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The Spring Loaded Inverted Pendulum as the
Hybrid Zero Dynamics of an Asymmetric Hopper

loannis Poulakakis and J. W. Grizzle

Abstract— A hybrid controller that induces provably stable
running gaits on an Asymmetric Spring Loaded Inverted Pen-
dulum (ASLIP) is developed. The controller acts on two leved.
On the first level, continuous within-stride control asympitically
imposes a (virtual) holonomic constraint corresponding toa
desired torso posture, and creates an invariant surface on kich
the two-degree-of-freedom restriction dynamics of the clsed-loop
system (i.e., the hybrid zero dynamics) is diffeomorphic tathe
center-of-mass dynamics of a Spring Loaded Inverted Pendum
(SLIP). On the second level, event-based control stabilizethe
closed-loop hybrid system along a periodic orbit of the SLIP
dynamics. The controller's performance is discussed throgh
comparison with a second control law that creates a one-dege-
of-freedom non-compliant hybrid zero dynamics. Both contpllers
induce identical steady-state behaviors (i.e. periodic &ations).
Under transient conditions, however, the controller indudng a
compliant hybrid zero dynamics based on the SLIP accommo-
dates significantly larger disturbances, with less actuatoeffort,
and without violation of the unilateral ground force constraints.

Fig. 1. Left: A mechanical drawing of a leg for a bipedal rolonstructed

Index Terms— Legged robots, Spring Loaded Inverted Pendu- in @ collaborative effort between the University of Michigand Carnegie

lum. Hvbrid Zero Dynamics. dvnamic running. Mellon University; see [21] for design principles and haader details. The
1Y y - 4y 9 knee has a revolute series compliant actuator. Right: ThenAsetric Spring

Loaded Inverted Pendulum (ASLIP). The leg foree will be modeled as a
spring in parallel with a prismatic force source. The ASLsRaimore faithful
representation of the robot on the left than a SLIP model.

HE Spring Loaded Inverted Pendulum (SLIP) has been
proposed as a canonical model of the center-of-mass

dynamics of running animals and robots. Notwithstandisg ithat combines established nonlinear control synthesis,too
apparent simplicity, the SLIP has been invaluable in uncosuch as the Hybrid Zero Dynamics (HZD) originally proposed
ering basic principles of running in animals, [20], and imn [48], with controllers obtained in the context of the SLIP
synthesizing empirical control laws for running robots5]l3 e.g. [36], to induce exponentially stable running motiomsi

In the relevant literature, the SLIP is not conceived merelyopping model termed thiesymmetric Spring Loaded Inverted
as a model that encodes running. It is construed as a model fendulum(ASLIP); see Fig. 1. Aiming to reflect a broader
implies specific high-level control hypotheses on how afémgpurpose, the ASLIP includes torso pitch dynamics nontiivia
or robots coordinate their joints and limbs to produce thmupled to the leg motion, an issue not addressed in the widel
observed running behavior, [15], [20]. However, up to thistudied SLIP. Despite its importance, to the best of theasth
point, much of the relevant research has been concentratedwledge, no formal studies of the ASLIP exist. Proposing
on the SLIP itself. The formal connection between the SLI&nd rigorously analyzing control laws for the stabilizatiof
and more elaborate models that enjoy a more faithful corrfte ASLIP that take advantage of SLIP controllers conggtut
spondence to a typical locomotor’s structure and morpholothe primary goal of this work.
has not been fully investigated. In particular, it still raims A second aspect addressed in this paper regards the per-
unclear how stability conclusions obtained in the conteixt dormance benefits of embedding the SLIP as the hybrid zero
the SLIP can predict the behavior of more complete modet$/namics of the ASLIP. A SLIP-embedding control law is
In this paper, rather than analyzing the much studied SL&P, wompared with a controller that achieves a one degree-of-
turn our attention to its implications in the control of rimg freedom (DOF), non-compliant hybrid zero dynamics. The
of more complete robot models. A framework is proposesio controllers induce identical steady-state behaviorsier

_ _ o transient conditions, however, the underlying compliaattine

Wa'\s"a:ﬁgggﬁ;j“g;"ﬁgigﬂgﬂftéé’szgggbg%‘g_segojrt‘fgﬁszz%%ngp‘g;g; of the SLIP allows significantly larger disturbances to be
previously appeared in the conference papers [34] and [35]. accommodated, with less actuator effort, and without Viota
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that induce elegant, provably stable, running motionsagésl is developed. Three-dimensional extensions of the SLIP are
robots, by combining the practical advantages of the campli also available, [41]. These research efforts producedge lar
SLIP with the analytical tractability offered by the hybddro variety of controllers for inducing elegant running motoin
dynamics method. the SLIP, which exhibit very appealing properties such ggela
domains of attraction and minimal control effort.
A quite different paradigm for control law design combining
analytical tractabilitywith realistic modelshas been followed
The combined difficulties of hybrid dynamics and undera¢n [19], [48], and [11]; see also [47] for an integrative
tuation inherent in legged robots with point feet stymied thperspective. There, geometric nonlinear control meth@de h
direct application of nonlinear controller synthesis yaluch been developed that deal directly with the underactuatioh a
as those in [25], to induce provably stable running motians hybrid dynamics present in legged robots, and induce pigvab
such robots. Instead, mamynpirical control procedurelave asymptotically stable dynamic walking and running motions
been employed over the past twenty years to control hoppiimgbipedal robots. In particular, it has been shown that @an
and running robots or robot models; see [36], [1], [17], [14{valking and running gaits can be “embedded” in the dynamics
[30], [24], [10Q], [2] for examples of one-legged robots. Irof a biped by defining a set of holonomic output functions
many cases, e.g. [1], [17], [2], these control procedures awith the control objective being to drive these outputs tmze
inspired by Raibert's original three-part controller, ueing see [19], [48]. In essence, this method asymptoticallyricst
forward speed during flight by positioning the legs at the dynamics of the closed-loop hybrid model to a lower-
proper touchdown angle, and hopping height and body aétitudimensional attractive and invariant subset of the staseep
during stance by employing leg force and hip torque; séthe stable periodic solutions of the dynamics restrictethis
[36]. A different class of controllers is introduced in [14] subset, called the Hybrid Zero Dynamics (HZD), encode the
These controllers apply impulsive (or, equivalently pigise desired task (walking or running).
constant) feedback inputs at discrete time instants throulg  The general idea of task encoding through the enforce-
a stride to stabilize unforced periodic solutions of a sifigd  ment of a lower-dimensional target dynamics, rather than
model, and were found to perform well on an exact modeirough the prescription of a set of reference trajectories
of the hopper. The reliance of the control laws in [14] ohas been employed in the control of dynamically dexterous
a simplified model is removed in [24]. From a minimalisimachines, including juggling, brachiating and runningatsbh
perspective, a realistic one-legged hopper is controlsidgu by Koditschek and his collaborators; see [9], [33] and [37].
only a hip actuator in [10]. All the control laws mentioned s@he same general idea, albeit in a fully actuated setting, ha
far incorporate sensory feedback to stabilize periodiaimg been employed in [5] and [4], where the method of controlled
motions. However, as indicated in [30], stable running can Bymmetries introduced in [45] together with a generalarati
achieved using purely feed-forward periodic commands ¢o tbf Routhian reduction for hybrid systems were combined to
hip and leg motors. extend passive dynamic walking gaits, such as those olotaine
The complexity of the dynamics of one-legged hoppetsy McGeer’s passive walker [28], in three-dimensions.
precluded analytically tractable stability studies, aed ko Task encoding through imposing pre-specified target dy-
introducing variousimplifications point-mass body, masslessnamics leaves one with the question of selecting a suitable
leg, zero gravity in stance, to name a few. In one of theandidate dynamical system for the targeted running behavi
earliest analytical works, Koditschek and Buehler expth® On one hand, a growing body of evidence in biomechanics
robust behavior of Raibert's vertical hopping controller bindicates that diverse species, when they run, tune theiahe
concentrating on the vertical oscillation of a simplifiecpper; and musculoskeletal systems so that their COM bounces along
see [27]. This analysis is extended in [46] by considerirgs if it was following the dynamics of a SLIP; see [6], [7],
the bifurcation diagram of the system’s return map. Forwaftl5]. On the other hand, careful consideration of the SLIP
dynamics is added to the vertical hopper in [29] with thgave insight into synthesizing empirical control laws dapa
purpose of investigating its effect on the vertical motidhe of stabilizing running robots with one, two and four legs, as
problem of controlling forward velocity alone is examined i was demonstrated in [36]. In the light of this evidence, the
[13] and [40], where no control is available at the leg. SLIP is construed as a dynamic model of the observed running
The sagittal plane model in [13] and [40] is comprisetiehavior, and thus can be used as the target dynamics for
of a point-mass body attached to a massless springy léggged robots; see [15] and [20].
and is conservative with the touchdown angle being the soleUp to this point, however, much of this research has been
control input. It corresponds to the most common configarati concentrated on the SLIP itself, and, as was indicated in
of the SLIP, which has appeared widely in the locomotiofi0], controllers specifically derived for the SLIP will hav
literature; see [15], [20] and references therein. Regeiitl to be modified in order to be successful in inducing stable
was discovered in [42], and, independently, in [16], that thrunning in more complete models that include pitch dynamics
SLIP possesses “self-stable” running gaits, though thénbasor energy losses. Only preliminary results in this direttio
of attraction may be impractically small. Control laws havare available, including [38] and [37], in which controBer
been proposed that enlarge the basin of attraction of thdee running exploit results known for the SLIP. Furthermore
gaits in [43], while in [3] a theoretical framework suitalftr  the majority of control laws suitable for one-legged robot
analyzing various leg placement control policies for theRSL models exhibiting pitch dynamics are derived based on the

