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Pareto Optimal Strategy for Stochastic Weakly Coupled
Large Scale Systems With State Dependent System Noise

Hiroaki Mukaidani and Hua Xu

Abstract—This note is concerned with the decentralized infinite horizon
stochastic Pareto-optimal static output feedback strategy for a class of
weakly coupled systems with state-dependent noise. First, Pareto-optimal
control problems are formulated using a static output feedback strategy.
The necessary conditions are given by the cross-coupled stochastic al-
gebraic Riccati-type equations (CSAREs) for proving the existence of
the static output feedback strategy that minimizes the quadratic cost
function. After determining the asymptotic structure of the solutions of
the CSAREs, a new sequential numerical algorithm and Newton’s method
for solving the CSAREs are described. The resulting numerical solution is
used to develop the Pareto-optimal strategy. Finally, the efficiency of the
proposed algorithm is demonstrated by solving a numerical example for a
practical megawatt-frequency control problem.

Index Terms—Cross-coupled stochastic algebraic Riccati-type equations
(CSAREs), Pareto optimal strategy, static output feedback, stochastic
weakly-coupled systems.

I. INTRODUCTION

Algebraic Riccati equations (AREs) frequently play an important
role in the design of a controller for the optimal control problems for
a weakly coupled large-scale interconnected system that is parame-
terized by a small coupling parameter �. The existing parameter-in-
dependent approximate controller [1], which is very reliable, can be
used if the small coupling parameter is unknown. However, when � is
not sufficiently small, an ���� accuracy control is often not very suf-
ficient, as is evident from [6]. Therefore, as long as � is known, the
AREs should be solved numerically. The problem of designing a con-
troller for stochastic systems governed by Itô’s differential equations
has been the subject of many studies in the past few decades [2], [4],
[12], [13]. The results published in these papers are theoretically ele-
gant and practically reliable; however, in these studies, the stochastic
static output feedback control has not been taken into consideration.
From a practical point of view, the output feedback control is extremely
attractive since states are not always available for feedback. The use of
the output feedback control affords a flexible and simple design for the
implementation of the controller. It is well known that coupled non-
linear matrix algebraic equations are necessary for obtaining the so-
lution to this problem [3], [9]. For example, the necessary conditions
derived in [3] for a static feedback controller in the presence of state-
and control-dependent noise involve the cross-coupled stochastic alge-
braic Riccati-type equations (CSAREs). However, none of the previous
studies have addressed the control problem of stochastic systems with
multiple decision makers.

Similarly, control problems for large-scale deterministic systems
have been the subject of many previously reported studies, where
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decisions in large-scale systems are usually made using multiple
decision makers with different information sets. For example, the
optimum megawatt-frequency control of multiarea electric energy
systems [5] has been treated as Nash games of the weakly coupled
large-scale systems with multiple decision makers [6]. A multimodel
solution for multiple decision makers with different information sets
has also been studied [18]. Moreover, decentralized output feedback
controllers for large-scale systems have been extensively investigated
(see, e.g., [19], [20]).

In this note, we investigate the decentralized Pareto-optimal static
output feedback strategy for stochastic systems with state-dependent
noise governed by Itô differential equations. We study the case wherein
the local output measurements are the only information available for
the decision makers. Our present research is related to that mentioned
in [3]. However, we consider a significantly different problem. While
the study mentioned in [3] deals with a regular stochastic optimal con-
trol problem with a single decision maker, we consider the problem in-
volving multiple decision makers who use the local information from
output measurements for each subsystem. Furthermore, we extend the
existing results [12] to the decentralized stochastic static output feed-
back strategy of systems with multiple decision makers. We present the
necessary conditions for the application of a Pareto-optimal strategy
to a decentralized controller. This strategy set is based on the solu-
tions of the CSAREs that consist of two stochastic algebraic Lyapunov-
type equations (SALEs) and a nonlinear algebraic matrix equation. The
boundedness of the solution to the CSAREs and the asymptotic struc-
tures of the solutions of CSAREs are established. The other important
feature of our study is the development of a new sequential numerical
algorithm and Newton’s method for solving the CSAREs. Furthermore,
for the latter case, the degradation of costs is estimated by applying the
proposed approximate Pareto strategies. Finally, the efficiency of the
proposed algorithm is demonstrated by using it for solving a numerical
problem, for example, a two-area electric energy system.

