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On input-to-state stability of stochastic retarded
systems with Markovian switching

Lirong Huang and Xuerong Mao

Abstract

This note develops a Razumikhin-type theorem on pth moment input-to-state stability of hybrid
stochastic retarded systems (also known as stochastic retarded systems with Markovian switching),
which is an improvement of an existing result. An application to hybrid stochastic delay systems verifies

the effectiveness of the improved result.

Index Terms

stochastic systems, time delay, Razumikhin-type theorems, ISS, Markov chain.

I. INTRODUCTION

Since Markov jump linear systems were firstly introduced in early 1960s (see, e.g., [26],
[33] and [42]), the hybrid systems driven by continuous-time Markov chains have been widely
employed to model many practical systems where they may experience abrupt changes in system
structure and parameters such as failure prone manufacturing, power systems, solar-powered
systems and battle management in command, control and communication systems (see [1], [6],
[21], [26], [34] and references therein). An area of particular interest has been the stability
analysis of this class of hybrid systems and its applications to automatic control (see, e.g.,
[4], [10], [26] and [33]). When time delays and environmental noise are taken into account,

which are often encounterd in real systems and may be the cause of poor performance and
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instability, the hybrid systems are described with stochastic functional differential equations with
Markovian switching and called hybrid stochastic retarded systems (HSRSs). One of the most
important HSRSs that frequently appear in engineering is those called hybrid stochastic delay
systems (HSDSs), which are also known as stochastic delay systems with Markovian switching
(SDSwMS) and described with stochastic differential delay equations with Markovian switching
(see, e.g., [21], [23], [24] and [41]).

Recently, hybrid stochastic retarded systems (HSRSs) have been widely used since stochastic
modelling plays an important role in many branches of science and engineering. Consequently,
stability analysis of HSRSs and HSDSs has been studied by many works, see, e.g., [9], [17], [19],
[21], [39], [41] and [42]. Among the key results, Mao et al. (see [17], [23], [24]) and Huang
et al. ([9]) proposed the Razumikhin-type theorems on stability of hybrid stochastic retarded
systems and their applications to hybrid stochastic delay systems. The Razumikhin method is
developed to cope with the difficulty arisen from the large, fast varying and nondifferentiable
time delays (see, e.g., [21] and [23]). This note is to improve the the Razumikhin-type theorem

proposed in [9] and make it more applicable (see Remark 3.2 and Example 4.1).

II. NOTATION

Throughout the note, unless otherwise specified, we shall employ the following notation. Let
(Q, F,{Fi}+>0,P) be a complete probability space with a filtration {F;};>( satisfying the usual
conditions (i.e. it is right continuous and F; contains all P-null sets) and E[-| be the expectation
operator with respect to the probability measure. Let B(t) = (By(t), -+, Bn(t))’ be an m-
dimensional Brownian motion defined on the probability space. If x,y are real numbers, then
x V y denotes the maximum of x and y, and = A y stands for the minimum of x and y. Let
| - | denote the Euclidean norm in R™. Let 7 > 0 and C([—7,0]; R") denote the family of all
continuous R"-valued functions ¢ on [—7, 0] with the norm ||¢|| = sup{|p(0)| : —7 < 6 < 0}.
Let C% ([—7,0]; R") be the family of all Fy-measurable bounded C'([—7,0]; R")-valued random
variables £ = {£{(f) : —7 < 0 < 0}. For p > 0 and ¢ > 0, denote by L' ([-7,0]; R") the
family of all F;-measurable C'([—7,0]; R"™)-valued random processes ¢ = {¢(6) : —7 < 6 < 0}
such that sup_,.4(E|$(0)|P < oo. We let K denote the class of continuous strictly increasing

functions p from R, to R, with u(0) = 0. Let K, denote the class of functions p € K with
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w(r) — oo as r — oo. Functions in K and Ko, are called class K and K, functions, respectively.
If ;1 € K, its inverse function is denoted by p~! with domain [0, ;1(c0)). We denote by € VK
and p € CK if p € K and p is convex and concave, respectively. In this note, a function
B: R, x R, — R, is said to be of class KL if for each fixed ¢ the mapping (-, t) is of class
K and for each fixed s (3(s,t) is decreasing to zero on t as t — co. We also let £, denote the

class of essentially bounded functions u : R, — R’ with |[u||e = esssup,q |u(t)] < oc.