Il. BACKGROUND
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assumption that the torso CORkbincideswith the hip joint; motion of the torso. The threshold functidi;_.s : TQ¢ x
for example, see [1], [14], [30], [24], [10], [2]. The purpos A; — R given by

of this assumption, which is crucial for the success of the o td td .

control laws, is that it results in trivial coupling betwetre Hs(wt, af) 1= ye — 1 cos(p™ + 0) — Lsind,  (3)
torso and leg dynamics. To the best of the authors’ knowledggynifies the touchdown event at its zero crossing, and define
only [22] and [23] addressed the asymmetric case, but #iabilsmooth switching manifold;_.. in the augmented state space

conclusions were drawn from numerical studies only. X = TQ¢ x Ay, given by
These observations set the stage of this research, which aim
at establishing a more formal connection between the SLIP as ~ St—s = {(zf, ) € Xt | He—s (e, 0¢) =0} (4)

a control target for ru_nning and more co_mplete plant mod&lfyie that in (3) and (4), the parameter is available for
of legged robots that include nontrivial pitch dynamics.  ¢qnirol, and will eventually be chosen according to an event

I1l. THE ASYMMETRIC SPRING LOADED INVERTED based feedback law.
PENDULUM

A schematic for the Asymmetric Spring Loaded InverteB. Stance Dynamics
Pendulum (ASLIP) is presented in Fig. 1. The hip joint (point The configuration spaa@, of the stance phase is a simply-
at which the leg is attached to the torso) does not coincitle Weonnected open subset &fx S? corresponding to physically
the center of mass (COM) of the torso, which is modeled asasonable configurations of the ASLIP, and it is paramegdri
a rigid body with massn and moment of inertiaJ about by the joint coordinates: leg lengthleg angle with respect to
the COM. The leg is assumed to be massless. The contact ¥ torsoy, and torso orientatiof, i.e. ¢ := (I, ¢, 0)" € Qs;
the leg with the ground is modeled as an unactuated pin joigbe Fig. 1. Using the method of Lagrange [44, p. 255], the
The ASLIP is controlled by two inputs: a foreg acting along stance dynamics of the ASLIP can be described by the second-
the leg, and a torque, applied at the hip. In Section IX, the order system
leg forceu; will be modeled as a spring in parallel with a i .
prismatic force source. In what follows, the subscriptsé&fid Ds(qs)ds + Cs(s, ds)ds + Gs(as) = Bsu, ®)

“s” denote “flight” and “stance,” respectively. wherew := (u1,u2)’ € U an open subset dk?, is the input

A. Flight Dynamics vector during stance, and the matrices in (5) are given by

The flight phase dynamics corresponds to a planar rigid " 0 mlcos ¢
. _ - - o - 14 Ds(gs)= 0 mi? ml(l — Lsin ) ,

body undergoing ballistic motion in a gravitational field. ) ) )

The configuration spac@; of the flight phase is a simply- mLcos mi(l = Lsing) J +mL®+mi(l - 2Lsiny)

connected open subsetBf x S! corresponding to physically mLsing 62 —mi (¢ + 6)2

reasonable configurations of the ASLIP, and it can be paranyq, ¢:)¢s = mLicos o 62 + 2ml i(¢ + 0) 7

eterized by the Cartesian coordinatesandy. of the COM 2m(l — Lsing) i( + 6) — mLlcos p ¢( + 26)

together with the pitch anglé, i.e. ¢t := (zc,yc,0)" € Qs;

see Fig. 1. The flight dynamics of the ASLIP can then be mg cos(e +6) Lo
described by the second-order system Gslas) = —mglsin(p +0) o B 0L
mgL cos  — mglsin(¢ + 0) 0 0
Drgs + G = 0, (1)

The model (5) can be brought into standard state-space form
where Dy = diag(m,m,J) and Gy = (0,mg,0)’, with g by defining
being the gravitational acceleration. The system (1) cailyea )
be written in state-space form as e d (4 _ s

dt gs DS_I(QS)(_CS(QS; (L)QS - GS(QS) + Bs“)

. d [ g qt
= < it ) B < e ) = file) @ =) + g, o

evolving in T'Qs := {x¢ = (g5, d¢¢")" | gr € Qs, g € R?}. wherez; € TQs := {(¢,45) | 45 € @s,4s € R*} =2 Ay is
The flight phase terminates when the vertical distance of ttlee state vector.
toe from the ground becomes zero. To realize this condition,Transition from stance to flight can be initiated by causing
the flight state vector is augmented with:= (¢, o*1)’ € A; the acceleration of the stance leg end to be positive, i.e.
an open subset @& x S*, wherel* and¢*? are the leg length directed upwards, when the ground force becomes zero. As
and angle at touchdown, respectively, and= 0. This means explained in [12, Section 4], if torque discontinuities are
that, during flight, the leg is assumed to obtain the desireglowed—as they are assumed to be in this model- when
length and orientation instantaneoudslyithout affecting the to transition into the flight phase becomes a control deci-
1 I . : , sion. Therefore, liftoff is assumed to occur at predeteadin
Instantaneous positioning of the leg during the flight phiasenly one . . .
possible foot placement strategy. Other possibilitiesuite the case where Configurations in the stance state space that correspond to

appropriately selected functions govern the evolution h#f teg variables

(length and angle) in time. Such alternatives do not not teawe effect on 2This is a modeling issue. In practice, the torque is contisudue to
the analysis of the following sections, because the motfdheleg does not actuator dynamics. It is assumed here that the actuatordimstant is small
affect the second-order dynamics of the body in the flightspha enough that it need not be modeled.
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the distance between the leg end and the torso COM bei@g (1t (xs,0, af), ¥t 0), ) € Sp—s. LEL A 1 Syp X Ap — X
equal to a constant,, which will be fixed in the control be the map

system design; see Remark 5 in Section VI. Consequently, _ _

Y 9 q y A(l‘b 7Ozf) = Af_,s [Ff (AS_,f(xs )7Oéf)} . (11)

the threshold functiorf_.; : TQs — R is defined by
: The mapA “compresses” the flight phase into an “event,” and
Hy ¢(zs) :=19 — /L2 +12 — 2Llsin p, 7 . ;
t(zs) =19 — VL2 + SiL@ (7) can be thought of as a (generalized) “impact map” [12], or a
and its zeroing defines the stance-to-flight switching swrfa “reset map” [5]. In this setting, the hybrid dynamics of the
ASLIP becomes

