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its resolvent operator. For the remaining cases satisfying (35) the au-
thors suggest in the conclusion solving numerically an equation that is
related to the eigenvalues of the system. Although Theorem III.2 ex-
cludes the case ��� � �� ����� �� and ��� � �� ����� ��, it has the
advantage of treating all the remaining cases satisfying (35) using only
a matrix inequality.

V. CONCLUSION

We provided tools that facilitate checking the exponentially stability
property of a class of BCS. We showed that by using results of [14]
and [16] it is easy to select the input and outputs of a BCS. Therefore,
we use those results on boundary port Hamiltonian systems to define
inputs and outputs for our class of BCS. Once this is done, checking
for exponential stability follows easily. The main idea behind the proof
consists in using a multiplier common to the whole class of BCS. This
multiplier only depends on the norm of the co-energy variables at the
boundary of the spatial domain. In this way one avoids searching for
different multipliers every time the system or the boundary conditions
are changed. This simplifies drastically the verification of the expo-
nential stability property, as can be seen already from the examples in
Section IV. Also the proof of the results of [22] and [23] can be sim-
plified by using our results.

Even though the results are only valid for a class of one-dimensional
systems, the authors believe that the approach has potential to be ex-
tended to 2-D and 3-D systems. The key point being the definition and
selection of the boundary port variables. Some ideas about this are pre-
sented in [16, Ch. 8]. However, this still requires more research.
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Delay-Dependent Exponential Stability
of Neutral Stochastic Delay Systems

Lirong Huang and Xuerong Mao

Abstract—This technical note studies stability of neutral stochastic
delay systems by linear matrix inequality approach. Delay-dependent
criterion for exponential stability is presented and numerical examples are
conducted to verify the effectiveness of the proposed method.

Index Terms—Exponential stability, linear matrix inequalitys (LMIs),
neutral systems, stochastic systems, time delay.

I. INTRODUCTION

Many dynamical systems are described with neutral functional
differential equations that include neutral delay differential equations
[19]. These systems are called neutral-type systems or neutral systems.
Motivated by chemical engineering systems as well as theory of
aero elasticity, studies on deterministic neutral systems have been of
research interest over the past decades [3]–[11], [21]. As stochastic
modelling has come to play an important role in many branches
of science and industry, neutral stochastic delay systems have been
intensively studied over recent year [10]–[17]. Mao [14]–[17] initiated
the study of exponential stability of neutral stochastic functional
equations, developed the Razumikhin-type theorems further for
exponential stability of neutral stochastic functional equations and
studied asymptotic properties of neutral stochastic delay differential
equations [1]. More recently, Luo et al. [12] proposed new criteria on
exponential stability of neutral stochastic delay differential equations
while Chen et al. [2] studied delay-dependent stability of neutral sto-
chastic delay systems. However, the stability result in [2] employed an
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assumption on the difference operator matrix, which is also assumed
in other results [4] and [18] but may be restrictive in many cases (see
Examples 1 and 2). As is known, delay-independent results may be
conservative when the size of time delay is small. This technical note
studies problem of delay-dependent stability of neutral stochastic
delay systems. An exponential stability criterion is established by
linear matrix inequality (LMI) approach. Numerical examples are
conducted to verify the effectiveness of our proposed method.

II. PROBLEM STATEMENT

Throughout the technical note, unless otherwise specified, we will
employ the following notation. Let ���� � �������� � be a complete
probability space with a natural filtration ������� and ��� be the ex-
pectation operator with respect to the probability measure. Let ����
be a scalar Brownian motion defined on the probability space. If � is
a vector or matrix, its transpose is denoted by �� . If � is a square
matrix, � � � (� � �) means that � is a symmetric positive (nega-
tive) definite matrix of appropriate dimensions while � � � (� � �)
is a symmetric positive (negative) semidefinite matrix. � stands for the
identity matrix of appropriate dimensions. Denote by 	� ��� and 	����
the maximum and minimum eigenvalue of a matrix respectively. Let ���
denote the Euclidean norm of a vector and its induced norm of a matrix.
Unless explicitly specified, matrices are assumed to have real entries
and compatible dimensions. Let 
 � � and ����
� ������ denote the
family of all continuous ��-valued functions 
 on ��
� �� with the
norm 	
	 � 	
���
���� � �
 � � � ��. Let ��

� ���
� ������
be the family of all ��-measurable bounded ����
� ������-valued
random variables � � ����� � �
 � � � ��.

