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Abstract

We consider periodic orbits of controlled hybrid dynamicteyns and want to find open-loop
controls that yield maximally stable limit cycles. Insteafdoptimizing the spectral or pseudo-spectral
radius of the monodromy matriX, which are nonsmooth criteria, we propose a new approactdbas
on the smoothed spectral radips(A), a differentiable criterion favorable for numerical opihation.
Like the pseudo-spectral radius, the smoothed spectralsad(A) converges from above to the exact
spectral radiusp(A4) for « — 0. Its derivatives can be computed efficiently via relaxed guy@ov
equations. We show that our new smooth stability optimizegirogram based g, (4) has a favourable
structure: it leads to alifferentiablenonlinear optimal control problem with periodicity and miat
constraints, for which tailored boundary value problem hods are available. We demonstrate the
numerical viability of our method using the example of a viradkrobot model with nonlinear dynamics

and ground impacts as a complex open-loop stability op#tion example.

Index Terms

stability, periodic orbits, Lyapunov equation, eigenwaloptimization, smoothed spectral radius,

robotic motion, robustness

I. INTRODUCTION

Stability optimization of nonlinear periodic systems witlgbrid dynamics is a difficult but
very important task. It arises when a technical system i$ tysrated periodically and has to

be controlled in such a way that ityclic steady stater periodic orbitis stable, robust against
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perturbations, and optimized with respect to certain dég features. A typical example is
human or robotic running, where the periodic motion has tadimistly stable and allow the
runner to move as fast as possible. The dynamics of runnirigppping are often described by
hybrid dynamics due to the ground impacts.

Other examples are periodically operated simulated mavaty(SMB) processes [25], looping
kites [15], or iterative feedback tuning with time and freqay domain constraints [3], [7].

Periodic systems can be stabilized in two ways: one basedmsoss, actuators, and feedback
control, the second based on intrinsicatigen-loopstable orbits [19], [20]. Here we treat the
second, where system parameters — for example limb lengthisei case of a running robot —
and time varying inputs, ocontrol functions— for example periodic torque commands — are
simultaneously optimized to yield inherently stable péieoorbits, along with other operational
constraints or performance objectives. We note that thé d¢mse — feedback control — can
be addressed by our approach by including the unknown fe&dt@ntroller gains among the

decision variables.

I[I. MODELS OF PERIODIC HYBRID DYNAMIC SYSTEMS AND SENSITIVITIES

Hybrid dynamical systems include both continuous phasesdiscrete jump events. Each
continuous phase is described by its own set of differertjalations and each jump is described
by its own discrete equations. Writing the system statg(as< R", free model parameters as
p € R™, time varying control functions, i.e. external inputs,«©$) € R™, and time ag, the

dynamics of alln,, phases can be written as
y(t) = fj(t>y(t)au(t)>p) for te [Tj*ij]’
J=1 . nm, 0=0,7,, =T Q)
y(TjJr) = y(,]_;) + Jj(y(T;%p) for Jj=1 -+, Tlph, (2)

Here the right hand sideg; are classC? within phases, but discontinuitie§; may occur at
junctions betweery; and f;.,. The J; are twice continuously differentiable, angl denote the

phase boundaries, which are the roots of the switching imst

Sj(Tj>y(Tj)>p) =0. (3)
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If T is the overall cycle time] -periodic systems have to satisfy periodicity constraoftshe

form
y(T) = y(0). 4)

Stability is determined by the sensitivity of the solutiohtbe hybrid dynamic system with

respect to perturbations in the initial valugst) = W) “and in particular, its value at the end

— dy(0)”
of the cycleY (T'). This can be computed by solving the variational differgn¢iquation
. OFf
V() = G v(0. ) V), ©

For hybrid dynamical systems, the above equation is usedh®rcontinuous phases (with

Y (0) = I), and updates of form

Vi) = () = 500 = 5 = Gty

1 8sz 0J; _ .
I+ L )Y(r f =1, ..
55 Oy 6?/) (7)) for J oo Tph ©

at phase changes. Eq. (6) takes into account that;thkange under a perturbation of the initial
values. Despite the non-smoothness of the trajectory i§eiig jumps in time), bothy(¢) and
the end valueg/(7) are twice continuosly differentiable with respect to thiiah valuesy(0),
and with respect to the controlgt) and the parameters This is true as long as the ordering

of the phases is not changed.