St 1= {xs € X | Hs_,f(xs) = 0} (8) )
Remark 1 s =fs(ws) + gs(as)u,
Equation (7) is physically meaningful sinc&? + [?> — SIASLIP rg & Sst (12)
2Llsing > (L — )2 > 0. Moreover, ifl # L so that ) b =A (2, ar)
L2 + 12 — 2LIsinp # 0, and if ry is selected so tha$, .; 2 € Saii, ar € Ar.

is nonempty, therS,_.; is a five-dimensional' embedded
submanifold of TQ,. This is a result of the regular valueThe left and right limitsz; andz correspond to the states
theorem, see Theorem (58) of [8, p. 78], Simf is C’l and “jUSt priOI’ to liftoff” and “just after tOUCthWﬂ,“ respdmaly.
OH,t/dxs # 0 on H'.({0}) = Ss_¢. These conditions are Note also that in (12), only the argumergt € S,_¢ triggers
eaS”y met on a physica| model; see for examp|e Tabld. liftoff; o affects the initial conditions of the continuous part of
(12). The systennASLIP has the typical form of a system with
C. ASLIP Hybrid Dynamics of Running impulse effects, i.e., it is defined on a single ch&rt where
the states evolve, together with the mapwhich reinitializes

Let ¢ : [0, +00) x TQr — TQr denote the flow generatedy» yifferential equation at liftoff.

by the flight phase vector field; of (2). Note that the
simplicity of f¢ allows for explicit calculation of the flow;.

When the “augmented” flight flower¢, or) intersectsSe_, ) ) o )
transition from flight to stance occurs. L&t : Si_s — X, In this section, the framework within which controllers for

be the flight-to-stance transition map. Similarly, &t ¢ : the ASLIP are designed is outlined. Generally speaking, for
S.t — TQf be the stance-to-flight transition map. Bottihe two controllers that will be presented in this paper, the

A¢_s andA,_; are provided in the Appendix. Then, the openPurpose of the feedback law is to coordinate the actuated
loop hybrid model of the ASLIP is degrees of freedom of the ASLIP so that a lower-dimensional

hybrid system emerges from the closed-loop ASLIP dynamics;

IV. OVERVIEW OF THE CONTROL LAW

X = TQr x A this lower-dimensional dynamical system serves as a téoget
5 (i}, 64)" = (fi(x5),0) the control of the ASLIP and governs its asymptotic behavior
St—s = {(ws, 1) € Xe|Hp—s (2, o) = 0} This statement will be made mathematically precise in the
AL (x, N ) followmg sectlons_. In this section, only the g_e_neral gllum
s s g o O are briefly described. To keep the exposition concise, the
©) equations associated with the control laws are not included
X =TQs here; see [35] for details.
. &s = fs(xs) + gs(ws)u The feedl:_)ack law exploit_s the hybrid nature of the system
°7) Set = {ws € Xy | Hog(xs) = 0} by mtrod_ucmg control action on two levels; see Fig. 2.
m? NI On the first level, a continuous-time feedback |dW is

employed in the stance phase with the purpose of creating
wherez; = lim, ~ z;(7) andz;” = lim,, z;(7), i € {f,s}, an invariant and attractive submanifolsl embedded in the
are the left and right limits of the stance and flight solusionstance state space, on which the closed-loop dynamics have
The subsystem&; and X; can be combined into a singledesired properties. On the second level, event-basedespdat
system with impulse effect&£ASMP describing the open- controller parameters are performed at transitions framcst
loop hybrid dynamics of the ASLIP; see [47, pp. 252-2541p flight. Generally, the event-based parameter update $aw i
for a discussion of the related geometry. Define the time-torganized in an inner/outer-loop architecture, with theein
touchdown functioril; : Ay — RU {0}, as loop controllerI’'s intended to render the surface invariant
. under the reset map. This condition is referred tohgbrid
inf {_t € [0, +00)[ (9e(t, 21.0), 1) € Sts} invariance and it Iegds to the creation of a reduci?j—order
Ti (w0, ) := if 3t such that(¢(t, z1.0),as) € Si—s  hybrid subsystem called thilybrid Zero Dynamic{HZD),
oo, otherwise which governs the stability properties of the full-orderlAB;
(10) see [32] and [48] for details. In cases where the in-stride
The flow mag Ft : & — &, for the (augmented) controller T, achieves hybrid invariance, is not needed
flight phase can then be given by the rulero,ar) — and may be excluded from the controller design; Section VI
3 _ , _ , presents one such example. Finally, the outer-loop cdetrol
The definition of the flight flow map presupposes the existesfca time

instant¢ such that(gy(t, zf.0), o) € St The case where no such timel't completes the control design by ensuring that the resulting
instant exists does not correspond to periodic running aneti HZD is exponentially stable.
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will be terse. Moreover, only the closed-loop hybrid dynesni
of the ES-SLIP will be presented. In what follows, the su-
perscript “M” denotes the ES-SLIP target model. The flight
and stance configuration spac€! and Q, respectively,

I
I
I
I
|
i
I
] will both be parameterized by the Cartesian coordinates of
i
I
I
I
I
Ul

\

the COM (z¢,y.) € QM = QM =: QM a simply-connected

open subset of (zc, y.) € R*\{(0,0)} | y. > 0}. Hence, the
= system dynamics evolves in the state spaté := TQM =
Continuous-time contral {zM = col(qM, ¢M) | M € QM, ¢M € R2}.

In order to accommodate perturbations away from the
nominal energy, the conservative forég developed by the
springy leg of the standard SLIP is modified to include a
nonconservative feedback componenf = I'M(zM). The
purpose ofu™ is to stabilize the total energy of the system at

In Sections VI and VIIl we particularize these ideas through desired nominal level, and is achieved by

Fig. 2. Feedback diagram presenting the basic structurkeo€antrollers.

explicit constructions of two sets of feedback laws, I' M (M) KE Tole + Yele (B@™) - E] (13)
andT’; that achieve the control objectives. In Section VI, the )= —HBp——Fm—es o) — L,
‘ ) ‘ NERET:

objective is to coordinate the actuated DOFs of the ASLIP so

that the compliant SLIP emerges as the HZD; this controdlerwhere E(2M) is the total energy, an&¥ is a positive gain.
referred to as th&LIP-embedding controllein Section VIII, To regulate the forward speed, the following event-based
the objective is to impose suitably parameterized virtwabh control law is employed

nomic constraints on the ASLIP so that a one-DOF mechanical M M _ .

system arises as its HZD; because, in this case, the regultin b=T7 ((27)7) = v+ K (&7 — ) , (14)
HZD cannot be compliant, we refer to this controller as ﬂ\ﬁhereqf) and 7. specify the nominal touchdown angle and
rigid target model controller Fundamental differences in theforward speed, respectively. is the actual forward speed
two cr_)ntrol Iawg are highlighted in Section IX, |Ilustrag|nh.e just prior to liftoff, and K; is a positive gain.

benefits of designing the HZD to accommodate compliance,

such as in the SLIP-embedding controller. Remark 2 _ o
It can be recognized that (14) corresponds to a variation of

Raibert's speed controller, [36, pp. 44-47]. Feedback robnt
laws similar to (13) and (14) exist in the literature; the
In this section, the target model for the SLIP-embeddingarticular ones used here are for illustrative purposey.onl
controller is introduced. The standard SLIP consists of |1&is emphasized that many other in-stride or event-based
point mass attached to a massless prismatic spring, anddhtrollers could have been used to stabilize the SLIP. For
is passive (no torque inputs) and conservative (no enefggtance, energy stabilization in nonconservative modape
losses), thus precluding the existence of exponentiadlplst models has been demonstrated using linear (leg) and nogtio
periodic orbits; see [3], [16]. In this paper, we consider ¢hip) actuation in [2] and [10], respectively. On the other
variant of the SLIP, where the leg force is allowed to be nomand, a large variety of event-based controllers exist tier t
conservative. The purpose of this modification is to intm@lu SLIP, e.g. [3], [36], [39], [43], which are known to have
control authority over the total energy, which is no longejery appealing properties. In the next section, we develop
conserved as in the standard SLIP, thus leading to the Besterigorously a controller for the ASLIP that affords the direc
of exponentially stable periodic orbits. This system,edlthe yse of control laws available for the SLIP. O
Energy-Stabilized SLIP (ES-SLIP), is presented in Fig. 3. Under the influence of the feedback laws (13) and (14), the
closed-loop ES-SLIP hybrid dynamics can be obtained as

o { M= (@), @) ¢ S
cl
(

V. TARGET MODEL: THE ENERGY-STABILIZED SLIP

Nominal Symmetric Stance Phase

(Tes Ye)

Myt =ad (@), @) esty,

s—f>

where fM (zM) is the closed-loop stance vector field, which
uM is given below for future use,
Te
' ' M, M e
sa@) = [ 1z (g ey |5 (18)
Fig. 3. The Energy-Stabilized SLIP (ES-SLIP), with a prisimactuator RVE 5 H

(force source) in parallel with the spring.