Let r(t),t > 0, be a right-continuous Markov chain on the probability space taking values

in a finite state space S = {1,2,---, N} with generator I' = (v;;) nxn given by

Vi3 A + o(A) if 1 # 7,

L+ 79:A+0(A) if i=j,

where A > 0 and 7,; > 0 is the transition rate from ¢ to j if ¢ # j while v; = — Zj 2i Yij-
Assume that the Markov chain r(-) is independent of the Brownian motion B(-). It is known
that almost all sample paths of 7(¢) are right-continuous step functions with a finite number of
simple jumps in any finite subinterval of R, := [0, c0).

Let us consider an n-dimensional HSRS
dz(t) = f(xe, t,r(t), ua(t))dt + g(ze, t, 7 (t), ua(t))dB(t) (1)

on t > 0 with initial data zo = {z(#) : =7 <0 < 0} =& € C% ([-7,0;; R*) and r(0) =1 € S,
where z; = {z(t +6) : —7 < 6 < 0} is regarded as a C([—7,0]; R")-valued random variable
and ug € L the disturbance input. Moreover, [ : C([-7,0]; R") x Ry x S x R' — R" and
g:C([-7,0; R") x Ry x S x R' — R™™ are measurable functions with f(0,¢,4,0) = 0 and
9(0,%,4,0) = 0 for all ¢ > 0. So equation (1) admits a trivial solution z(¢;0) = 0. We assume
that f and g are sufficiently smooth so that equation (1) has a unique solution on t > —7
(see, e.g., [12], [15], [16], [17], [18], [21], [22], [25], [29] and [41] ), which is denoted by
x(t; g, 7(0)) or z(t; &, 7o) in this note. It should be noted that equation (1) is a very general type
of equation and includes stochastic differential equations, stochastic delay differential equations,
integro-differential equations and those with Markovian switching. Much more equations are

also included in equation (1) (see, e.g., [7]).

Let C*'(R" x R, x S;R,) denote the family of all nonnegative functions V (x,t,7) on

R™ x Ry x S that are twice continuously differentiable in = and once in t. If V € C*!(R" x
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R, x S;R.), define an operator associated with system (1), £, from C([—7,0]; R") x Ry x S
to R by

LV (3,1,7) = Vi(w, t,4) + Vi, ,0) f (2,1, 1, 1)

N

1
+ 51‘57’(166 [gT(xtu t ia ud)‘/zaz(x7 t, Z)g<xta l, ia ud)] + Z ’Y’LJV(I7 l j)v (2)
j=1
where Vi(z,t,1) = X680V, (0, 1,) = (24880 . 20080 Y and V(1) = (Z520)
" v nxn

The purpose of this note is to develop the Razumihkin-type theorem on pth moment input-
to-state stability (ISS) of HSRSs and its applications. For definitions of pth moment stability
and input-to-state stability, readers are referred to, e.g., [8], [9], [11], [13], [28], [31], [32] and
[35]. Let us introduce the definition of pth moment ISS of HSRSs, which is consistent with the
definition of ISS for deterministic systems (see, e.g., [11], [31], [32] and [35]).

Definition 2.1: The system (1) is said to be pth (p > 0) moment input-to-state stable (ISS)
if there exist # € KL and vy € K such that the solution z(t) = z(t; £, 1) satisfies

Elz@)P < BE[E]", 1) +v([|udllee) VE =0 3)

for any essentially bounded input uy € £, and any initial data { € C%, ([—7,0]; R"), ro € S.