[1l. STABILITY OF HYBRID DYNAMICAL SYSTEMS

Stability of periodic solutions of nonlinear periodic systs can be defined according to

Lyapuov’s first method, based on the eigenvalues of the Bedcenonodromy matrix

A=Y (T) = 33—((3)) = (7)

which is the Jacobian of the Poincaré map of the perioditegyscf. [16]:

Theorem 3.1 (Stability of Nonlinear Periodic Systen&)7'-periodic solution of & -periodic
nonlinear system is locally asymptotically stable if thedpal radius of the monodromy matrix
A satisfiesp(A) < 1. It is unstable ifp(A) > 1.

Remarksia) As shown in [20], this theorem can be generalized to tlse o hybrid dynamic
systems, if the differentiability assumptions gnand .J; stated in section Il are satisfied. The

computation ofA for hybrid systems follows eqgns. (5) and (6). (b) If not altrees of the vector
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y are periodic, e.g. in walking motion, the non-periodic direns have to be eliminated from
the matrix A before application of this criterion. (c) For autonomousteyns the above stability
criterion is not directly applicable, becaugealways has an eigenvalue one, and only orbital
asymptotic stability can be achieved. However, by elimirgathe eigendirections associated with
this eigenvalue, i.e., computing the projectidh of A on the complement of the eigenspace,
autonomous systems can be treated in a similar way. The gm&acondition is then that the

eigenvalues ofd’ have to have modulus 1.

V. OPTIMAL CONTROL PROBLEM INVOLVING STABILITY

Optimal control problems for hybrid dynamical systems watlstability related criterion are
based on the augmented system dynamics (i.e trajectgftgsand their sensitivities’(t)),
and typically comprises additional path constraints (8td aointwise equality and inequality
constraints (8c) and (8d), cf. [20].

min  Dyean(Y(T)) (8a)

y(')7Y(')7u(')7T7p

s.t. (1), (2), (5), (6) - augmented hybrid system dynamics

gj(t>y(t)? u(t),p) > 0 for te [ijla Tj] (8b)
Teq(y(0), ., y(T),p) =0, e.g. (3), (4) (8¢c)
Tineq(y¥(0), .., y(T),Y(T),p) > 0 (8d)

The stability objectivebg,;, depends on the monodromy matrix= Y (7"), and will be further

discussed below.

A. Numerical Optimal Control Methods and Resulting Nordm®ptimization Problem

If all problem data are twice differentiable, problem (8hdze solved by the direct boundary
value problem approach [8] based on multiple shooting. Tathnique discretizes both state
and control variables and transforms the optimal controbfam into a nonlinear mathematical

program (NLP), which can be written as

mxin Pgan(A(r)) St gp(z) =0, gr(z) <0. 9
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Here the vectorr € R"* collects all optimization variables of the discretizediot control
problem. The dynamic system equations hawatesy(¢) plus then x n sensitivity stated’(¢).

If the control and state variables are discretized on a gt w,; intervals, the dimension of
T iS ny = (n 4+ n?)(Nine + 1) + nunine + np + npn. NLP (9) could in principle be solved by any
standard NLP software, but since it is sparse and - due to idoeetization - very structured,
for efficiency reasons it is solved by a tailored structuplaiting SQP method. For details, see
[8], [17], [18].

The stability function®,;, could be chosen in various ways. While any induced matrixmor
of A could be used to evaluate contraction of perturbationssgieetral radius is particularly
appealing, since it is the most stringent criterion. Unfodtely it has two major drawbacks when
it comes to minimizing instability: (ap(A) is typically a non-smooth (and even non-Lipschitz)
function of the entries of matrixl [9]. (b) p(A) is not robust against parametric uncertainties
in the system. For this reason, more robust criteria hava pegposed, like the pseudo-spectral
radius [11], [26] which however still suffers from non-sntleeess and from high computational
costs within an optimization procedure, where the objediiinction needs to be evaluated many
times. It is the goal of this paper to discuss an alternativthé spectral radius, which is also

suited as objective within optimal control problems for hghdynamic systems.