#\/ﬁTyz (Fa + T2 (zM)) — g

The derivation of the hybrid model for the ES-SLIP igF, is the elastic force developed by the prismatic spring of
similar to that of the ASLIP, thus the exposition in this st the leg, which is assumed to be generated by a radial pdtentia



SUBMITTED TO THE IEEE TRANSACTIONS ON AUTOMATIC CONTROL AS AREGULAR PAPER 6

WM (r(2e, ye)) With 7(zc,yc) = /22 + y2 as VI. MAIN RESULT: THE SLIP-EVMBEDDING CONTROLLER
N As was mentioned in Section IV, the control action takes
F, = dVer (1) . (17) place on two hierarchical levels. On the first level, continsi
dr |,._ NrEer in-stride control is exerted during the stance phase tdligtab
the torso at a desired posture, and to create an invariant
Assuming, for definiteness, that the spring is linear, manifold on which the ES-SLIP dynamics can be imposed.
On the second level, an event-based SLIP controller is used
Foy=k (7“0 LA — \/m) : (18) to stabilize a periodic orbit of the system. These resulés ar

summarized in the following theorem and corollary.

k is the spring constant, the nominal leg length (determining Theorem 1 (SLIP-embedding controller)
touchdown), andAr a (constant) pretention; see Fig. 3.  Let Qs := {gs € Qs | [ # Lsinp}. Then, for everye >

In (15), the switching surface 0, there exists aC! in-stride (continuous) control law, =
I'(zs), and aC! event-based (discrete) control law =
SM = {aMe M| HM | («M) = 0}, (19) Tt(zs) such that the following hold:

A. In-stride Continuous Control
There exists a map : TQ, — RS that is a diffeomorphism

where

N onto its image, and such that, in coordinates: (7', z’)’ :=

H g (2) =10 — Va2 + 2, (20)  ®(x,) € RS, the closed-loop model
is a three-dimensiona@’! embedded submanifold g™, for feal@s) == fs(@s) + gs(@s)TE(s) (24)
reasons similar to those mentioned in Remark 1. satisfies:
Remark 3 A.1) the vector field
To explain (19) and (20), the liftoff condition is assumed to B 0P
occur when the leg length obtains a particular value, namely calr) = (8_ §,c1(30s)) (25)
ro, as is the case for the conservative SLIP. O s ws=2 1 (x)
Finally, the closed-loop reset mapY : SM, — XM in has the form
(15) is defined by ) Ze
f;cl(x) — ( Nfs,c1,1:2(77) ) : (26)
AM =AM o FMo (AM  x M), (21) fs.r3:6 (1, 2)

A.2) the setZ := {z € R® | n = 0} is a smooth four-
where AL - SY — AM and AL - SPL — A are the gimensionalc embedded submanifold & that is invariant
ES-SLIP stance-to-flight and flight-to-stance transitioapsy ynder the stance flow, i.e. € Z implies f¢ () € 7,2, and
respectively. Due to the fact that both the flight and stangge setS, Nz, whereS,_ is given by (8), is a co-dimension
state spaces are parameterized by the same coordinatesgfeo! submanifold ofZ:
transition maps simply correspond to the identity mapton, A.3) the transverse dynamigs , ,.,(n) takes the form
e AM =AM —idyn. In (21), FM - XM x AN — SM o

is the ES-SLIP flight flow map, defined analogously with the Jea12(n) = A(e)n, (27)
ASLIP flight flow map;AM is an open subset 6f, containing
physically reasonable values for the touchdown angle

In order to study the stability properties of periodic osbit
of XM, the method of Poincaré is used. The Poincaré section fea@)|z = foerz:6(0,2) (28)
is selected to be the surfac@! ; defined by (19). Let™, : ’
[0,+00) x XM — XM be the flow generated by, and

define the time-to-liftoff functio™ : AM — RU {c0}, in a
similar fashion as (10), by

and it exponentially contracts as— 0, i.e.lim. g e(?) = 0;
A.4) the restriction dynamics

is diffeomorphic to the ES-SLIP stance phase closed-loop
dynamicsf., given by (16).

B. Event-based Discrete Control R
The closed-loop reset mahy, : Ss_.r — T'Q; defined by

inf {t € [0,+00) | @M, (¢, 7)) € sSM_,f} : A =Ar_g0 Fro(Ag g x T}, (29)
M, .My.__ H
T (20) = if 3t such thaty)’, (¢, 23"), € S where the maps\; ., A, .t and F; have been defined in
oo, otherwise Section IlI-C, satisfies

. _ . (22) B.1) Au(Ss—tNZ) C Z, i.e. Ss_t N Z is hybrid invariant;
Then, the Poincaré map™ : S}, — SM ; is defined by B.2) the restricted reset mafiy|z is diffeomorphic to the
ES-SLIP closed-loop reset map} defined by (21). a
PV =gl o [(TM o AY) x AY]. (23)
' 5Notation: Different symbols are used to denote the reptatiens of
vector fields and functions in different coordinates. Sudtirtttion is not

4Notation: Letf; : X — Yy and fa : X — )», and definef; x fo : made for surfaces since the corresponding coordinates leae from the
X — V1 x V2 by (f1 x f2)(z) = (f1(2), f2(2)), = € X. context.
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Fore > 0 a given constant, the closed-loop hybrid dynamics VIlI. PROOF OF THESLIP-EMBEDDING THEOREM

control laws of Theorem 1 takes the form of Lemmas. The procedure is constructive, and results in
SASLIP i =flalx), ©7 ¢ St (30) a control law satisfying the requirements of Theorem 1.
cl ot =Ay (¢7). o €8, Fig. 4 summarizes the continuous-time control action durin

i the ASLIP stance phase, whose objective is to render the
where S,_¢ was defined in (8), and\. := ® o Ao @' translational dynamics of the ASLIP COM diffeomorphic to
is the representation of the closed-loop reset map inathe the ES-SLIP dynamics.

coordinates. The stability properties Bf;>™" will be studied

via the corresponding Poincaré return np: St — Ss—t, [ Open-loop ASLIP stance dynamics

which is defined analogously tB™ of Section V; see (23).({ Bs = fs(@s) + gs,1(Ts)ur + gs,2(ws)u2 J
As is described in detail in [31], the structure imposed

the ASLIP by the feedback laws of Theorem 1 results i Eq. (31)

the mapP¢|z : S, N Z — S, N Z being independent ug = I'¢ ()

of e and P¢|z = PM, i.e. the restricted Poincaré map is Eq. (41)

well defined and is diffeomorphic to the ES-SLIP Poincarﬁ,itCh controlled ASLIR ( ——coordinates )
map. The following corollary is an immediate consequence pf

Theorem 1 in view of the results in [31]. b= f¥(@s) 4z ) n=A(e)n

Corollary 1 (Exponential Stability of SASLIF) 2= f,(n,2)+g.(2)ua
Let (zM)* be a fixed point ofPM andz* a fixed point of | E9- (43). (44). (45) | Eq. 37)|  Eq. (46), (47)
Pc. There existe > 0 such that, for alle € (0,€), z* is

exponentially stable, if, and only ifiz™)* is exponentially u=lea(z) n=20
stable. o Eq. (58)