III. RAZUMIKHIN-TYPE THEOREM ON ISS OoF HSRSs

As the main result of this note, we present a Razumikhin-type theorem on pth moment ISS

of HSRSs (1) as follows.

Theorem 3.1: Letp > 0,u € VK, v € K and A € K. Assume that there exists a function
V e C*1(R" x Ry x S; Ry) such that

u(lzP) < V(x,t,0) <o(JzfP), V(x,t,i) € R" X [-T,00) x S 4)
and, moreover, forall 1 <7 < N,
ELV(),t,4) < A[ua(t)]) — Bw(¢(0),7) (5)
for all ¢ > 0 and those ¢ € LY ([—7,0]; R") satisfying

min BV (4(6), ¢ + 6, k) < Eq(¢(0),,7) (6)
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on —7 < 0 <0, where w : R" x S — R, is a nonnegative function such that there is w € Ky,

with w(z,i) > w(|z|) and im0 (‘(LTJ,)) >0 forallie S;q: R"x Ry xS — R is a function
such that q(z,t,i) — V(x,t,i) > ((|z|) for all (z,t,i) € R" x [—T,00) x S with ( € K, and
lim | —oo ((|'§|‘13) > (). Then system (1) is pth moment ISS.

In order to prove this theorem, let us present the following useful lemmas

Lemma 3.1: Let V(t) = V(x(t),t,r(t)) for t > 0, then EV (¢) is continuous on ¢ > 0.

Proof For any initial data { € CY% ([—7,0]; R"), write 2(t) = (t;€) and extend r(t) to
[—7,0) by setting r(t) = r(0) = ry for all ¢ € [—7,0). For convenience of the readers, the

generalized Itd’s formula is cited as follows (see [30] and [41])
V@), L) = V((0),0,r(0) + /Ot LV (25,5, 7(s))ds
[ Valalo) 576D o) ABG)
/ [ W a(s)r(0) 5 Al (s).0) = V(al), 5.9, dD) (1)

for all ¢ > 0, where function A(-,-) and martingale measure (-, -) are defined as, e.g., (2.6) and
(2.7) in [41] (see also [6] and [2]).

Since £ € C% ([-7,0]; R"), we can find an integer ko such that ||| < kg a.s.. For any
integer k > kg, define the stopping time

pr = inf{t > 0: |z(t)| > k}, (8)

where we set inf () = oo as usual. Note that x(¢) is continuous and so are |z(¢)| and v(|z(¢)|) on
t > —7. Clearly, p;, — oo almost surely as k — oco. Moreover, since z( = § € C} ([, 0]; R"™),

EV (2(0),0,7(0)) < Ev(|£(0)]) < v(ko). It then follows from (7) that
ty
EV (2(ts), t, r(t)) = BV (2(0),0,7(0)) + ]E/ LV (4,5, 7(s))ds ©)
0
where 1, =t A pg. So, letting k — oo, by Fubini’s theorem, we have

EV(t) =EV(0) + E/t LV (xs,s,7(s))ds = EV(0) + /t ELV (xs,s,r(s))ds (10)

for all t > 0. This implies EV'(¢) is continuous on ¢ > 0.

Lemma 3.2: For any t > 0, there is a,, > 0 such that Ew(x,7) > a,, for all ¢ € S whenever
EV(x,t,i) > a, > 0.
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Proof It immediately follows the desired conclusion if we show there is 1, € K., such that

Ew(|z(t)]) = o (av) (11

whenever Ev(|z|P) > EV (z,t,i) > a, > 0.

Fix t for the moment. We define a nondecreasing function b : R, — R, as

bly)=  inf @(Jz]) y > 0. (12)

et/ o(|zp) T T T

By property of function w(-), b(y) > 0 when y > 0. So, for any a, > 0, we have

Ew(|z|) > / w(|z])dP > b(av)/ v(|zP)dP > @vbéav)
P >v=1(%) v

(lz|P)= %5

whenever Ev(|z|P) > EV (z,t,i) > a,. Inequality (11) holds with p,,(a,) = %(a)

Lemma 3.3: For any ¢t > 0, there is a, > 0 such that Eq(z,t,7) > a, + EV (x,t,1) for all
i € S whenever EV (z,t,7) > a, > 0.