Let us consider an �-dimensional neutral stochastic delay system


������ ����� 
���

� ������� � ������ 
�� ������� 
��� 
�

� ������� ������� 
��������� 
���
���� (1)

on � � � with initial data �� � ����� � �
 � � � �� � � 

��
� ���
� ������, where ���� 
 �� is the state vector; positive scalar

constants 
�, 
� are time delays of the system and 
 � ����
�� 
��;
� , �� and ��, � � �, 1, 2, are known matrices.

Denote

���� ������� � ������ 
�� ������� 
��

���� ������� ������� 
�� ������� 
�� (2)

for all � � �. One can observe that

������� � ��	��	
�
� ������� � �		��	

� (3)

for all � � �, where �� � ���� � �� � �
 � � � ��, �� �
� �

���
����

� and �	 � � �

���
����

�. This implies that both ��
� ��
and ��
� �� satisfy the local Lipschitz condition and the linear growth
condition. It is easy to verify, by the way of induction proposed in the
proof of Theorem 3.1, p208, [16], that there exists a unique continuous
solution denoted by ���� �� to neutral stochastic delay differential (1).

The objective of this technical note is to establish sufficient con-
ditions for robust exponential stability of system (1). It should be
pointed out that, for simplicity only, we do not consider uncertainties
in our models. The proposed method can be easily extended to those
cases with norm-bounded uncertainties in parameters �� and ��. The
method can also be applied to systems with multiple and distributed
delays.

At the end of this section, let us introduce the following definitions
and lemmas that are useful for the development of our results.

Definition 1: The neutral stochastic delay system (1) is said to be
exponentially stable in mean square if there is a positive constant 	
such that [16]

��� 	
�
���

�

�
��� ����� ���� � �	 � (4)

Definition 2: The neutral stochastic delay system (1) is said to be
almost surely exponentially stable if there is a positive constant 	 such
that [16]

��� 	
�
���

�

�
��� ����� ��� � �	 � (5)

Lemma 1: ([20]) For any constant matrix � 
 �
��, inequality

����� � ��
�
���

�
��

�

�
�
�
�
��
� � � 
 �



� � 
 �

�

holds for any pair of symmetric positive definite matrix � 
 ���� and
positive number � � �.

Lemma 2: ([6]) For any pair of symmetric positive definite constant
matrix � 
 ���� and scalar � � �, if there exists a vector function
� � ��� �� � �� such that integrals �

�
�� ��������
� and �

�
����
�

are well defined, then the following inequality holds:

�
�

�

�
� ��������
��

�

�

����
�
�

�
�

�

����
� �

III. DELAY-DEPENDENT EXPONENTIAL STABILITY

Delay-dependent stability of neutral deterministic delay systems has
been intensively studied over recent years [3]–[5], [8], [11], [18]. How-
ever, relatively little is known about delay-dependent stability of neu-
tral stochastic delay systems. Denote ��� � ��, ��� � ��� � ��,
��� � ��, ��� � ��, ��� � ��� � ��, ��� � ��, �� � �

���
���

and �� � �

���
���. Sufficient conditions for delay-dependent expo-

nential stability of system (1) are proposed as follows.
Theorem 1: The neutral stochastic delay system (1) is mean-square

exponentially stable and is also almost surely exponentially stable pro-
vided that there exist matrices ��� � �, �
 � �, �
 � �, � � �,
 
 � �, ���, ���, ���, ���, ���, ��� and ! � �, 2 such that LMI is
(6), shown at the bottom of the next page, where
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and entries denoted by � can be readily inferred from symmetry of the
matrix.