Before continuing with the proof of Theorem 1, which wiII,’ Closed-loop ES-SLIQ (Closed-loop Restr. dﬂm
be given in Section VII, a few remarks are in order. I oM M M ixM:<I>Z(z) )
Remark 4 | = s,cl (iC ) Z:fz,cl(z)
The conditions # L of Remark 1 and # L sin ¢ of Theorem : Eg. (15), (16) Eq. (61)
1 are both satisfied whenevier- L, which is the case of most «. — — — — — — — — —

upright runners. _ . i, .
Fig. 4. A diagram summarizing the control procedure throuwgtich the
Remark 5 ASLIP restriction dynamics is rendered diffeomorphic te #S-SLIP closed-

The definition of S;_¢ as in Theorem 1 means that liftoffloop dyn?micz.ﬁVerticalharr((j)ws corresr;]ong t(;] gokr)\trol alstirc])horizontal

; ws relate diffeomorphic dynamics. The dashed box deduthe ES-SLIP
occurs when the dIStance, between the foot and the Cozll(gs)ed-loop target dynamics. Equation numbers refer tdekie
becomes equal to the nominal leg length of the ES-StlF,]

Remark 6
To help develop some intuition on Theorem 1, it is noted. In-stride Continuous Control

that the two-dimensional state vectgrcorresponds to the  The purpose of the in-stride control action during the stanc
output dynamics; in particular, it corresponds to the pitchhase is twofold. First, it ensures that the torso remains at
error dynamics. The four-dimensional state veets suitable a desired (constant and upright) pitch angle, and second, it
for describing the associated zero dynamics. The theorgghders the translational stance dynamics of the ASLIRaliff
provides conditions under which, for sufficiently fast expomorphic to the ES-SLIP closed-loop stance dynamics. In view
nentially contracting pitch error dynamics, an exponéiytia of the underactuated nature of the stance phase, the twmtont
stable periodic orbit of theestriction dynamicss also an objectives will be achieved in different time scales. Sitive
exponentially stable orbit of the ASLIP. Furthermore, thﬂaquirement for the torso being upnght [hroughout the oroti
restriction dynamics, which corresponds to the transtatio js more stringent, high-gain control will be imposed on the
dynamics of the COM of the ASLIP, is rendered diffeomorphigitch rotational motion. Hence, the system will be deconepos

to the ES-SLIP dynamics. Intuitively, the feedback laws afto fast and slow dynamics governing the rotational and the
Theorem 1 “coordinate” the actuated degrees of freedapanslational dynamics of the torso, respectively.

of the ASLIP so that a lower-dimensional subsystem, moreThe continuous part oEASLIP in (12), can be written as
specifically the ES-SLIP, “emerges” from the closed-loop

dynamics, and it governs the behavior —i.e. the existende an s = fo(@s) + gs,1(ws)ur + gs,2 (w5 )ua. (31)
stability properties of periodic orbits of interest— of thél-  Define the output : Qs — R by

order ASLIP. O -

Remark 7 y:=h(gs) =00, (32)

The importance of Corollary 1 is that, for given controllérat  whered is a desired pitch angle, taken to be a con$tafite
create an exponentially stable periodic orbit of the ESFSLI , _ _ .
It can rigorously be shown thé# being constant is aecessaryondition

the feedba‘?k Iavya = F§($S>_and Qf = Flf(xs_) of Theorem ¢, ihe existence of an embedding control law. Due to limipdce, the proof
1 render this orbit exponentially stable in the ASLIP. [0 of this statement will not be presented here.
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output defined by (32) results in the second-order inpupaiut It is straightforward to check tha® is a diffeomorphism

dynamics onto its image inR®. Finally, for part 4), note that, in
&2y z-coordinates, Hy_.¢(x) = (Hsf o @7 ')(x) = ro —
proi (L7 h(xs) + Ly, , Ly h(gs)ur] + Ly, ,Lg,h(gs)ua,  /L?+ 2} — 2Lz sinzs, i.e. Hy_¢ is a function ofz only.
(33) In particular, it does not depend om and 7. The result
where now follows from the regular value theorem (Theorem (5.8)
Lfc h(zs) =0, of [8, p. 78]), in view of Remark 1 and of the fact that
# n _ _
 Lsing—1 rank{(h, Ly h, H—¢)'} = 2 + rank{H, ¢} = 3. O

It should be noted that, contrary to the HZD designed in [48]
(34) and [12], the zero dynamics manifokiis a four-dimensional
fe@mbedded submanifold of the six-dimensional stance state
spaceTQs. This significantly complicates stability analysis
of the resulting HZD, which no longer is a one-DOF system
as in [48] and [12]. However, the presencewafin the zero
dynamics allows for further control action. A feedback law
can be devised for; so that the zero dynamics associated
with the output (32) matches exactly the differential eouret

of the ES-SLIP stance phase dynamics. To do this¢ et0
glnd define the feedback

—Lcosp
Ly Lih(g)=—"22F L, L h(gs
9gs,1 fs (q) J 9s, fs (q) Jl
Equation (33) shows that two inputs are available
zeroing the (single) output (32). In what follows, the hipgoe
ug is solely devoted to pitch control, while the leg input is
reserved for controlling the zero dynamics.
Lemma 1 (Stance Phase Zero Dynamics)
Under the output functiork defined by (32), and fors €
Qs == {gs € Qs | I # Lsingp}, .
1) the setZ := {zs = (¢}, ¢.) € TQs|h(gs) =0, Ly h(zs) =
0} is a smooth four-dimensional embedded submanifold

TQS- Uz = FE,Q(xS)
2) the feedback control law 1 : 41
: = V(6. 0) —Lgs,lLfsh(qs)m}, (1)
* Lgs,lLfsh(qS) (35) g2 fs (qs)
YT L, Lih(e) " where ) :
€ )N . 0 0 0 1
rendersZ invariant under the stance dynamics; that is, for ve(6,0) = _E_QKP(H —0) - ;Kv‘ga (42)

. EZ R o .
Ts €20t €, and K%, KY are positive constants. Under this feedback law,

the model (31) becomes

fs(ws) + gs,l(%)ul + 98,2(%)“; €Ty Z;

3) there exist smooth functiong (zs) andvz(zs) so that the
map® : TQ, — RS,

q)(xs> = (771,7]2,2’1,22,23,,24), =z, (36)

where
m = h(qs)a 2 ‘= Lfsh(ms)7 (37)
(z1,22) == (L, 9), (23,21) == (71 (5),72(xs))" . (38)

is a valid coordinate transformation, i®.is a diffeomorphism
onto its image, and

Lgsng(%) =0, Lgs,272($S) =0;

4) the setS,_.;NZ with S;_.¢ defined by (8) is a co-dimension

one C''-submanifold ofZ. O

Proof

Parts 1) and 2) of Lemma 1 follow from general results

C.Cs = f:(xs) + gs(xs)ula (43)

where

o o
fi(as) = fi(ws) + Lgs,2Lfsh(qS)

Lgs,lLfsh(qs)

v(0,0)| gso(zs), (44)

Gs(s) = gs,1(2s) — s2(Tg). 45
() = g () = TEEEOS gea(n). (49)
In the coordinates of Lemma 1, (43) has the form

1= A(e)n, (46)
2= f.(n,2) + g2(2)ua, (47)

where
A@=( o\ o 48)

T\ Kb Kpe )

in [25, pp. 169-170]. For part 3), consider the distributioMVith the additional change of coordinates= I1(e)7, defined

G = span{gs2}, Which has constant dimensiohh = 1 by = e andn, = 72, the model (46)-(47) takes the form
on TQS. Since G is one dimensional, it is involutive, and 67;7 :[177 (49)
thus, by the Frobenius theorem (Theorem 1.4.1, [25, p. 23]), ’

integrable. As a result there exist—d = 6 — 1 = 5 real- 2 = f,(IL(€)7, 2) + g2(2)ua, (50)

valued functions defined oﬁFQs such that the annihilator

of G is G+ = span{dl,dp,dd,dv1,dv:}. A straightforward and
application of the constructive proof of the sufficiency tpair 1~ < 0 1
Frobenius theorem [25, pp. 24-28] results in EA =17 (e A(OII(e) = A = “K% K9 ) (51)

