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Abstract

In this note we analyse various stability properties of the max-min
fair Rate Control Protocol (RCP) operating with small buffers. We first
tackle the issue of stability for networks with arbitrary topologies. We
prove that the max-min fair RCP fluid model is globally stable in the
absence of propagation delays, and also derive a set of conditions for local
stability when arbitrary heterogeneous propagation delays are present.
The network delay stability result assumes that, at equilibrium, there is
only one bottleneck link along each route. Lastly, in the simpler setting
of a single link, single delay model, we investigate the impact of the loss
of local stability via a Hopf bifurcation.

keywords rcp, max-min fairness, small buffers, stability, bifurcation.

1 Introduction

The Rate Control Protocol (RCP) [5, 6] takes a radically different approach to-
wards managing flow and congestion control as compared to the existing Trans-
mission Control Protocol (TCP) congestion avoidance framework. The TCP
framework has, imbedded in it, an implicit mechanism for detecting conges-
tion within the network. Loss of a packet, caused by the overflow of a buffer,
is intended to provide the necessary feedback information. In sharp contrast,
RCP aims to achieve fast flow completion times by communicating explicit rate
feedback between routers and end-stations [4]. RCP is closely related to the
eXplicit Control Protocol, XCP [11]; another algorithm which proposes the use
of explicit rate feedback. Both the RCP and XCP algorithms intend to converge
to a max-min fair resource allocation [2, 5, 11]; see [16, 17, 18, 22] and references
therein for a sample of the literature exploring various issues related to different
notions of fairness in a networking context.

The performance of congestion control algorithms is often coupled with the
choice of certain parameters in routers in the network. For example, such param-
eters may correspond to different choices of Active Queue Management (AQM)
schemes [3, 10, 14, 15], or the size of buffers in routers [8, 20]. Researchers
have begun questioning the design rules for sizing buffers in core routers in the
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Internet [1] and some recent literature [7, 20, 25] suggests that buffers should
indeed be much smaller as compared to the current design principles. In light of
the separate developments made towards the understanding of RCP [2, 4, 5, 6]
and buffer sizing [1, 7, 20, 25] it is natural to investigate the two, i.e., RCP
and small buffers, together. Such an investigation is also motivated by the
observation that previous buffer sizing studies have focussed primarily on the
impact of smaller buffers with TCP. In this paper, the focus of our analysis will
be on the limiting regime of a max-min fair RCP fluid model operating over a
communication network with small buffers.

Previous control theoretic analysis of RCP has focussed on a single bottle-
neck, where the queue is modelled as a saturated integrator [2]. In our work,
we assume that the size of the buffers is small enough so that it is no longer
possible to explicitly model the queue. Rather, with such small buffers, at the
time scale of operation of the congestion controllers, it is the distribution of
queue size that plays the important role [25]. It is worth stating that we do not,
in any way, contribute to the question of exactly how small the size of buffers
ought to be. The model we analyse is simpler than the one analysed by [2] in
that we do not explicitly model the queue, but more involved in the sense that
our framework represents a heterogeneous network of arbitrary topology. In our
fluid model for RCP, apart from the model for the queue, all other parameters
are exactly the same as specified in the original RCP algorithm [5].

The styles of analysis we employ have all been popular in the study of conges-
tion control: for example, global stability without propagation delays [21, 24],
local stability with delays [8, 10, 12, 14, 15, 21, 23], and also an analysis of the
dynamic system when stability may not be guaranteed [9, 13, 19].

We now outline the essence of our contribution. First, we prove that the fluid
model of RCP is globally stable in the absence of propagation delays. Then,
we derive a set of conditions for local stability when arbitrary heterogeneous
propagation delays are present. The network delay stability result relies upon
the assumption that, at equilibrium, there is only one bottleneck link along each
route. Furthermore, in the simpler setting of a single link, single delay, model
we are able to provide a more in depth study of the RCP algorithm. Using
bifurcation analysis, we investigate the impact of the loss of local stability in a
special case where we show that the RCP algorithm would always give rise to a
super-critical Hopf bifurcation.

An overview of this paper follows. In Section 2, we analyse the stability
properties of RCP over networks of arbitrary topology. In Section 3, we inves-
tigate local instability of RCP in a single link, single delay, model via a Hopf
bifurcation analysis. Finally, in Section 4 we summarise our contribution, and
discuss some avenues for further research.