V. THE SMOOTHED SPECTRAL RADIUS

In this note we propose a criterion for stability, which istibb@mooth and computationally
attractive. At its core is a well-known observation.

Lemma 5.1:Let || - | be any matrix norm. Thenl € R"*" is stable (i.e,p(A4) < 1) if and
only if the seriesy ;- | || A*|*> converges.
Proof: If the sum>_.° | || A*||* converges, then in particuldim,_.., A* = 0. This implies for
any eigenvalue and -vector paik, v) with v # 0 that limj,_.., A*v = (limz_ A*) v which
implies that|A\| < 1, i.e. we have shown that(A) < 1. Conversely, ifp(A4) < 1 we use the
spectral radius formula [14] that states for any matrix ndhat p(A) = limy_. || A*|+. This
implies that for anye > 0 there exists &, € N so thaty_;*, [|A*]| < 3772, (p(A) + €)*. By

chosinge small enough, the upper bound is a converging sum. a
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Inspired by this observation, we now introduce a relaxedwaeidhted H,-norm, namely the

matrix functionf : R"*" x R — R U {oo}

[e.e]

FA )= s A*Z v (10)

k=1
where || B||2 vy = ||V2BW?2||2 = Tr(VBW B”) is a scaled Frobenius norm with symmetric
positive definite matrice¥’, W. We have the following
Lemma 5.2:f(A,s) < oo & s> p(A).
Proof: We use Lemma 5.1 by noting thai{A,s) = 3.7, [[(As™")¥||%.,w and thats > p(A)

is equivalent to stability of the matrids—!. a

Lemma 5.3:For every fixed4 € R™*"\ {0} one has fors > p(A) that 2220 ~ (. Moreover,

Js
{f(A,s)[s > p(A)} =Ryy.
This result can be shown by direct calculation. It allows wsvrto introduce thesmoothed
spectral radiusp,(A) as the implicit function of the equatiofi( A, s) = a~! with respect tos.
Definition 5.1 (Smoothed Spectral Radiu3he smoothed spectral radius is the map :
R, x R™™ - R, (a, A) — po(A), that for anyA # 0 uniquely solves the equation

f(A, pa(A)) =™ (11)

For A = 0 and anya > 0 we definep,(A) = 0. As a consequence of Lemma (5.3),(A4) is
well defined on the whole domain, i.e., for any> 0, and any matrix4 € R™*".

Theorem 5.4 (Properties of smoothed spectral raditd)e smoothed spectral radiyg(A)
satisfiesp,(A) > p(A), andlim,_ pa(A) = p(A). Moreover, p,(A) is analytic in both its
arguments on the whole domain> 0, A € R™*", and satisfie?%"‘) > 0.

Proof: The first two properties follow from the fact that A, p,(A)) is finite, but tends to
infinity for a« — 0. The differentiability properties follow from the implicfunction theorem
and the fact thaf (A, s) is analytic in both its arguments and finite for= p,(A) > p(A), and

from the fact that% < 0. O

For a visualization see Fig. 1. From the above propertied,femm Theorem 3.1, we easily

obtain the following
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Fig. 1. The smoothed spectral radips(A) for three different values of, at the example of a parameter dependent matrix
Alt) = ((1,—)", (t,t)"). The solid (nonsmooth) line is the spectral radjusi), which is a lower bound fopq (A), cf.
Theorem 5.4.

Corollary 5.5: If p,(A(z)) < 1 for somea > 0, then the nonlinear periodic system is locally

asymptotically stable. Ifim, .o po(A(z)) > 1, it is unstable.

A. Computing the Smoothed Spectral Radius

When it comes to algorithmic optimization, the fact that $smoothed spectral radius is
differentiable allows us to use derivative based methoddhowut any restriction, a major
advantage. However, in order to exploit this fact, we wiahave to ascertain that computing
pa(A) is sufficiently easy, a fact which is not straightforwardsegi the implicit definition ofp,,.
Fortunately, it turns out that the smoothed spectral radamsbe computed by solving a relaxed
Lyapunov equation.