Y1 (zs) = 1+ (L cos )0,
Lsing J
l ml(Lsinp — 1)

(39  since the gains{Kﬁ,,K“g/;JkNin (51) are strictly positive, the
0. (40) matrix A is Hurwitz ande=“ converges to zero exponentially

-1+ fastas — 0. Hencelim,\ o e4(9) = 0. This verifies condition

Yo(xs) = ¢ —
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A.3) of Theorem 1. Moreover, setting = 0, (49) reduces It is straightforward to check that, is a diffeomorphism onto
to the algebraic equatiod7; = 0, which has the origin as its image, thus it describes a valid coordinate transfaionat
its unique solution. Hence, (49)-(50) is in standard siagulon Z. Observe that,(z) = #™. The result

perturbation form, see [26, p. 424], and the corresponding

reduced model is obtained by substituting: 0 andij = 0 in (@fzd(z)) = M (z™M) (63)
the slow part of the dynamics (50), i.e. 0z 2=0, ! (aM) '
. is obtained after straightforward algebraic manipulaior]
z = fZ(O,Z)+gZ(Z)u1, (52)
Remark 8
where direct calculation leads to Careful inspection of (58) reveals that under the proposed
feedback law the total ASLIP leg force,, becomes equal
“3 to the projection of the ES-SLIP forcégs_siip, along the
24 direction of the actual (ASLIP) leg. As will be explained in
fol2) = 2122 —gcos(0+ z2) |’ (53) Section 1X-D, this property can be used to provide a quali-
—2z324+g sin(0+22) tative explanation of the superiority of the SLIP-embeddin
1 controller against controllers that create non-compltdzaD.
0 ]
Remark 9
9,(2) = 0 ' (54) Combining (41) and (58), a feedback controller of the form
1/m u = T¢(xs, ) is obtained. The vecton, = (6, k,ro, Ar)’

% corresponds to parameters introduced by the control lad/, an

includes the mechanical properties of the target model. The

The following lemma completes the continuous stance coeminal values of these parameters will be selected via an
troller design by providing a procedure for constructing  optimization procedure, which will be presented in Section

Lemma 2 (Restriction dynamics) IX. As was mentioned in Section 1My can be updated in
If 4 is the desired pitch angle in (32), define an event-based manner through the inner-loop feedback law
T's of Fig. 2 to achieve hybrid invariance. However, Lemma 3
r(z) == \/Lg + 22 — 2Lz sin 2, (55) below shows that this is not necessary for the .SLIIP-embgddin
controller, and thus,; need not be updated. This is the reason
21 — L sin 2 Lz cos 2o why «, did not explicitly appear as one of the arguments of
i(z) == Z3 — 24, (56) the continuous-time controlldre. O
r(z) r(z) c
Y= (2) := 21 cos(z2 + ) + Lsin6. (57) B. Event-Based Discrete Control

The purpose of the stride-to-stride controller is twofold.
First, it ensures that the manifolél_.; N Z is invariant under
Fas—stip(2), (58) the reset mapﬁcl. Second, it arr_an_ges the configuration of the

ASLIP at liftoff so that the restriction of the ASLIP reset ma
onS;_¢NZ is equal to the SLIP closed-loop reset map. Both
requirements can be satisfied through the outer-loop event-
Fes_suip(2) := k[ro+Ar—r(2)| - KE#(2)[E(2)—E], (59) based controllel; of Fig. 2, the design of which is the subject
of the following lemma.
E(z) = lm(zg + 2222) + mgy.(z) + lk[m + Ar —r(z)]?, Lemma3 (Event-based controller)
2 2 (60) Letc andv be the forward running speed at liftoff and the
and K E > 0, renders the restriction dynamics (52) diffeomoriouchdown angle, respectively, corresponding to a (dejire
phic to the ES-SLIP closed-loop dynamig3!, (=) defined fixed point of the ES-SLIP. Define

by (16). = Wlay) =+ Ko [ (25) — ], (64)
Proof
Substitution of (58) into (52) gives

Then, if £ is the desired energy level, the feedback law
~ z1 — Lsin zo
=T. el e icontet.]

uy 1(2) )

with

where ©_ is the forward running speed of the ASLIP

prior to liftoff. Then, the controlleray = Ty(z;) =
2= £,(2) + g2(2)Ten (2) =t fra(2). 61) ("), (7)),
Define the mapp, : Z — R* by 1(x5) = \/L2 +7g +2Lrosin (¥(z5) = 0),  (65)
—2z1 sin(zo +?) + Lcosié ¥(a-) = avesin {(th(ms—)y + 12— 2 (66)
3,(2) 21 cos(zg + 0) + Lsinf 62) i 2L1%(z5) ’
(2) = . - -~ |- _
—z3sin(z2 +0) — z124 cos(zz + 0) whered is the desired pitch angle in (32), achieves B.1) and

2308(29 + 0) — 2124 sin(2g + 0) B.2) of Theorem 1. O
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Proof qu = 7/2—p—0, representing the angle of the leg with respect
Supposer; € Ss_s N Z. To show B.1), notice that this to the ground, as shown in Fig. 1. The virtual constraints are

implies 6~ = 0 and 9~ = @ just prior to liftoff. Since imposed through zeroing the output

during the flight phasé = 0, i.e. §(t) = 6, at touchdown

we haveft = 0 and#t = 6, which means that} ¢ Z. Yy = h(gs, as) = ¢a — ha(qu, as), (67)

This establishes hybrid invariance, i8.(Ss—t N Z) C Z.  wherehq are the polynomial functions of, describing the
To show B.2), observe that, in coordinates (62), the surfagesired evolution ofz,, and o5 includes the corresponding
S, N Z with S, defined by (8), is equal t&);, given polynomial coefficients; see [35, Appendix].

by (19), i.e. the domains of definition of the mafis)|z and  Following the procedure that was outlined in Section 1V,
A} are equal. The rest of the proof is a consequence of thed is further detailed in [35, Section I1I-B], the continuso

fact that the flight flow of the ES-SLIP is the same as theedback controllef. is designed to render the surface
translational part of the flight flow of the ASLIP. Equations
(64)-(66) ensure that, not only the flight flows are identical Zo. = {Zs € TQs | h(gs, os) = 0, L, h(xs, o5) = 0} (68)

bul\'fl also the corresponding closed-loop reset mapsz and inyariant under the flow of the continuous part of the ASLIP
Az, are diffeomorphic. U dynamics and attractive. It is emphasized here thatvirtual
Remark 10 constraints are imposed by zeroing (67), thus resulting in a
The proof of Lemma 3 depends only upon the restriction @hne-DOFHZD evolving on a two-dimensional surfacg,_.

the functionsi*d and ¢'! on S,_; N Z. Hence,l*! and 4

can be replaced with any smooth functions whose restrigtiog Event-Based Discrete Control

on Ss_t N Z are equal to (65) and (66), respectively. This

property will be brought into use in Section IX-A to modify The development of the event-based control law closely

(65) and (66) in order to enlarge the basin of attraction ef ﬂ{ollo_ws the structure outlln_e(_j In Section IV._In this case, t
nominal orbit; see (72) and (73) there. achieve hybrid invariance, it is necessary to include tmein

loop controllerTs of Fig. 2 in the feedback design. Details on
how to construct’y can be found in [35, Section IlI-C].