2 RCP over arbitrary topology networks

In this section, our objective is to analyse the stability of RCP in a small buffer
regime, over networks with an arbitrary topology. We first show global stability
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for the RCP fluid model in the absence of propagation delays and then derive
a set of conditions for local stability when arbitrary heterogeneous propagation
delays are present. The network delay stability result relies upon the assumption
that, at equilibrium, there is only one bottleneck link along each route. That
is, at equilibrium, for each route there is a unique link with minimal per-flow
bandwidth available. We begin with the model description.

2.1 Model description

At the level of theoretical abstraction, our set up for an Internet like communi-
cation network follows the commonly adopted framework [21].

We suppose that the communication network comprises of an interconnection
of a set of routes, S, with a set of links, J . Each route r ∈ S represents a user
of the network. Associated with each route is a set of links which represents
the path along which that user transmits information through the network.
Further, a route r has associated with it a flow rate xr(t) ≥ 0, which represents
a dynamic fluid approximation to the rate at which the user is sending packets
along route r, at time t.

The flow rate, for each r ∈ S is determined by the links l ∈ r, via the use
of explicit rate feedback. Each link l ∈ J has associated with it a flow rate
Rl(t), which represents the maximum flow rate allowed for routes which pass
through l. Each packet which is sent through the network carries, in its header,
an explicit rate feedback variable. This variable is initially set to the maximum
desired flow rate for r. As the packet passes through each l ∈ r, if the feedback
variable is greater than Rl(t), then link l sets it equal to Rl(t). When the packet
reaches its destination, an acknowledgement packet (ack), containing the final
value of the explicit rate feedback variable, is returned to the origin of r, and
the flow rate xr(t) is updated accordingly.

For each route r and link l ∈ r, we let τrl denote the propagation delay from
the origin of r to l, i.e. the length of time it takes for a packet to travel from
the origin to link l along route r. Let τlr denote the propagation delay from l
to the origin of r, i.e. the length of time it takes for the explicit rate feedback
information from link l to reach the user who is transmitting along route r. In
RCP, a packet must reach its destination before an acknowledgement packet
(ack) is returned to its source. Furthermore, as we are interested in a network
with small buffers, we may safely assume that queuing delays are a negligible
component of the end to end delay. Thus for all l ∈ r, τrl + τlr = τr, the round
trip time for route r.

We now have the following model for the end-system behaviour of RCP. For
each route r ∈ S,

xr(t) = minl∈rRl(t− τlr). (1)

Now, for each link l ∈ J , Rl(t) is updated depending upon the total aggregate
flow through link l at time t. Although the update rule is discrete, we can model
it via a fluid approximation with the following differential equation [2]. For each
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link l ∈ J ,

Ṙl(t) = Rl(t)

(

αl

dlCl

(Cl − yl(t)) −
βlql(t)

d2lCl

)+

Rl(t)

, (2)

where αl, βl are positive constants, Cl is the capacity at link l, dl is the average
round trip time of the flows passing through link l,

yl(t) =
∑

r:l∈r

xr(t− τrl), (3)

and ql(t) is the queue size at time t. Here we use the notation a = (b)+c to mean
that a = 0 if b < 0 and c ≤ 0, otherwise a = b. In the original RCP model [5],
αl = α and βl = β for each l ∈ J for some α and β. We have allowed these
constants to vary between links in order to study their effect on stability.

Model for the queue. The basis of our investigation is to study a regime
where the buffers are so small that it is no longer possible to explicitly model
the queue as a saturated integrator. This assumption simply expresses the idea
that with small enough buffers, we may use the approximation

ql(t) = pl(yl(t)), (4)

where pl(·) is a continuously differentiable function representing the mean queue
length of link l. This is consistent with the observation in [25] that in a small
buffer regime, it is the distribution of the queue size that plays the prominent
role in the dynamics of the congestion control framework. At the level of interest
in this paper, we do not motivate any explicit functional form for the mean queue
length. Different functional forms may be suitable candidates, but our primary
focus is to investigate some stability properties of the dynamical system defined
by (1-4).

2.2 Global stability without propagation delays

In this subsection, we seek to investigate the stability properties of RCP without
taking into account the effects of propagation delays. This gives us some insight
into the stability of the algorithm in general, and is also a plausible model for
the special case when propagation delays are small in comparison to the update
step size of the algorithm. In terms of the fluid model, this would mean

max
l∈J

αl

dlCl

+
βlql(t)

d2lCl

≪ min
r∈S

1

τr
.

To model RCP without the effects of delays, we use (1-4), setting τr = 0 for all
r ∈ S, but leaving all other parameters fixed.

