetric

positive definite matricesV, W . We have the following

Lemma 5.2:f(A, s) < ∞ ⇔ s > ρ(A).

Proof: We use Lemma 5.1 by noting thatf(A, s) =
∑

∞

k=1 ‖(As−1)k‖2
F,V,W and thats > ρ(A)

is equivalent to stability of the matrixAs−1.

Lemma 5.3:For every fixedA ∈ R
n×n\{0} one has fors > ρ(A) that ∂f(A,s)

∂s
< 0. Moreover,

{f(A, s)|s > ρ(A)} = R++.

This result can be shown by direct calculation. It allows us now to introduce thesmoothed

spectral radiusρα(A) as the implicit function of the equationf(A, s) = α−1 with respect tos.

Definition 5.1 (Smoothed Spectral Radius):The smoothed spectral radius is the mapρα :

R++ × R
n×n → R, (α, A) 7→ ρα(A), that for anyA 6= 0 uniquely solves the equation

f(A, ρα(A)) = α−1. (11)

For A = 0 and anyα > 0 we defineρα(A) = 0. As a consequence of Lemma (5.3),ρα(A) is

well defined on the whole domain, i.e., for anyα > 0, and any matrixA ∈ R
n×n.

Theorem 5.4 (Properties of smoothed spectral radius):The smoothed spectral radiusρα(A)

satisfiesρα(A) > ρ(A), and limα→0 ρα(A) = ρ(A). Moreover,ρα(A) is analytic in both its

arguments on the whole domainα > 0, A ∈ R
n×n, and satisfies∂ρα(A)

∂α
> 0.

Proof: The first two properties follow from the fact thatf(A, ρα(A)) is finite, but tends to

infinity for α → 0. The differentiability properties follow from the implicit function theorem

and the fact thatf(A, s) is analytic in both its arguments and finite fors = ρα(A) > ρ(A), and

from the fact that∂f(A,s)
∂s

< 0.

For a visualization see Fig. 1. From the above properties, and from Theorem 3.1, we easily

obtain the following

November 3, 2008 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 7

0.3 0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

matrix parameter t

sm
oo

th
ed

 s
pe

ct
ra

l r
ad

iu
s 

s
 

 

spectral radius ρ(A)
ρα (A), α  =0.005

ρα(A), α =0.02

ρα(A), α =0.125

Fig. 1. The smoothed spectral radiusρα(A) for three different values ofα, at the example of a parameter dependent matrix

A(t) =
(

(1,−t)T , (t, t2)T
)

. The solid (nonsmooth) line is the spectral radiusρ(A), which is a lower bound forρα(A), cf.

Theorem 5.4.

Corollary 5.5: If ρα(A(x)) ≤ 1 for someα > 0, then the nonlinear periodic system is locally

asymptotically stable. Iflimα→0 ρα(A(x)) > 1, it is unstable.

A. Computing the Smoothed Spectral Radius

When it comes to algorithmic optimization, the fact that thesmoothed spectral radius is

differentiable allows us to use derivative based methods without any restriction, a major

advantage. However, in order to exploit this fact, we will also have to ascertain that computing

ρα(A) is sufficiently easy, a fact which is not straightforward, given the implicit definition ofρα.

Fortunately, it turns out that the smoothed spectral radiuscan be computed by solving a relaxed

Lyapunov equation.

Theorem 5.6 (Smoothed Spectral Radius Computation):For any α > 0 and s > 0, the

following statements are equivalent:

(a) ρα(A) ≤ s

(b) f(A, s) ≤ α−1

(c) ∃P1 � 0 : s2P1 = A(W + P1)A
T , Tr(V P1) ≤ α−1

(d) ∃P2 � 0 : s2P2 = AT (V + P2)A, Tr(WP2) ≤ α−1.
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Proof: The equivalence of (a) and (b) follows from the definition of the smoothed spectral

radius, Eq. (11), and the monotonicity off(A, s) in s, Lemma 5.3. Equivalence with (c) follows

from the observations that (i)f(A, s) is finite if and only if As−1 is stable, and (ii) thatAs−1

is stable if and only if a positive definite matrix̃P1 exists that uniquely solves the Lyapunov

equationP̃1 = W + (As−1)P̃1(As−1)T . This matrix satisfies̃P1 =
∑

∞

k=0 s−2kAkW (Ak)T , and

P1 := P̃1 −W =
∑

∞

k=1 s−2kAkW (Ak)T is then positive semidefinite and the unique solution of

the equations2P1 = A(W + P1)A
T . Therefore,

f(A, s) = Tr

(

V

∞
∑

k=1

AkW (Ak)T

)

= Tr(V P1).