Proof 1t is noted that Eq(z,t,7) — EV (z,t,i) > E((|z|) for all ¢ > 0. According to the
property of function((|z|), the rest of the proof is similar to that of Lemma 3.2 and hence
omitted.

We can now begin to prove Theorem 3.1.

Proof Denote oy = A(||ug|lo) and Vo = u(E||¢[|P). Without loss of generality, assume
0 < pig' (2000) < u(sup_, <y E|E(0)[P) < Vi. For any t > 0, by Lemma 3.2, Ew(z(t),i) > 2a,
whenever EV (x,¢,4) > u'(2ay) for all ¢ € S. By Lemma 3.3, there is @ > 0 such that
Eq(z,t,1) — EV(x,t,4) > a, i € S, whenever EV (z,t,7) > u'(2ay). Let J be the minimal
nonnegative integer such that My = ju,' (22) + Ja > Vy. Moreover, let 7 = 7V ¢ and t; = j7

for j =0,1,2,---,J. We claim that
EV (z(t),t,r(t)) < Vo A M (13)

for all ¢ > ¢;, where M; = p,'(2ay) + (J —j)a and j =0,1,2,--- , J.

First we show that

EV (z(t),t,r(t) < Vo, YVit>tg. (14)

Suppose that t, = inf{t > t, : EV(x(t),t,7(t)) > Vo} < oo. Since EV(x(t),t,r(t)) is

v

continuous on ¢ 0, there exist a pair of constants ¢, and ¢. such that {5 < t, < t, < t,.
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and

EV (z(t),t,7(t)) = Vo, t=ty; as)
Vo < EV(x(t),t,r(t) < Vo+a, t,<t<t,.

However, by equation (10) and condition (5), we have

EV (z(t),t,7(t)) = EV(x(ty), ty, r(tp)) + /t ELV (x4,8,7(s))ds < Vo — ax(t —t) <V

iy
for every t € (t,t.], which contradicts (16). So inequality (14) must be true.
We further show that EV (x(t),¢,7(t)) < M; for all t > t;. Let 4 = inf{t > ¢ty :
EV(x(t),t,r(t)) < My} If 7y > ty, then, Vi, <t < t;, we have

Eq(z(t),t,r7(t)) > EV(x(t),t,r(t)) +a> M, +a >V

> EV(x(t+60),t+6,r(t+0)) > min EV(¢(0),t+60,k), VO € [—7,0].

- 1<k<N
This, by condition (5), implies ELV (z4,t,7(t)) < —a, a.e. on [ty, t;]. Consequently, by (10), we
have EV (z(t1),t1,7(t1)) < Vo—ax7 < 0, which contradicts the property of EV (z(t),¢,7(t)) > 0
for all ¢ > 0. So we must have 7 < t;. Let t;, = inf{t > 7 : EV(x(¢t),t,r(t)) > M;}. If

t1a < 00, then there are constants ¢y, and t;. such that t; < ¢, < ¢1, < t1. and

EV(z(t),t,r(t)) = M, t=tw;
M, < EV(QJ(t),t,T’(t)) < M; + a, tip <t <t

(16)

Similarly, by (10) and (5), we find a contradiction and hence have (13) for j = 1.