Ideally we would like to show that our delay-free model of RCP, at equilib-
rium, is globally stable. Unfortunately, as the following example demonstrates,
we cannot expect the equilibrium points of (1-4) to be unique, or even isolated.
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Consider a network consisting of two identical links, l, j and one route r = {l, j}.
Then, since pl(·) is strictly increasing, there exists a unique y such that

αl

dlCl

(Cl − y)−
βlpl(y)

d2lCl

= 0.

By inspection, there are equilibrium points at R = (y, y′) and R = (y′, y) for all
y′ ≥ y.

Alternatively, consider the situation where l and j are not completely iden-
tical, and Cj > Cl. Then, there exists a unique y′ such that

αj

djCj

(Cj − y′)−
βjpj(y

′)

d2jCj

= 0.

Now, y′ > y, so, if xr ≤ y then Ṙj will be strictly positive. However, if xr > y

then Ṙl will be strictly negative. Thus, for this example, no equilibrium point
exists.

So, there may be an entire manifold of equilibrium vectors for R, or there
may be no equilibrium point at all. However, the same is not true for the
equilibrium vector of flow rates x.

Theorem 2.1. Suppose that x(t) evolves according to (1-4), with τr = 0 for all
r ∈ S. Then, there exists a unique vector x such that x(t) → x as t → ∞.

Proof. We prove this result recursively for the more general system where, for
all l ∈ J , we replace (2) with

Ṙl(t) = Rl(t)

(

ul(t) +
αl

dlCl

(Cl − yl(t))−
βlpl(yl(t))

d2lCl

)+

Rl(t)

, (5)

where ul(t) → 0 as t → ∞.
Let Nl be the number of r ∈ S such that l ∈ r. We set yl equal to the unique

value such that Ṙl(t) = 0 when yl(t) = yl, and set R = minl∈J yl/Nl. We shall
show that, for all r ∈ S with R = yl/Nl for some l ∈ r, xr → R as t → ∞. This
allows us to remove such an xr(t) from the system, by replacing it with R plus
a vanishing term which we incorporate into the ul(t), for each l ∈ r. Since this
will always remove at least one r from S, this is sufficient to prove our result.

It remains to show that xr → R for r ∈ S with R = yl/Nl, for some l ∈ r.
Now, for any ǫ > 0 there exists a T such that

|ul(t)| < ǫ
αl

dlCl

,

for all l ∈ J , t > T . From (5) we see that, if, for t > T , for any l ∈ J ,
Rl(t) < (yl/Nl) − 2ǫ, then Ṙl(t) > δ for some δ > 0. Thus, for some T ′, for all
t > T ′, l ∈ J , Rl(t) ≥ (yl/Nl)− 2ǫ.

Let us assume that ǫ is small enough that, for any j ∈ J with (yj/Nj) > R,

yj
Nj

−R >

(

2 + 2max
l∈J

Nl

)

ǫ.
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Now, let r ∈ S be such that R = yl/Nl for some l ∈ r. Let r′ be the set of
l ∈ r with R = yl/Nl. Suppose that, for some t > T ′,

min
l∈r′

Rl(t) > R+ 2ǫmax
j∈J

Nj.

If xr(t) = Rj(t) and j ∈ r′ then xr(t) > R + 2ǫmaxj∈J Nj . Otherwise xr(t) =
Rj(t) with j 6∈ r′, but since t > T ′, xr > R+ 2ǫmaxj∈J Nj still holds. For any
l ∈ r′, xr(t) is sufficiently high that yl(t) must be greater than NlR+2ǫ. Thus,
Ṙl(t) < −δ for some δ > 0. Therefore, for some T ′′, for all t > T ′′,

min
l∈r′

Rl(t) ≤ R+ 2ǫmax
j∈J

Nj.

Hence, for all t > T ′′,
∣

∣xr(t)−R
∣

∣ ≤ 2ǫmax
j∈J

Nj .

Since ǫ was arbitrary, the result follows.

Note, the vector x will be close to that of the max-min fair allocation of flow
rates, because of its construction. However, the presence of the function pl(·)
in (2) means that link capacity will not be fully utilised at equilibrium.

2.3 Local stability with propagation delays

In this subsection, we derive conditions for the local stability of (1-4) when
propagation delays are present. Our result relies upon the assumption that
there is only one bottleneck link along each route, that is for each r ∈ S there
is only one l ∈ r such that xr(t) = Rl(t) at equilibrium.