Theorem 5.6 (Smoothed Spectral Radius Computatiboj: any a« > 0 and s > 0, the
following statements are equivalent:

@) palA) <s

(b) f(As)<a

() 3P, =0: P, = AW + P)AT, Tr(VP) < a7t
(d) 3P, = 0: ’Po = AT(V + P)A, Tt(WP) < a™L.
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Proof: The equivalence of (a) and (b) follows from the definition bé tsmoothed spectral
radius, Eq. (11), and the monotonicity 6fA, s) in s, Lemma 5.3. Equivalence with (c) follows
from the observations that (ij(A, s) is finite if and only if As~! is stable, and (ii) thatds™!
is stable if and only if a positive definite matri®, exists that uniquely solves the Lyapunov
equationP, = W + (As~ )P (As~")T. This matrix satisfies?, = >3, s 2 A*W (AF)T, and
P =P —W =2, s AW (AX)T is then positive semidefinite and the unique solution of
the equations? P, = A(W + P;)AT. Therefore,

f(As)=Tr (v i A’“W(A’“)T> =Tr(VP).

The equivalence with (d) follows with a similar argumentwnwith a positive semidefinite
P, = P, — V, whereP, satisfies the Lyapunov equatid? = V + (As™ )T Py(As™). O

From the above proof we also obtain, using the intermediatgicesP; and P, the following
corollary.

Corollary 5.7: For anya > 0 ands > 0, p,(A) < s is equivalent to the existence of a unique
positive definite, symmetric matri®;, respectivelyP,, satisfying

P = WHs 2APAT Te(VP) <Tr(VW)+a ™t (12)

Py = V45 2ATP A, Te(WPR) <Tr(VW)4a (13)

VI. ROBUST STABILITY OPTIMIZATION

The differentiable dependence of the smoothed spectralgaoh A makes it attractive as an
objective for the stability optimal control problem (9). Wl now discuss two variants on how

to use employ this criterion algorithmically.

A. Optimization of Smoothed Spectral Radius

The first variant that comes to mind is to simply choosevan 0 and then to solve a stability

optimization problem of the form (9), namely

m];in pa(A([L')) S.t. gE'('T) = Oa g[(x) < Oa (14)
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or the equivalent formulation involving a Lyapunov matref, Corollary 5.7,

minimize s

subjectto P =V + s 2A(x)" PA(x), (15a)
Tr(WP) =Te (VW) +a ™!, (15b)
P =0 (15c)
gr(r) =0, gr(x) <0. (15d)

Note that the relaxed Lyapunov equation (15a) and the traceliton (15b) are both linear
equations in the matrix variabl®, and that (15a) will always have a unique positive definite
solutionP(z, s) if s > p(A(z)). Non-positive definite shadow solutions (which even existf<
p(A(x))) are excluded by the LMI constraint (15c). This constrdimwever, is not active at the
unique solutionP(z, s) for s > p(A(z)). If s is initialized suitably, it is therefore often possible to
ignore the constraint (15c), and for giverand A(z), Egs. (15a) and (15b) have a unique solution
(s,P) with s = p,(A(x)) > p(A(z)) and P positive definite (possible elimination of these
variables would lead again to problem (14)). Finally, if wedfia solution withs = p,(A) <1,
then — by virtue of Corollary 5.5 — we have found a stable smhut

B. Optimization of a Heuristic Robustness Measure

When minimizing the smoothed spectral radius, the choice isfsomewhat arbitrary. As seen
in Fig. 1 and indicated by Theorem 54, (A) becomes smoother — and therefore presumably a
more robust measure for stability — with increasing valwes\f > 0. Having found a parameter
valuea > 0 with p,(A(z)) < 1, we might in consequence search for the largestich that the

stability certificatep,(A) < 1 remains valid. This leads to the optimization program

max a St p.(A(z)) <1, gg(xz) =0, g/(x) <O0. (16)

T,
Interestingly, this program can be nicely interpreted asaesl H,-norm optimization:
Corollary 6.1 (Equivalence witl/,-norm minimization):Any solution (z*,a*) of pro-

gram (16) also solves

min Y [ A@)* [fyw St oge(@) =0, gr(x) <0, (17)
k=1
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with optimal value(a*)~!, and vice-versa.