The equivalence with (d) follows with a similar argument, now with a positive semidefinite

P2 = P̃2 − V , whereP̃2 satisfies the Lyapunov equatioñP2 = V + (As−1)T P̃2(As−1).

From the above proof we also obtain, using the intermediate matricesP̃1 andP̃2, the following

corollary.

Corollary 5.7: For anyα > 0 ands > 0, ρα(A) ≤ s is equivalent to the existence of a unique

positive definite, symmetric matrix̃P1, respectivelyP̃2, satisfying

P̃1 = W+s−2AP̃1A
T , Tr(V P̃1)≤Tr(V W )+α−1 (12)

P̃2 = V +s−2ATP̃2A, Tr(WP̃2)≤Tr(V W )+α−1 (13)

VI. ROBUST STABILITY OPTIMIZATION

The differentiable dependence of the smoothed spectral radius onA makes it attractive as an

objective for the stability optimal control problem (9). Wewill now discuss two variants on how

to use employ this criterion algorithmically.

A. Optimization of Smoothed Spectral Radius

The first variant that comes to mind is to simply choose anα > 0 and then to solve a stability

optimization problem of the form (9), namely

min
x

ρα(A(x)) s.t. gE(x) = 0, gI(x) ≤ 0, (14)
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or the equivalent formulation involving a Lyapunov matrix,cf. Corollary 5.7,

minimize s

subject to P = V + s−2A(x)T PA(x), (15a)

Tr(WP ) = Tr(V W ) + α−1, (15b)

P � 0 (15c)

gE(x) = 0, gI(x) ≤ 0. (15d)

Note that the relaxed Lyapunov equation (15a) and the trace condition (15b) are both linear

equations in the matrix variableP , and that (15a) will always have a unique positive definite

solutionP (x, s) if s > ρ(A(x)). Non-positive definite shadow solutions (which even exist for s ≤

ρ(A(x))) are excluded by the LMI constraint (15c). This constraint,however, is not active at the

unique solutionP (x, s) for s > ρ(A(x)). If s is initialized suitably, it is therefore often possible to

ignore the constraint (15c), and for givenα andA(x), Eqs. (15a) and (15b) have a unique solution

(s, P ) with s = ρα(A(x)) > ρ(A(x)) and P positive definite (possible elimination of these

variables would lead again to problem (14)). Finally, if we find a solution withs = ρα(A) ≤ 1,

then – by virtue of Corollary 5.5 – we have found a stable solution.

B. Optimization of a Heuristic Robustness Measure

When minimizing the smoothed spectral radius, the choice ofα is somewhat arbitrary. As seen

in Fig. 1 and indicated by Theorem 5.4,ρα(A) becomes smoother – and therefore presumably a

more robust measure for stability – with increasing values for α > 0. Having found a parameter

valueα > 0 with ρα(A(x)) < 1, we might in consequence search for the largestα such that the

stability certificateρα(A) ≤ 1 remains valid. This leads to the optimization program

max
x,α

α s.t. ρα(A(x)) ≤ 1, gE(x) = 0, gI(x) ≤ 0. (16)

Interestingly, this program can be nicely interpreted as a scaledH2-norm optimization:

Corollary 6.1 (Equivalence withH2-norm minimization):Any solution (x∗, α∗) of pro-

gram (16) also solves

min
x

∞
∑

k=1

‖A(x)k‖2
F,V,W s.t. gE(x) = 0, gI(x) ≤ 0, (17)
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with optimal value(α∗)−1, and vice-versa.

Proof: From Theorem 5.6 we conclude that problem (16) is equivalentto

max
x,α

α s.t. f(A(x), 1) ≤ α−1, gE(x) = 0, gI(x) ≤ 0. (18)

Given the fact thatα−1 decreases monotonically inα, the constraintf(A(x), 1) ≤ α−1 will

always be active, and the problem is equivalent to

min
x

f(A(x), 1) s.t. gE(x) = 0, gI(x) ≤ 0. (19)

Corollary 5.7 suggests the following computationally moreappealing equivalent cast of the

stability optimization program:

min
x,P

Tr(WP ) s.t. P = V + A(x)T PA(x), (20a)

P � 0 (20b)

gE(x) = 0, gI(x) ≤ 0. (20c)

Like program (15), this formulation can be addressed by nonlinear programming algorithms

that require second or higher order differentiability of the problem functions, if the positivity

constraint (20b) is taken care of in the same way as in (15).

Remark 1: The matrix constraint function in (20a) has onlyn(n + 1)/2 independent

components, due to symmetry. These determine uniquely then(n + 1)/2 components of the

symmetric matrix variableP ∈ R
n×n, if ρ(A(x)) < 1.