For each r ∈ S, l ∈ J , we let xr be the equilibrium value of xr(t) and Rl

be the maximum of xs for all s ∈ S such that l ∈ s. For each l ∈ J , we let yl
be the unique value such that Ṙl(t) = 0 whenever yl(t) = yl. We can assume,
without loss of generality, that for all l ∈ J ,

yl =
∑

r:l∈r

xr.

Otherwise, assuming the system is always local to equilibrium, Rl(t) will simply
continually increase. If Rl(t) is initially large enough then maxr∈S xr(t) < Rl(t)
for all time and thus, Rl(t) has no effect on the rest of the system, and can be
ignored.

Now, we have assumed that, for all r ∈ S, l ∈ r, if xr = Rl, then Rj > Rl for
all j ∈ r, j 6= l. Furthermore, by definition, if xr 6= Rl, we must have xr < Rl.
Thus, for all r ∈ S, l ∈ r, whenever the system is close to equilibrium, either
xr(t) = Rl(t − τlr), or else xr < Rl and Rl(t − τlr) has no effect on xr(t). So,
we can isolate each l ∈ J and model the effect of the rest of the system on Rl(t)
as a vanishing perturbation. This allows us to find conditions for stability for
the overall system using a recursive argument.
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Accordingly, we initially restrict our attention to the single link case, J = {l},
and we consider the following generalisation of (2),

Ṙl(t) = −Rl(t)

(

fl

(

yl(t)−NlRl

)

+ ul(t)

)+

Rl(t)

, (6)

where yl(t) is defined as in (3), fl(·) is an increasing differentiable function with
fl(0) = 0 and ul(t) → 0 as t → ∞. When the recursive argument is complete,
the vector u(t) represents the behaviour of Rj(t) for j ∈ J such that Rj < Rl.

Theorem 2.2. Consider the case where the network consists of only a single
link, J = l, with flow rates following (6). If

f ′

l (0)Rl

∑

r∈S

τr < 1,

then for all ǫ, there exists a and u such that, if
∣

∣Rl(t)−Rl

∣

∣ ≤ a for all t ≤ 0

and |ul(t)| < u for all t, then
∣

∣Rl(t)−Rl

∣

∣ ≤ ǫ for all t, and Rl(t) → Rl as
t → ∞.

Proof. Let τl be maxr∈S τr, the maximum round trip time.
Suppose for some t, γ ≤ 1, a′ and u′;

∣

∣Rl(t)−Rl

∣

∣ = γa′,
∣

∣Rl(t
′)−Rl

∣

∣ ≤ a′

and |ul(t
′)| < u′a′ for all t′ ∈ [t− 2τl, t]. Then, for all t

′ ∈ [t− τl, t],

∣

∣

∣
Ṙl(t

′)
∣

∣

∣
≤

(

Rl + a′
)

(

u′a′ + f ′

l (0)|S|a
′ + o(a′)

)

.

Thus, for all r ∈ S,

|Rl(t− τr)−Rl(t)| ≤ τrRlf
′

l (0)|S|a
′ + τr

(

Rl + a′
)

a′u′ + o(a′). (7)

So,

Ṙl(t)

Rl(t)
= f ′

l (0)
(

|S|Rl − yl(t)
)

− ul(t) + o(a′)

= f ′

l (0)|S|
(

Rl −Rl(t)
)

− ul(t) + f ′

l (0)
∑

r∈S

(

Rl(t)−Rl(t− τr)
)

+ o(a′)

= f ′

l (0)|S|γa
′ + δ,

where

|δ| ≤ f ′

l (0)Rl

∑

r∈S

τrf
′

l (0)|S|a
′ + |S|τl

(

Rl + a′
)

a′u′ + o(a′)

= f ′

l (0)
2|S|2Rldla

′ + |S|τl
(

Rl + a′
)

a′u′ + o(a′).

Since f ′

l (0)|S|Rldl < 1, there exists a value of a < ǫ, u′ and γ < 1 such that, if

a′ ≤ a, then |δ| is guaranteed to be less than γf ′

l (0)|S|a
′. In which case, Ṙl(t)

must have the same sign as Rl −Rl(t).
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So, we can take u = u′a, with a as given above, and if
∣

∣Rl(t)−Rl

∣

∣ ≤ a for

all t ≤ 0 and |ul(t)| < u for all t, then
∣

∣Rl(t)−Rl

∣

∣ ≤ ǫ for all t.
Furthermore, for all a′ < a, there exists a time T such that, for all t > T ,

|ul(t)| < u′a′. From the above analysis, we know that after T , if Rl(t) is beyond
a′ of Rl, then it will converge to Rl at a rate of γ. Thus, there is some T ′ > T
such that,

∣

∣Rl(t)−Rl

∣

∣ ≤ a′ for all t > T ′. Since a′ was arbitrary, Rl(t) → Rl

as required.