Proof: From Theorem 5.6 we conclude that problem (16) is equivakent
max a St f(A(z),1) <ol gg(z) =0, gi(z) <0. (18)

Given the fact thatv=! decreases monotonically in, the constraintf(A(z),1) < o' will

always be active, and the problem is equivalent to
min f(A(z),1) st gp(z) =0, gr(x) <0. (19)
O

Corollary 5.7 suggests the following computationally meygpealing equivalent cast of the

stability optimization program:

min Tr(WP) st P=V+ A(x)T PA(x), (20a)
P=0 (20b)
ge(x) =0, g/(x) <O0. (20c)

Like program (15), this formulation can be addressed by ineal programming algorithms
that require second or higher order differentiability o€ throblem functions, if the positivity
constraint (20b) is taken care of in the same way as in (15).

Remark 1:The matrix constraint function in (20a) has ontyn + 1)/2 independent
components, due to symmetry. These determine uniquely.the+ 1)/2 components of the
symmetric matrix variableg® € R™*", if p(A(x)) < 1.

Remark 2:If one wishes to force (20b) to avoid shadow solutions, ondccase a nonlinear
semi-definite programming (nSDP) solver [22], or one migirik of working with a factorization
P = LLT within an NLP solver, wherd. could e.g. be a Cholesky factor (which, however,
introduces additional non-convexity into the problem).ouar numerical computations, we did
not explicitly enforce the positive definiteness constraind just solved an NLP without the
constraint (20b), which is inactive in the solution.

Remark 3:The positive definite weighting matricés and W allow us, as usual irH5-norm
optimization, to weight the expected input disturbancedibyand the output errors by .

Remark 4:The number of Lyapunov variables grows quadratically witites dimensiom

of the system. If the presence éf leads to large size programs it may be preferable to work
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directly with the cast (17), where the Lyapunov matrix onfgpaars implicitly in function and

gradient computations.

C. Finding Stable Initializations fo{,-Norm Optimization

During the optimization process, and before a stable swiutihas been found, we will have
p(A(z)) > 1, so that the Lyapunov constraint (20b) may be infeasibleneaningless shadow
solutions may appear. In order to find an initially stableusoh, whereP > 0 can be assured,
we propose to use one of the following two homotopy methods:

(i) We start by using a formulation of type (15), with some fxe > 0, in the hope to find
a solution withp,(A(z*)) < 1. If our local optimization stops at a local minimum with
a valuep,(A(z*)) > 1, we decreaser and rerun the optimizer untjp,(A(z*)) < 1 is
found. If we do not find any such solution even for arbitrasipall o > 0, we have strong
evidence that no stable solution exists (at least locally).

(i) Alternatively, we might choose a fixed scalar > p(A(z)), and relax the Lyapunov
constraint (20a) toP = V + s 2A(z)T PA(z), so that it has a unique solution at the
initial guess forz. Solution of this relaxed problem yields a matrXz) with p(A(z)) < s,
and by decreasing and solving the problem again at eaghwe push the spectral radius
of the solution down, until a solution with= 1 is found (if possible). This is then already
the desired solution of problem (20) respectively (16).

VIl. DISCUSSION

It is well known that computing stabilizingnear controllers forlinear systems can be reduced
to a convex optimization problem if the order of the coneplis the same as the order of the
system. In this case the problem can be addressed via alg&bcaati equations (ARES) [28],
or linear matrix inequalities (LMIs) [13], and is therefajaasi-polynomial. As soon as the order
of the controller is smaller than the system order, the @nobis in general NP-hard [5], [23]
and not accessible to convexity methods. However, noneoitncal optimization approaches
for stability optimization work fairly well in practice andave been discussed e.g. in [1], [2],
[6], [10]-{12].