C. Proof of Theorem 1 The outer-loop control law'; updatesay = (I*4, ')’ in
The proof of Theorem 1 is an immediate consequence @fder to exponentially stabilize the HZD. In the rigid targe
Lemmas 1, 2 and 3. model controller, we do not explore the possibility of upadgt

the leg lengthi*d at touchdowni'® is assumed to be always
VIIl. ONE DOF HYBRID ZERO DYNAMICS: THE RIGID equal to its nominal valug. This leaves the touchdown angle
TARGET MODEL ' as the only parameter available for control. The Poincaré

This section describes the second of the controllers pPé'-apP associated with the hybrid system under the feedback

sented in this paper. The design procedure provides the felt%vs I'- andT; gives rise to the discrete-time control system,

back lawsI'., Iy and Iy, whose function was described in v (k+1)="P (ms—(k)799t<i(k)) ; (69)

Section IV. This controller, whose stability proof follor®m _

previous results in [12] and [32], is included here becatse fiefined on the surface

comparison with the SLIP-embedding controller will reveal S = {ms €X [1—lg=0,i> 0}, (70)

some beneficial aspects of designing the HZD to accommodate

compliance. Thus, the presentation will be terse; theastexd wherex; (k) is the state just prior to the k-th liftoff. Lineariz-

reader is referred to [35] for particular details on the coint ing (69) and implementing a discrete LQR controller gives

design, and in [32] for the general framework. It is impottian _ B _ e

emphasize that this controller is fundamentally differeam ' U(k) =T (a7 (k) = @ + K [o7 (k) —37],  (71)

the SLIP-embeddlng controller of Sections VI and VIl in tha\'}vherej; and@td are the nominal values of the state jUSt prior

it results in a one-DOF HZD, a fact that greatly simplifiego the k-th liftoff and of the touchdown angle, respectively

stability analysis, but leaves no room for compliance. lencrhe feedback controller (71) guarantees that the eigeesalu

we refer to this controller as the rigid target model cotérol of the linearization of (69) are all within the unit circlend
completes the control design. Note that instead of the full

A. In-stride Continuous Control model Poincaré map (69), the one-dimensional Poincag@ ma

acﬁsociated with the HZD could have been used, affording a

During the stance phase, the ASLIP exhibits one degree "
uring S phas XIDIs 9 reduced-order stability test; see [48], [12], [32].

underactuation. The two inputs = (u1,u2)” will be used
to asymptotically impose two virtual holonomic constraint
on two of the models’ three DOF, which are chosen to be X. CONTROLLEREVALUATION VIA SIMULATION

the leg length and the pitch angle, i@, = (I,0)’. Other This section presents simulation results that compare the
choices are possible; however, this particular one allaws fperformance of the SLIP-embedding controller presented in
the direct comparison with the SLIP-embedding controllier Gections VI and VII, with that of the rigid target model
Sections VI and VII. Here, the virtual constraints are cmoseontroller of Section VIII. Both the steady-state and the
to be polynomials parameterized by the monotonic quantitsansient behaviors of the two controllers are discussed.
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A. Implementation Issues and Nominal Orbit Design Append to (74) the constraint

The mechanical properties of the ASLIP used in the simu- xy — Pz, as,ar) =0, (75)
lations roughly correspond to robotic testbeds constdigte
a collaborative effort between the University of Michigamda
Carnegie Mellon University, and are presented in Table & (s

so that the nominal orbit is periodic. One can also include
gonstramts that correspond to requirements such as tlredes

also Fi nominal forward speed, or the normal ground force component
g. 1). b
e non-negative, etc. Then, the problem of finding the nomina
TABLE | values of the coefficientss and o; reduces to a constrained
ASLIP MECHANICAL PARAMETERS minimization problem, which can be (numerically) solved
using MATLAB'’s f mi ncon. It worth mentioning here, that
Parameter Value  Units the specific choice of performance index (74) reflects our
Torso Mass(mn) 27 kg desire to find a nominal orbit for the ASLIP, on which the
Torso Inertia(J) 1 kg m? amount of work produced by the hip actuator and the peak
Hip-to-COM spacing(L) 0.25 m force developed by the leg actuator given by
Nominal Leg Length(lo) 0.9 m a
Uncompressed Spring Lengfi,.t)  0.91 m ul = u1 — ka(lnat — 1), (76)
ASLIP Spring Constantk ) 7578 N/m are minimized.

In implementing the SLIP-embedding controller, simulatioB. Steady-State Behavior
shows that, while the event-based controller developed injn order to compare the behavior of the two controllers

Lemma 3 of Section VII-B achieves exponential stability ofinder perturbations, it would be ideal to have identical imah
the ASLIP, letting the pitch angle in (65)-(66) off the zergyrpits. Despite the fact that relatively low degree polyiem
dynamics be equal to its actual value, instead of its nominghyve been used in the rigid target model controller, an aimos
valued, enlarges the domain of attraction of the controller, i.@xact match in the resulting nominal orbits was obtained, as

o . depicted in Fig. 5. Fig. 5 also shows that both controllers

P (o, g \/L +18 + 2Lrosin (¥(25) —0),  (72) take advantage of the leg spring on the nominal (steadg)stat
motion, since the leg actuator foreé is below6 N while the
total leg forces are on the order 80N in both cases.

(th(xf,x;))Q + L% — 1}
20089 (z¢, x5 ) ’

©*(z¢, z7) = arcsin [ (73)

1.25

N
o

whose restrictions ob,_s N Z are equal to (65) and (66)
respectively. By Remark 10, the stability conclusion of @heg *?
rem 1 remains valid. This modification is similar to what Wg 115
done in [12], and it will be included in the simulations of tts
SLIP-embedding controller without further comment.

To implement the rigid target model controller, a sixth arc

i
o o o

!
o

11

Hip torque (Nm)

Vertical

1.05

|
N
a

polynomial was used for the desired leg length, and a cohs % 02 0i 06 08 1 12 2% o1 oz 03 s o5
polynomial for the desired pitch angle; refer to [35, Appieihd erzontalpostion (m) me e
for details. Generally, the rigid target model controlldows @ ®)

for the desired pitch angle being any suitably parameterize
function of the unactuated variablg,, thus allowing for
nontrivial motions of the torso. However, this is not poksilz
in the SLIP-embedding controller, due to the fact that camist§ s
pitch angle throughout the nominal (steady-state) motioa
necessary condition for its implementation.

Both controllers introduce a set of parametets whose \ 3
values along the nominal orbit can be selected using %o o1 02 .S o4 o8 0z &P o s
optimization technique developed in [48]. Consider therid/b © @
dynamics of the ASLIP in closed-loop with the feedback
controllers developed in Sections VI and VII, and in SectioFig. 5. Nominal orbits in physical space (a), and correspantiip torques

i
o
S
S
o

IS

N

Total leg for

Leg actuator force (N)
V‘\! o

|
A

!
o

o
o
[

(b), total leg forces (c), and leg actuator forces (d) coraguty (76), for the
Vil with cost function rigid target model controller (dashed lines) and the SLiibedding controller
. 1 [T (solid lines).
J(as) = ?/ u3(t) dt
sJo (74)
+ té?oa}T{] {[ul(t) — ka (lnat — l(t))]z} , C. Transient Behavior and Performance Evaluation