We now consider the general network case.

Theorem 2.3. Under (1-4), the equilibrium point R is locally asymptotically
stable provided that, for each l ∈ J ,

( αl

dlCl

+
βlp

′

l(yl)

d2lCl

)

Rl

∑

r:l∈r,Rl=xr

τr < 1. (8)

Proof. Let δ be the minimum of
∣

∣Rl −Rj

∣

∣ /2 for l 6= j ∈ J . Now, if, for all t,

all l ∈ J ,
∣

∣Rl(t)−Rl

∣

∣ < δ, then each l ∈ J will evolve according to

Ṙl(t) = −Rl(t)
(

fl
(

yeql (t)− yeql
)

+ ul(t)
)

, (9)

where ul(t) represents the effect of Rj(t) for all Rj < Rl, and

yeql (t) =
∑

r:l∈r,xr=Rl

xr(t− τrl),

with yeql equal to the equilibrium value of yeql (t). For each l ∈ J , we have

fl(w) =
αl

dlCl

(w + yl − Cl) +
βlpl(yl + w)

d2lCl

.

By definition, (9) is an example of (6), for the reduced network formed by l
and all routes r ∈ S with l ∈ r and xr = Rl. Furthermore, (8) is precisely the
condition of Theorem 2.2 for this reduced system.

Suppose
∣

∣Rl(t)−Rl

∣

∣ < δ for all l ∈ J , for all t. By differentiability of pl(·),

for any u, we can find ǫ such that if
∣

∣Rj(t)−Rj

∣

∣ < ǫ for all t, for all j such

that Rj < Rl, then |ul(t)| < u for all t. This allows us to prove local stability
recursively.

We begin with the l ∈ J such that Rl is maximal. We apply Theorem 2.2
to find conditions under which Rl(t) converges to Rl and

∣

∣Rl(t)−Rl

∣

∣ < δ for
all t. This gives us a and u, where the initial conditions of Rl(t) should be
within a of Rl, and ul(t) should tend to zero and always be bounded by u. We
can find an ǫ < δ so that if

∣

∣Rj(t)−Rj

∣

∣ < ǫ for all t and Rj(t) converges to

Rj for all j 6= l, then |ul(t)| < u for all t and ul(t) converges to 0. So, we set
Rl(t) ∈

[

Rl − a,Rl + a
]

for t ≤ 0 as our initial condition for l, remove l from the
network and repeat this process for δ′ = ǫ. Since we remove one link each time,
eventually we will find suitable initial conditions for the entire network.
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Note, each link does not necessarily need to keep track of which flows are
under its control in order to meet (8). The condition holds if, for all l ∈ J ,

(

αl

dl
+

βlp
′

l(yl)

d2l

)

yl
Cl

dpl < 1,

where dpl is the average per packet round trip time,

dpl =
1

yl

∑

r:l∈r

xrτr .

This suggests that it should be dpl not dl that appears in the RCP controller (2).
If, for each l ∈ J we let γl be such that p′l(yl) = γlpl(yl)/yl then,

p′l(yl) = γl
αldl
βl

Cl − yl
yl

<
γlαldl
βl

,

thus, (8) is ensured if, for all l ∈ J ,

αl =
dpl

dl(1 + γl)
. (10)

This parameter choice scheme is attractive, because it is fairly decentralised
and only requires local information. Each link needs only to measure, estimate
or be informed of the round trip times for packets passing through that link.
However, these results rely on the weak assumption that each route has only
one bottleneck link. However, any network with multiple bottleneck routes
can easily be transformed into one without, for example, by making a small
change in the parameters βl, l ∈ J . Preliminary numerical results suggest that
Theorem 2.3 may hold in general; but finding an analytic result to confirm this,
or a counter-example to disprove it, remains an open problem.

In the next section we investigate the impact of loss of local stability in RCP.

3 Local bifurcation analysis

A key focus in the choice of parameters for any congestion control proposal is
to ensure that they lead to a stable equilibrium. Most proposals for congestion
control, for example see [21], lead to the analysis of non-linear time delayed
dynamical systems. For such non-linear systems, typically sufficient conditions
for local stability guide parameter choices. Following local stability, a local
bifurcation theoretic analysis can make us comfortable in running the system
close to the edge of stability.