Remark 2:If one wishes to force (20b) to avoid shadow solutions, one could use a nonlinear

semi-definite programming (nSDP) solver [22], or one might think of working with a factorization

P = LLT within an NLP solver, whereL could e.g. be a Cholesky factor (which, however,

introduces additional non-convexity into the problem). Inour numerical computations, we did

not explicitly enforce the positive definiteness constraint and just solved an NLP without the

constraint (20b), which is inactive in the solution.

Remark 3:The positive definite weighting matricesV andW allow us, as usual inH2-norm

optimization, to weight the expected input disturbances byW and the output errors byV .

Remark 4:The number of Lyapunov variables grows quadratically with state dimensionn

of the system. If the presence ofP leads to large size programs it may be preferable to work
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directly with the cast (17), where the Lyapunov matrix only appears implicitly in function and

gradient computations.

C. Finding Stable Initializations forH2-Norm Optimization

During the optimization process, and before a stable solution x has been found, we will have

ρ(A(x)) ≥ 1, so that the Lyapunov constraint (20b) may be infeasible, ormeaningless shadow

solutions may appear. In order to find an initially stable solution, whereP � 0 can be assured,

we propose to use one of the following two homotopy methods:

(i) We start by using a formulation of type (15), with some fixed α > 0, in the hope to find

a solution withρα(A(x∗)) ≤ 1. If our local optimization stops at a local minimum with

a valueρα(A(x∗)) > 1, we decreaseα and rerun the optimizer untilρα(A(x∗)) ≤ 1 is

found. If we do not find any such solution even for arbitrarilysmallα > 0, we have strong

evidence that no stable solution exists (at least locally).

(ii) Alternatively, we might choose a fixed scalars > ρ(A(x)), and relax the Lyapunov

constraint (20a) toP = V + s−2A(x)T PA(x), so that it has a unique solution at the

initial guess forx. Solution of this relaxed problem yields a matrixA(x) with ρ(A(x)) < s,

and by decreasings and solving the problem again at eachs, we push the spectral radius

of the solution down, until a solution withs = 1 is found (if possible). This is then already

the desired solution of problem (20) respectively (16).

VII. D ISCUSSION

It is well known that computing stabilizinglinear controllers forlinear systems can be reduced

to a convex optimization problem if the order of the controller is the same as the order of the

system. In this case the problem can be addressed via algebraic Riccati equations (AREs) [28],

or linear matrix inequalities (LMIs) [13], and is thereforequasi-polynomial. As soon as the order

of the controller is smaller than the system order, the problem is in general NP-hard [5], [23]

and not accessible to convexity methods. However, non-convex local optimization approaches

for stability optimization work fairly well in practice andhave been discussed e.g. in [1], [2],

[6], [10]–[12].

In this paper, the situation is even more general, as the unknown parameterx may include

feedback elements, but may just as well encode other decision parameters that enter the matrix
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A(x). For instance, in the stable walking experiment in Section VIII, there is no feedback andx

regroups design parameters of the open-loop system. In thiscase it is particularly advantageous

to have a smooth criterion for stability that is compatible with state-of-the-art nonlinear optimal

control methods as e.g. the tool MUSCOD-II [18] used for the computations in this paper.

Interestingly, the equivalence between the smoothed spectral radiusρα and theH2-norm,

namely

ρα(A) < 1 ⇔ f(A, 1) <
1

α
(21)

is analogous to a very similar relationship for the pseudo-spectral abscissaαε(A) of a linear

continuous time system with transfer functionH(z) = (A − zI)−1, which is related to the

H∞-norm by

αε(A) < 0 ⇔ ‖H‖∞ <
1

ε
(22)

as nicely described and proven in [11]. Notice that (21) may be understood as a rigourous form

for the intuitive statement thatρα is increasingly robust with increasingα. Indeed, similar to the

case of the spectral abscissa, where the statement on the right of (22) can be interpreted as the

distance to instability of the continuous dynamic systemẋ = Ax, we can interprete the right

hand side of (21) as a statement on the distance to instability of the discrete systemxk+1 = Axk.

VIII. E XAMPLE : OPEN-LOOP STABLE WALKING

In this section we will show how the method can be used to stabilize the hybrid dynamical

system of a biped walking robot. The robot has two stiff legs and is powered by torques at the

hip and at the ankle, the latter replacing the action of an actuated foot. Its walking motion is

shown in Fig. 2. The periodic cycle consists of 2 steps, but the periodic problem considered

in the optimal control problem formulation includes one step and the touchdown discontinuity

combined with a leg shift.