Define 7; = inf{t > t;_; : EV(x(t),t,r(t)) < M;} for j = 2,3,---,J. By the same type
of reasoning, we have EV (z(t),t,r(t)) < M; for all t > t; and j = 2,3,---, J. Particularly,
EV (z(t),t,r(t)) < My = p,'(2ay) for all ¢ > t;. By Jensen’s inequality, we have

Elz(t)P <y(|Jualls), Vt>t; (17)

where (1) = u= (47 (2A()).
Let k = % Choose 3 € KL such that 3(Vj,t) > 2Vy — kt for all 0 < t < t;. So we
have EV (x(t),t,7(t)) < B(Vp,t) for all 0 <t < t,, which implies

Elz(t)P < u™(B(Vo,t)) = BE[E|P,t), YO<t<t, (18)

where ((-,-) = =" (B(u(-),-)) is a KL function. This completes the proof.
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Remark 3.1: Obviously, inequality (3) implies that system (1) with u,(t) = 0 is globally pth
moment asymptotically stable. Moreover, it is not difficult to show that if |u(t)| — 0 as t — oo,
so does E|xz(t)|P (see, e.g., Exercise 4.58, [11]). Therefore, by Theorem 3.1, it is easy to find
that the HSDS, considered in Example 2.1 [41] but with mode-dependent and time-varying delay

7: Ry xS —[0,7], is mean-quare asymptotically stable while the results in [41] do not work.

Remark 3.2: Tt is noted that inequality (6) removes the maximum operator on the right-hand
side of corresponding conditions in the existing results (see Theorem 2.1, [23] and Theorem 3.2,

[9]), which makes Theorem 3.1 less conservative but more applicable (see Example 4.1).

IV. APPLICATION AND EXAMPLE

Hybrid stochastic delay systems (HSDSs) described with stochastic differential delay equa-
tions with Markovian switching are an important class of HSRSs that are frequently used in
engineering. As an illustrative example of applications of our new result, we consider the

following HSDE

dz(t) = F(x(t), x(t — d(t,r(t))), t, r(t), uq(t))dt + G(x(t), x(t — 6(t,7(t))), t,r(t), uq(t))dB(t)

(19)
ont >0, where § : Ry xS — [0, 7] is Borel measurable while ' : R"x R"x R, x Sx R' — R"
and G : R" x R" x R, x S x R' — R™™ are measurable functions with F'(0,0,¢,4,0) = 0 and
9(0,0,¢,7,0) =0 for all ¢ > 0 and ¢ € S. Actually, this is a special case of equation (1) when
F(60tiva) = F(6(0), 6(=0(t, 1)), 1,1, ua) and g(6,t,i1ua) = G(H(0), S(=0(t,7)), 1,4, ug) for
(¢,t,i) € C([-T,0]; R*) x R, x S x R'while the operator £ defined in (2) becomes from
R"xX R*"xX Ry x Sto R as

LV (x,y,t,1) = Vi(x,t,i) + Vo(z, t,0)F(x,y,t,i,ug)
N

1
+ §tTCLC€ [GT(:B7 y,t,1, 'Lbd)v;m;(l', 2 Z)G(l’, y,t,1, ud)] + Z %’jv(l} t j) (20)

j=1
Let us use Theorem 3.1 to establish a useful criterion for system (19).

Theorem 4.1: Letp >0, u € VK4, v € Koo, A € K and ko; > Kk1; > 0, 7 € S. Assume that

there exists a function V € C?!(R" x R, x S; R, ) such that inequality (4) holds and, moreover,

LV (z,y,t,1) < M|ug®)]) = C(2,0) — KoV (@, £,7) + ki 1I<r}€i<nNV(y,t —0(t,1), k) (21)
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for all (z,y,t,i) € R™ x R" x R, x S, where é : R" x § — R is a function such that there is
W € K with ((z,i) > @(|z|) for all i € S and limg oo W(|2]) /v(|2|P) > 0. Then system (19)

is pth moment ISS.