In this paper, the situation is even more general, as the amkrparameter: may include

feedback elements, but may just as well encode other dagisiameters that enter the matrix
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A(z). For instance, in the stable walking experiment in Sectidih Yhere is no feedback and
regroups design parameters of the open-loop system. Ircdisis it is particularly advantageous
to have a smooth criterion for stability that is compatiblgwstate-of-the-art nonlinear optimal
control methods as e.g. the tool MUSCOD-II [18] used for thenputations in this paper.

Interestingly, the equivalence between the smoothed spe@dius p, and the H,-norm,
namely

pa(A) <1 < f(A1)< é (22)

is analogous to a very similar relationship for the pseysleeal abscissa.(A) of a linear
continuous time system with transfer functidh(z) = (A — 2I)~', which is related to the
H..-norm by

1
a(A) <0 & |H|w< - (22)

as nicely described and proven in [11]. Notice that (21) maybderstood as a rigourous form
for the intuitive statement that, is increasingly robust with increasing Indeed, similar to the

case of the spectral abscissa, where the statement on theofi@22) can be interpreted as the
distance to instability of the continuous dynamic systers= Ax, we can interprete the right

hand side of (21) as a statement on the distance to insyabilthe discrete system,,; = Axy.

VIII. EXAMPLE: OPEN-LOOP STABLE WALKING

In this section we will show how the method can be used to lstebihe hybrid dynamical
system of a biped walking robot. The robot has two stiff legd & powered by torques at the
hip and at the ankle, the latter replacing the action of anaet foot. Its walking motion is
shown in Fig. 2. The periodic cycle consists of 2 steps, batgariodic problem considered
in the optimal control problem formulation includes onepstend the touchdown discontinuity
combined with a leg shift.

The model of this robot involves smooth continuous swingselsaas well as discrete events at
heelstrike in the form of velocity discontinuities. A dé¢ai description of the robot is given in
[21]. Stability is very easy to picture in this case. A statabot persists in its periodic gait, while
an unstable robot falls to the ground after a very short tifile task of stability optimization is

to determine robot parameters (such as geometry and masbutiens) and actuation pattern
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Fig. 2. One step of the symmetric walking cycle of the seffiged robot example

that lead to the best possible open-loop stable gaits, mpiireg any feedback, which would
substantially complicate the set-up due to the need of g@pjate sensors and actuators.

For the solution of this problem, we use formulation (20)hwiteighting matrice$” = W = I.
The dimensions of this problem are as follows: The state espdichis robot is of dimension
n = 4, so that all matrices!, P, V, W are inR**%. The sensitivitied’(¢) live also inR*** so that
the state space of the optimal control problem has dimensipn? = 20. There are 8 unknown
mechanical parameters in the robot model, meaningdir 8, and, as explained above, there
are an additionah(n + 1)/2 = 10 unknown entries for the Lyapunov matrik, leading to a
total of 18 parameters. To this we add the contraVith dimensionn,, = 2, which is discretized
in time on 50 intervals, leading to another 100 degrees @diven for optimization. Similarly,
the state vector is discretized inta + n?) * 50 = 1000 variables. Finally, this example features
exactly two phases, so that din) = 2, which leads to a total of 1120 variables.

We started from a previously determined stable solutipwith spectral radiugp = 0.53, with
the intention to further increase its stability. We coul@rdgfore use formulation (20) directly
without starting the outlined homotopy method describe8eaction VI-C. The control variables
u are related to the energy input of the robot. Since in the o&sebots not only stability but
also energy consuption is important, we added a small regaten termeT u(t)? dt to the
stability objective function.

We applied the direct optimal control technique described&ection IV-A, via control and
multiple shooting state discretization and SQP solutiothef NLP. Our method finds a locally
optimal solution with spectral radiys= 0.157, which is well below the critical boundary of 1,
and much lower than the starting value. The correspondingptimed spectral radius is 1 with
the valuen = 14.08, while the trace of the optimize# is 4.07109; (see (15b)). Optimal position
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Fig. 3. Trajectories of the most stable solution (joint &sghnd velocities)

and velocity histories are shown in Fig. 8.