The model of this robot involves smooth continuous swing phases as well as discrete events at

heelstrike in the form of velocity discontinuities. A detailed description of the robot is given in

[21]. Stability is very easy to picture in this case. A stablerobot persists in its periodic gait, while

an unstable robot falls to the ground after a very short time.The task of stability optimization is

to determine robot parameters (such as geometry and mass distributions) and actuation pattern
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Fig. 2. One step of the symmetric walking cycle of the stiff-legged robot example

that lead to the best possible open-loop stable gaits, not requiring any feedback, which would

substantially complicate the set-up due to the need of appropriate sensors and actuators.

For the solution of this problem, we use formulation (20) with weighting matricesV = W = I.

The dimensions of this problem are as follows: The state space of this robot is of dimension

n = 4, so that all matricesA, P, V, W are inR
4×4. The sensitivitiesY (t) live also inR

4×4 so that

the state space of the optimal control problem has dimensionn+n2 = 20. There are 8 unknown

mechanical parameters in the robot model, meaning dim(p) = 8, and, as explained above, there

are an additionaln(n + 1)/2 = 10 unknown entries for the Lyapunov matrixP , leading to a

total of 18 parameters. To this we add the controlu with dimensionnu = 2, which is discretized

in time on 50 intervals, leading to another 100 degrees of freedom for optimization. Similarly,

the state vector is discretized into(n + n2) ∗ 50 = 1000 variables. Finally, this example features

exactly two phases, so that dim(τ) = 2, which leads to a total of 1120 variables.

We started from a previously determined stable solutionx0 with spectral radiusρ = 0.53, with

the intention to further increase its stability. We could therefore use formulation (20) directly

without starting the outlined homotopy method described inSection VI-C. The control variables

u are related to the energy input of the robot. Since in the caseof robots not only stability but

also energy consuption is important, we added a small regularization term
∫ T

0
u(t)2 dt to the

stability objective function.

We applied the direct optimal control technique described in Section IV-A, via control and

multiple shooting state discretization and SQP solution ofthe NLP. Our method finds a locally

optimal solution with spectral radiusρ = 0.157, which is well below the critical boundary of 1,

and much lower than the starting value. The corresponding smoothed spectral radius is 1 with

the valueα = 14.08, while the trace of the optimizedP is 4.07109; (see (15b)). Optimal position
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Fig. 3. Trajectories of the most stable solution (joint angles and velocities)

and velocity histories are shown in Fig. 3.1

IX. CONCLUSIONS

We have presented a new approach to optimize the stability ofhybrid periodic systems. In

contrast with previous techniques based on minimizing the spectral radius or other non-smooth

criteria, we use a smooth problem formulation based on thesmoothed spectral radius, which

allows a solution of the resulting nonlinear programming problem with standard NLP techniques,

such as SQP methods. Several smooth stability problem formulations have been presented. The

last one was used to robustly stabilize the hybrid dynamic system of a biped walking robot

performing periodic symmetric gaits. Numerical experience shows that the proposed method

works very well for this challenging application and is ableto considerably improve the

system stability. Future work aims at investigating the robustness properties of the smoothed

spectral radius and applying the approach to further applications in robotic walking and areas

like chemical and power engineering (e.g. to simulated moving bed processes [25] or power

generating kites [15]). Also, it might be interesting to think of generalizations of the approach

to the joint spectral radius of a set of matrices [4], [24]. Wenote that our approach was already

generalized to continuous time systems yielding the “smoothed spectral abscissa” [27].

1Parameters of the optimal solution are: leg massm = 1kg, leg lengthl = 0.2m, relative center of mass locationc = 0.25,

hip spring and damper constantsk1 = 0Nm (i.e. no spring),b1 = 0.046Nms, ankle spring constantk2 = 4.51Nm, spring

offset ∆2 = −0.11, and damper constantb2 = 0.331Nms. The initial values arexT = (0.346,−0.346,−0.751,−1.24), and

the cycle time isT = 0.578s.
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[25] A. Toumi, S. Engell, M. Diehl, H. Bock, and J. Schlöder,“Efficient optimization of Simulated Moving Bed Processes,”

Chemical Engineering and Processing, Volume 46, Issue 11, pp. 1067-1084, 2007

[26] L. N. Trefethen, M. Embree, “Spectra and Psuedospectra- The behavior of non-normal matrices”, Princeton University

Press, 2005.

[27] J. Vanbiervliet, B. Vandereycken, W. Michiels, S. Vandewalle, and M. Diehl. The smoothed spectral abscissa for robust

stability optimization. SIAM Journal on Optimization, 2008 (accepted).

[28] K. Zhou, J.C. Doyle and K. Glover. Robust and Optimal Control, Prentice Hall, 1996.

November 3, 2008 DRAFT