Proof For any ¢ € S, let

1

TG and glestd) = Vi ki) + o) (22)

w(z,i) =

in inequalities (5) and (6). By inequality (21) and Fatou’s lemma, we have

ELV (2, ,1,1) < Aua(t)]) — EC(r,) — nouBV (x,1,) + iy, | min V(y,t —8(t,), k)

IA

AJug(t)]) — koi(EV (x,t,4) + Bw(z,1)) + K 1I<I}€i<IlN EV(y,t —0(t,i), k) — Ew(x,1)

IN

A|ua(t)]) = (koi — k1) (EV (2, t,1) + Bw(z,4)) — Ew(x, 1)

IN

Alua(t)]) — Bw(z,1)

for all t > 0, 7 € S and x, € LY ([—7,0]; R") satisfying condition (6) with function ¢(x,t,1%)
defined in (22), i.e., minges EV (y,t — 6(¢,1), k) < EV(x,t,i) + Ew(zx,7). Moreover, w(-) =
(-) = ﬁw() satisfy the properties required in (5) and (6). By Theorem 3.1, inequality (3)
holds for system (19).

To compare with the existing result in [9], let us consider the following example.

Example 4.1 Let B(t) be a scalar Brownian motion. Let r(¢) be a right-continuous Markovian
chain independent of B(t¢) and taking values in S = {1,2} with generator I' = (7;;)ax2 =
(’21 _12). Consider a scalar uncertain stochastic delay system with Markovian switching of the

form

da(t) = Fx(t), t,r(#)dt + g(z(t — 5(t, 7)), t, r(£))dB(t) (23)

ont >0, where § : R, x S — [—7,0] is a continuous but non-differentiable function with

respect to ¢ and

1 1, . 1
f(x7t7 1) = Zx - §|x|\3/57 f(a;? ta 2) - —bZE - Ex?),

1
g(y.t,1) = Jycost, g(y,1,2) = V2ysint.

with © = z(t), y = z(t — (¢,r(t))) and positive constant b.
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It 1s noted that the existing results [21], [23], [39], [41], [42] can not be applied to system
(23), which has mode-dependent and time-varying delay d(¢,7(t)). Observe that

1 1 1
2If<l’,t, 1) < 5932 - Z|x‘§7 21‘f($,t,2) < —2ba?* — S.IA:

1
92(y7t7 1) S 1_6y27 g2(y7t72) S 2y2

To examine the stability of system (23), we construct a Lyapunov function candidate V' : Rx .S —

Ry as V(z,i) = a;x?® with ap = 1 and a; > 0 to be determined. By computation, we have

ap, 1 aq 2 01 o
1% t1) < ——tlzls —[= —1 — 24
E (‘r7y7 Y ) — 4 "T;|S [2 :Ix + 16y ) ( )
1
LV(x,y,t,2) < —3x4—(2—|—2b—2a1)x2+2y2. (25)

According to Theorem 4.2 in [9], inequalities (24) and (25) give

1 1 (075} 1 z
Ar==——, Aui=—, As,1)= ;
01 2 al? 11 16’ (3’ ) 4\.7&—186’
2(1 + b) 1,
Aoz = -2, A2=2, As,2)=—=5".
02 o ) 12 ) <S7 ) 506%8

Inequalities \g; > A1 and Mg > Ajp yield a3 = 4 and b > 7. Then, by Theorem 4.2 in [9],
system (23) is mean-square asymptotically stable if b > 7. However, for inequalities (24) and

(25), we have

1 1 a1 A oy, 1

=— - = = =L 1) = —L|z|5:

Ko1 2 17 K11 167 §<x7 ) 4 ‘Z” 3
N 1

ke =2(14+b—a1), kKi2=2, ((z,2)= 5374-

Inequalities kg1 > k11 and kgy > Ko imply oy = 4 and b > 4. By Theorem 4.1, the sufficient
condition for mean-square asymptotical stability of system (23) is b > 4. Note that, when
4 < b < 7, Theorem 4.2 in [9] does not work while Theorem 4.1 is still applicable to system

(23). This shows Theorem 4.1 is more applicable.

V. CONCLUSION

This note improves an existing result in [9] and develops a Razumikhin-type theorem on
input-to-state stability of HSRSs in pth (p > 0) moment sense. It is seen that this improved

result is less conservative but more applicable (see Remark 3.1, Remark 3.2 and Example 4.1).
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