IX. CONCLUSIONS

We have presented a new approach to optimize the stabilityybfid periodic systems. In
contrast with previous techniques based on minimizing pexsal radius or other non-smooth
criteria, we use a smooth problem formulation based onstheothed spectral radiusvhich
allows a solution of the resulting nonlinear programminglgem with standard NLP techniques,
such as SQP methods. Several smooth stability problem fations have been presented. The
last one was used to robustly stabilize the hybrid dynamgtesy of a biped walking robot
performing periodic symmetric gaits. Numerical experershows that the proposed method
works very well for this challenging application and is alite considerably improve the
system stability. Future work aims at investigating theusthess properties of the smoothed
spectral radius and applying the approach to further agipdics in robotic walking and areas
like chemical and power engineering (e.g. to simulated mgp\bed processes [25] or power
generating kites [15]). Also, it might be interesting tortkiof generalizations of the approach
to the joint spectral radius of a set of matrices [4], [24]. We that our approach was already

generalized to continuous time systems yielding the “simedtspectral abscissa” [27].

lparameters of the optimal solution are: leg mass- 1kg, leg length! = 0.2m, relative center of mass locatien= 0.25,
hip spring and damper constants = ONm (i.e. no spring),by = 0.046Nms, ankle spring constarty = 4.51Nm, spring
offset A, = —0.11, and damper constabt = 0.331Nms. The initial values arec” = (0.346, —0.346, —0.751, —1.24), and
the cycle time isT" = 0.578s.

November 3, 2008 DRAFT



IEEE I RANOSACL TIVUINS UN AU TUNIATIL CUN T RUL

ACKNOWLEDGEMENTS

The first author thanks B. Houska and W. Michiels for fruitfliscussions, and acknowledges
financial support by the Research Council KUL (OptimizatiorEngineering Center OPTEC),
the FWO via G.0320.08 and G.0558.08, and the Belgian Fe&miahce Policy Office: IUAP
P6/04 (DYSCO). The second author was supported by the StBaden-Wirttemberg within
the Margarete von Wrangell program. The third author wagstpd by grants from Agence
Nationale de la Recherche (ANR) under contr@etidage by Fondation d'entreprise EADS
under contracSolving challenging problems in feedback contarhd by Agence Nationale de
la Recherche (ANR) under contraControvert

REFERENCES

[1] P. Apkarian and D. Noll. Controller design via nonsmoattulti-directional search. SIAM J. on Control and Optim.,
44(6):1923-1949, 2006.

[2] P. Apkarian and D. Noll. Nonsmooth/ ., synthesis. IEEE Trans Autom. Control, 51 (2006), 71 - 86.

[3] P. Apkarian, D. Noll, and A. Simdes. Time domain contdasign, a non-differentiable approach. IET Control Thefry
Applications. Accepted 2007.

[4] V. D. Blondel and Y. Nesterov. Computationally EfficieApproximations of the Joint Spectral Radi&AM Journal on
Matrix Analysis and Applicationsolume 27 , Issue 1, Pages 256272, 2005

[5] V. Blondel, J. Tsitsiklis. NP-hardness of some lineantrol design problems. SIAM J. on Control and Optim., 35{6).8-
2127, 1997.

[6] V. Bompart, P. Apkarian and D. Noll. Nonsmooth technigider stabilizing linear systems. American Control Confee
New York, 2007, Conference Proceedings.

[7] V. Bompart, P. Apkarian and D. Noll. Control design in tkieme and frequency domain using nonsmooth techniques.
Systems and Control Letters, vol. 57, no. 3, 2008, pp. 2712 28

[8] H. G. Bock and K.-J. Plitt. A multiple shooting algorithfor direct solution of optimal control problems. Proceedings
of the 9th IFAC World Congress, Budapegages 242-247. International Federation of Automatict@gnl1984.

[9] J.V. Burke and M.L. Overton, “ Variational Analysis of MelLipschitz Spectral Functions”, iMath. Programming 90
(2001), pp. 317-352.

[10] J. V. Burke, A. S. Lewis and M. L. Overton, “A Nonsmoothphtonvex Optimization Approach to Robust Stabilization
by Static Output Feedback and Low-Order Controllers”SinBittanti and P. Colaneri, eds., Proceedings of FourthCFA
Symposium on Robust Control Desiduilan, June 2003, pp. 175-181, Elsevier, 2004.