We first recapitulate a result about the loss of local stability in a non-linear
retarded functional differential equation and then use it to analyse the RCP
fluid model. Following the analysis in [19] we outline a local Hopf bifurcation
result for the following non-linear delay equation

u̇(t) = η
(

− ξxu(t− τ)± ξxyu(t)u(t− τ)
)

, (11)

9



where η, τ, ξx, ξxy > 0. The parameter η has been intentionally introduced to
just tip the above equation over the edge of (local) stability. This exogenous,
non-dimensional, parameter will act as our bifurcation parameter.

We may state the following about equation (11).

Theorem 3.1. A necessary and sufficient condition for local stability is

ηξxτ < π/2,

and treating η as the bifurcation parameter, the first local Hopf bifurcation occurs
with period 4τ at η = ηc, where ηcξxτ = π/2. Further, as the Hopf condition is
just violated, the equation will always undergo a super-critical Hopf bifurcation
where the amplitude of the stable bifurcating solutions will be proportional to

ξx
ξxy

√

20π(η − ηc)

3π − 2
.

3.1 RCP: single link, single delay model

In our bifurcation analysis, for the sake of simplicity, we shall leave the queuing
term out of the model by taking β = 0. Consider the following single link, single
delay, RCP fluid model

Ṙ(t) = ηR(t)
( α

Cτ
(C − y(t))

)

, (12)

where y(t) =
∑

s R(t − τ) is the aggregate load at the link and η is the non-
dimensional bifurcation parameter. Define u(t) = R(t) − R, and take a Taylor
expansion of (12) to obtain

u̇(t) = − η
α

τ
u(t− τ)− η

α

τR
u(t)u(t− τ).

Now using Theorem 3.1, we may state the following about equation (12). A
necessary and sufficient condition for local stability is

ηα < π/2,

and treating η as the bifurcation parameter, the first local Hopf bifurcation
occurs with period 4τ at η = ηc, where ηcα = π/2. If the Hopf condition is
just violated, the equation will always undergo a super-critical Hopf bifurcation
where the amplitude of the stable bifurcating solutions will be proportional to

R

√

20π(η − ηc)

3π − 2
.

We highlight that equation (12) cannot produce a sub-critical Hopf bifurcation.
However, in the bifurcation analysis we have omitted any additional non-linear
effects that would arise if β > 0 in the RCP model.

We now summarise our contribution in this paper, and outline some avenues
for further research.
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4 Conclusion

It is noteworthy to observe that the small buffer regime has allowed us to tackle
the question of stability for a large network with an arbitrary topology. First, we
proved that the RCP fluid model is globally stable in the absence of propagation
delays. Then, we derive a set of conditions for local stability when arbitrary
heterogeneous propagation delays are present. The network delay stability re-
sult relies upon the weak assumption that, at equilibrium, there is only one
bottleneck link along each route. An interesting avenue for research would be
to show that either this result may hold in general, or provide a counter-example
to disprove it. Finally in a single link, single delay, model we investigate the
impact of the loss of local stability in a special case (setting β = 0) where we
show that the RCP algorithm would always give rise to an innocuous looking
super-critical Hopf bifurcation.

As RCP aims for max-min fairness it is appropriate to first consider a model
that embodies the original formulation, as we did in this paper. We now outline
some natural avenues for further research.

Fairness and Stability. A conveniently parameterized family of α-fair rate
allocations was introduced in [17]. The parameter α lies in the range (0,∞),
and the cases α → 0, α = 1 and α → ∞ correspond respectively to an alloca-
tion which achieves maximum throughput, is proportionally fair or is max-min
fair [17]. In this paper we have only considered a max-min fair allocation mech-
anism, as has been originally specified [5]. An immediate direction of further
research would be to incorporate different notions of fairness into the RCP
framework, and analyse the stability of such networks.

Impact of the RCP parameters: αl and βl. We have only considered the
limiting case of very small buffers. The choice of β impacts the rate at which
the queue is drained. Small values of β drain the queue slowly; so with small β
and for large enough buffers it is appropriate to model the queue as a saturated
integrator. However, for large values of β, the queue may drain fast enough
so that at the timescale of operation of the congestion control protocols, finer
queueing theoretic models may have to be developed. Such queuing models
would certainly contribute to the non-linearity in the RCP dynamical system,
and hence impact the stability of the time delayed network. Further, the results
from local bifurcation theory could also be subtle. In our bifurcation theoretic
analysis we set β = 0, thus removing any non-linearity that may arise from the
queue.
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