The gains used in the SLIP-embedding controller are
whereT; is the duration of the stance phasg,is the stiffness

of the ASLIP leg, andl,.; its natural length; see Table I. K% =300,KY = 2¢/K%, e= 1.2,KE =2, and K; = 0.2,
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while the gains for the rigid target model controller are rigid target model controller, the profile of the total legde
uy significantly differs from that of the spring force, resodi
Kp = diag{100,100}, Ky, = 24/K}, e=1, and in large actuator forces¢. This means that the rigid target
K = (0.1839,0.4555, —0.0048, 0.0887, 0.1902). Knodel c?ntroller in .closed loop With the ASLIP effectively
cancels” the compliance of the leg in the open-loop ASLIP.
Note that K has been selected using MATLABH| qr on It is emphasized that, on the nominal orbit, both contrsller
the discrete system (69) evolving on the Poincaré sec@ioh ( exploit the leg spring equally well, since as shown in Fig. 5,
The specific values were chosen such that these two comgrolldae leg actuator force never excedd$, while the total forces
exhibit similar behavior in response to a perturbation ia thare on the order 000N .
pitch angle; see Fig. 6-(a) and (b). These features have significant implications for the domain
Using these data, both controllers have been simulatgflattraction of the two controllers. This is demonstrateda-
in MATLAB. It was observed that the rigid target modeble I, which presents the number of strides until convecgen
controller tends to violate the unilateral constraint kegwthe within 5% of the steady-state value (strides), the peakadotu
ground and the toe by developing control forces which “pullforces(u¢, u2)™** in N, and the total work (W, W5)total in
against the ground (i.e. the normal force becomes negaliwe) 7, required to reject perturbationg in the pitch angle and:.
enlarge the domain of attraction, it was necessary to iclugh the forward velocity using the SLIP-embedding controlle
saturation on the control forces so that the ground comérai(SLIP) and the Rigid Target Model controller (RTM). The
are respected; more information on the saturation proeedgerturbations reported in Table Il correspond to the maximu
can be found in supplemental material available in [18]. Theilues that can be rejected with the RTM controller, while
SLIP-embedding controller did not violate these const&inthe leg actuator force satisfiest < 500N (almost double
except at very large perturbations. the weight of the robot). A more complete table that includes
Fig. 6 presents pitch angle and forward velocity as thserturbations to state variables not presented in Tableri e
ASLIP recovers from a perturbatiof = —6deg using both found in supplemental material available in [18]. As is show
controllers. The perturbation occurs at the liftoff of treesnd in Table I, significantly lower peak leg actuator forces and
stride. Notice that in both cases, the response of the pitghial work are required from the SLIP-embedding controller
angle is similar; however, larger excursions from the n@hinAs a result, larger perturbations than those in Table Il can
forward speed are observed in the rigid target model cdatrol be rejected by the SLIP-embedding controller respectimg th

constraintu¢ < 500N. The following section provides a
Fig. 7 presents the total leg forces and the leg actuatoeéorqluamative explanation of this behavior.

corresponding to Fig. 6. It is seen that, in the SLIP-embgldi

controller, the profile of the total leg forces remains close to

that Of a Spnng force, even dunng trans|entS, resultlng'“m” 7The_ total work is Computed as the integral of the absoluteevalf the
actuator forces:? computed by (76). On the contrary, in the?®e" inected by the actuators.
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Fig. 6. Ten strides showing convergence fréfn= —6deg, for the the SLIP- Fig. 7. Leg forces for the SLIP-embedding controller (leihd the rigid
embedding controller (a), (c), and the rigid target modeitgler (b),(d). target model controller (right), and for the first four stegfsFig. 6. Upper
Dashed lines show desired values; the circles correspotfietinstant when plots show total leg forces (solid) and spring forces (ddghkottom plots
the perturbation occurs (liftoff of the second stride). show leg actuator forces computed by (76).
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TABLE Il
CONTROL EFFORT. SLIP-EMBEDDING AND RTM CONTROLLERS

Perturbation Control| Stride| (ug, ug)max | (W1, Wy)total |

60 = +4deg SLIP 4 (54, 28) (24, 18)
RTM 6 (442, 15) (71, 24)
60 = —3deg SLIP 4 (50, 26) (16, 19)
RTM 4 (382, 21) (55, 19)
6ic =+0.9™ | SLIP 6 (418, 64) (110, 40)
RTM 12 (448, 37) (242, 76)
die = —1.47F SLIP Outside of the basin of attraction
RTM 15 | (486,15) | (236, 47)

D. Qualitative Discussion

block” toward the construction of controllers for more elab
orate models that constitute more accurate representation
legged robots. The control law proposed acts on two levels.
On the first level, continuous in-stride control asympiaitic
stabilizes the torso pitch, and creates an invariant serréac
which the closed-loop dynamics is diffeomorphic to a target
compliant system —in this particular case, the SLIP dynamic
On the second level, an event-based controller is used to
stabilize the target compliant system along a desired gigrio
orbit. An immediate practical consequence of this methad fo
the ASLIP is that it affords the direct use of a large body
of controller results that are available in the literatuoe the
SLIP. Furthermore, it is deduced through comparisons of the
SLIP-embedding controller with a rigid target model cotieno
creating a one-degree-of-freedom non-compliant subsyste

The significantly lower leg actuator forces reported for thiat the underlying compliant nature of the SLIP enhances
SLIP-embedding controller in Table Il are due to the fact,thgperformance by significantly improving the transient rexgo
in this case, the control input acts in concert with the gprinand reducing actuator effort. This paper should be viewed as
To be precise, as was mentioned in Remark 8, the intuitigefirst step toward a general framework of controller design
meaning of the feedback law given by (58) is that the ASLIBxhibiting compliant hybrid zero dynamics.
(actual) leg forceus, is rendered equal to the projection of

the SLIP (virtual) leg forceFgs_siip, along the direction of
the actual leg. In view of (76), to achieve this prescriptiba

APPENDIX
In this appendix, the formulas for the stance-to-flight and

leg actuatoru} is only required to “shape” the actual springiight-to-stance transition maps of the ASLIP are preseriéd
force ka (lnat — 1), so that the required central spring forceghe transition maps correspond to coordinate transfoonsti

Fgs—svip, along the virtual (SLIP) leg direction is developedtaking stance to flight and flight to stance coordinates.
As can be seen in Fig. 1, for physically reasonable torsdpitc

angles, the angle between the actual leg and the virtual
direction is small. Consequently, small actuator effofffise

I&9 ASLIP stance-to-flight transition maps

to “shape” the spring force of the actual leg to achieve this

projection.

Concerning the lower power required by the SLIP- Lsin® + 1 cos(¢ + 0)
embedding controller, this is attributed to the fact thatcmu i
of the work done on the leg is provided by the spring. Hence, A, .;(z,) = . . . . :
in decelerating the COM during the compression part of the Jin iz 13 :
stance phase, only a small amount of energy is dissipatéain t Jo1 Je2  Jo3 ®
leg actuator. Finally, another particularly important adiage js1 ja2  Jja3 6

Lcosf — Isin(p + 0)

of the SLIP-embedding controller is that, under reasonable

conditions, it does not violate the ground contact constsai
In contrast, the rigid target model controller frequentyne

mands leg forces that violate the unilateral constraints-ch

acterizing the toe/ground interaction. For instance, dlgisurs

when the current leg length exceeds the commanded value.

On such occasions, the controller attempts to shorten the
by “pulling” the ground, often resulting in forces that \abé
the unilateral ground constraint.

These results demonstrate the significance of designing

HZD of running to respect the compliance available in th§
open-loop system. Otherwise, the beneficial effects of the

where
j11 = —sin(p +0), ji2 = —lcos(p + ),
J13 = —lcos(p + 6) — Lsin 0,
o J21 = cos(p + 0), jaz = —lsin(p +0),
Jos = —lsin(p + 0) + L cos¥,

o = 0. Fag = 0. jaz = 1.
the J31 y J32 y J33

ASLIP flight-to-stance transition map

actual leg spring may be canceled by the control inputs durin

transients. V(Lcosh — zc)% + (Lsinf — y.)?
arctan (%) -0
X. CONCLUSION ‘
In this paper, a framework for the systematic design o t—s(@r, ar) = U i
control laws with provable properties for the ASLIP, an exte 1 1 1 J
sion of the SLIP that includes nontrivial torso pitch dynespi 32_11 32_21 32_31 gc

is proposed. The ASLIP can be envisioned as a “building J3r J32 J33
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where [14]
,_1_foLcost9 ,_1_yC7Lsin9
i1 = A(mc7yc,9) iz = 14(33C7y059)7 [15]
1 Lzcsin — Ly cos®
J13 A(mc,yc,H) ) [16]
_ Lsinf — vy _ x. — Lcosf
—1 C —1 c
= s o =00 [17]
J21 A2 (xC) Ye, 9) J22 A? (xm Ye, 9)
ol = zc(Lcost — x.) + yo(Lsind — y.) [18]
» AQ(xCa Ye, 9) ’ [19]
j?,_ll = 07 ]3_21 = 07 .73_31 = ]-7
with [20]
A(ze,ye,0) = \/(Lcosﬁf:cc)QJr (Lsinf — y.)2. 21]
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