Proof: To simplify the expression, we define

#��� � ����� ����� 
�� (7)
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for all � � �. With notations (2) and (7), we can rewrite the unforced
system (1) as

����� � ������� ��������� (8)

on � � � with initial data �.
So we have

������ ����� �
�

�
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for all �� � �� � �.
By (2) and (9), we can observe that
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for all � � 	. Choose a Lyapunov–Krasovskii functional candidate for
system (8) as follows:
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where
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By Itô’s lemma, we have

�� ��� � �� ������ ��������� (13)

where
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Denote
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By equalities (10) and (11), we have
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� for � � �, 2.
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Direct computations with Lemma 2 and (7) give
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By isometry property, for � � �, 2, we have
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Therefore, substituting inequalities (16)–(20) into (14) and taking ex-
pectation on the both sides of (14) yield
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where
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By LMI (6), we have
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with �� � ����	� and
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For any � � ��� ��, (7), inequalities (22)–(23) and Lemma 1 give
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It is obvious from the definition of � ��� that
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Choose � � � such that
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By Itô’s lemma, we have
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it follows:
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. Since neutral stochastic delay differential
(1) has a unique continuous solution, 	� is a nonnegative finite number
for any � � � � �.
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for all � � �. By Lemma 1, we have
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Let � be any nonnegative real number. For all � � � � �, we have
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But this holds for all �� � � � �. So
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Since � is an arbitary nonnegative number, we have
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The mean-square exponential stability has been proven.
Now let us proceed to discuss the almost sure exponential stability.

Let � � ��� �� be arbitrary. We claim that there is a finite positive
number �� such that for all � � ��
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Therefore, for all � � ��, inequality (30) implies
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Using the similar reasoning as above and letting � � �, we have
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�� � �. This implies immediately
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We complete the proof by showing that inequality (33) is true. Note
that
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for all � � �. For any integer � � 
, by Hölder’s inequality and
Burkholder–Davis–Gundy inequality, one can derive that
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where �� � �	��
 � ���
���� � ��������. But, by Chebyshev’s

inequality, this implies
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By Borel–Cantelli lemma, there is a finite integer �� such that
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for all � � ��. Therefore, inequality (33) holds with �� � ���.
Remark 1: From the proof of Theorem 1, it is observed that, letting
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we can have a corollary derived from Theorem 1 with
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where �� � �. This corollary can be easily applied to problems of
stabilization by the approach of LMIs.

IV. EXAMPLES

Example 1: Let us look at the following neutral stochastic delay
system:
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TABLE I
� BY DIFFERENT METHODS
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It is easy to verify that the existing results [2], [10], [12]–[17] do not
work. But, by Theorem 1, the upper bounds of time delay for exponen-
tial stability of system (36) is ���� � ����.

Example 2: Deterministic systems may be regarded a special class
of stochastic systems, e.g., the following deterministic neutral system
is exactly system (1) with �� � �, �� � � and �� � �� � �� �
�� � �, i.e.:
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for all 	 � �, where
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and 
 is a constant real number.
The case of 
 � � has been studied by many works [4], [8] and [11].

However, results of [2], [4], [9], [11], and [18] are not (conveniently)
applicable when �
� � �. For 
 � �, the criterion in [5] does not work,
but the upper bounds ���� for exponential stability of (37) by other
methods are listed in Table I, which shows that the results obtained
by the methods proposed in this technical note are less conservative in
these cases.

V. CONCLUSION

In this technical note, delay-dependent criterion for stability of neu-
tral stochastic delay systems has been presented by approach of LMIs.
Numerical examples have been given to verify the effectiveness of the
method proposed in this technical note. Particularly, Example 2 demon-
strates that our result developed for stochastic systems is competitive
even when it is specialized to the deterministic cases.
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