[11] J.V. Burke, A.S. Lewis and M.L. Overton, “ Optimizatiand Pseudospectra, with Applications to Robust Stabjlity”
SIAM J. Matrix Anal. Appl25 (2003), pp. 80-104.

[12] J. V. Burke, D. Henrion, A. S. Lewis and M. L. Overton, &bilization via Nonsmooth, Nonconvex Optimization”|lBEE
Transactions on Automatic Contréll (2006) pp. 1760-1769

[13] P. Gahinet, and P. Apkarian. A linear matrix inequakyproach toH ., synthesis. Int. J. Robust and Nonlin. Control, 4
(1994), 421 - 448.

November 3, 2008 DRAFT



[14] I. Gelfand. Normierte Ringe. Mat. Sbornik N.S. 9(51p41), 3-24.

[15] B. Houska and M. Diehl, “Optimal Control of Towing Kitdn Conference on Control and Decision, San Dieg606,
(CD-ROM).

[16] J. C. Hsu and A. U. MeyeModern Control Principles and ApplicationdMcGraw-Hill, 1968.

[17] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schioden efficient multiple shooting based reduced SQP strategy
for large-scale dynamic process optimization - part I: théoal aspectsComput. Chem. Engn@7:157 — 166, 2003.

[18] D. B. Leineweber, A. Schafer, H. G. Bock, and J. P. 8dkl. An efficient multiple shooting based reduced SQPegjyat
for large-scale dynamic process optimization - part lltwafe aspects and applicationSomput. Chem. Engn@7:167 —
174, 2003.

[19] K. D. Mombaur, H. G. Bock, J. P. Schloder, and R. W. Lorgm Open-loop stability — a new paradigm for periodic
optimal control and analysis of walking mechanisms.Phoceedings of IEEE CIS-RAM 04, Singapa2804.

[20] K. D. Mombaur, H. G. Bock, J. P. Schloder, and R. W. Lorgm Open-loop stable solution of periodic optimal control
problems in roboticsZAMM - Journal of Applied Mathematics and Mechanics / Zéit$scfur Angewandte Mathematik
und Mechanik85(7):499 — 515, July 2005.

[21] K. D. Mombaur, R. W. Longman, H. G. Bock and J. P. Schtod®ptimizing Spring-Damper Design in Human-like
Walking that is Asymptotically Stable Without Feedback. appear in Proceedings ofInternational Conference on High
Performance Scientific Computing 2006, Lecture Notes irr@idic Computing, Springer, 2008

[22] M. Kotvara and M. Stingl. PENNON - A Generalized Augrtesh Lagrangian Method for Semidefinite Programming. In:
High Performance Algorithms and Software for Nonlinear i@ation. Eds. G. Di Pillo and A. Murli. Kluwer Academic
Publishers. pp. 297-315, 2003.

[23] A. Nemirovski. Several NP-hard problems arising inusbstability analysis. Math. of Control, Signals, and 8y, 6
(1994), 99 - 105.

[24] Gian-Carlo Rota and Gilbert Strang. A note on the joipédral radius. Proc. Netherlands Academy, 22, pp. 379-381
1960.

[25] A. Toumi, S. Engell, M. Diehl, H. Bock, and J. Schlod&Efficient optimization of Simulated Moving Bed Processes,
Chemical Engineering and Processjiglume 46, Issue 11, pp. 1067-1084, 2007

[26] L. N. Trefethen, M. Embree, “Spectra and Psuedospecirbe behavior of non-normal matrices”, Princeton Uniugrsi
Press, 2005.

[27] J. Vanbiervliet, B. Vandereycken, W. Michiels, S. Vamglle, and M. Diehl. The smoothed spectral abscissa faustob
stability optimization. SIAM Journal on Optimization, 20@accepted).

[28] K. Zhou, J.C. Doyle and K. Glover. Robust and Optimal €oh Prentice Hall, 1996.

November 3, 2008 DRAFT