Notation: The notations used in this note are fairly standard. �� de-
notes an � � � identity matrix. block diag denotes a block diagonal
matrix. �� � �� denotes the Euclidean norm of a matrix. � denotes the ex-
pectation.� denotes the Kronecker product. ��� denotes the Kronecker
delta. �� denotes sum of the diagonal elements of a matrix.

II. STOCHASTIC PARETO OPTIMAL STATIC

OUTPUT FEEDBACK STRATEGY

We now study the static Pareto-optimal control problem with state-
dependent noise. We consider linear time-invariant weakly coupled
large-scale stochastic systems
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� � � � �� � � � � � repre-
sents the �th state vector. 
���� � �	 � � � �� � � � � � , represents
the �th control vector. ����� � �
 � � � �� � � � � � , represents the
�th output measurement vector. ����� � �� � � �� � � � � � , is a 1-D
standard Wiener process defined on a filtered probability space [4],
[12], [13]. It is natural that each subsystem has a different 1-D stan-
dard Wiener process for the weakly coupled systems under consider-
ation. In fact, the parameter-independent subsystems (11b) that will
be given later with different Wiener processes for each � can be ob-
tained by using the representation of multiplicative noise. Furthermore,
stochastic systems with multiplicative noise, which are widely used to
represent system dynamics, arise in many control problems and have
been extensively considered in the past [16], [17]. In the above men-
tioned systems, � is a relatively small coupling parameter that connects
the linear system with the other subsystems1. It should be noted that
in the separation of the subsystems that are connected by the weakly
coupled interconnections, ��� can play an important role in describing
the dominant part of the subsystems. As suggested in [16], it is cus-
tomary to relieve its dependence by assuming that the initial state ��
is a random variable with a covariance matrix �	������ ���
 � ����

�� �� �

���
�� .

For large-scale systems, it is generally impossible to incorporate
many feedback loops into the controller design, and such an incorpo-
ration, even if possible, is very expensive. These difficulties have moti-
vated researchers to study the decentralized control theory, where each
subsystem is controlled independently using its locally available infor-
mation. Therefore, in this note, we make a realistic assumption that
each decision maker can only know the local output measurements. In
other words, we consider the following static output feedback strategy
in this note
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The main purpose of this note is to establish a static output feedback
strategy and analyze its reliability. We assume that decision makers will
design control strategies based on locally available information. The
design specification of the �th decision maker is expressed in terms
of a cost function ��. We consider the situation where the decision
makers prefer to cooperate with one another. In other words, they at-
tempt to find the Pareto-optimal strategies. This implies that no vari-
ation in the Pareto-optimal strategy can decrease the costs of all the
decision makers [7], [8].

The cost function for each strategy subset is defined by
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A Pareto solution is a set �
�� 
�� � � � � 
�� that minimizes
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for some ��� � � �� � � � � � [7], [8].

1In many cases, it is possible to show that � is precisely known. In this note,
we assume that � is precisely known.
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The optimal linear quadratic regulator problem is a special case of
this problem when the decision makers agree on a choice of ��� � �
�� � � � � � as weight factors.

The following basic assumption mentioned in [12] is introduced.
Assumption 1: Stochastic system (1) is mean-square stabilizable by

the static output feedback (2).
In order to develop the necessary conditions for this problem, ���

� � �� � � � � � must be restricted to the following set �� �� ��� �
�� �� � there exists a unique positive definite symmetric matrix ���

that satisfies the following parameter-independent stochastic algebraic
Lyapunov-type equation (SALE):
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It should be noted that there exists a unique positive definite sym-
metric matrix ��� if and only if �� � ���� � 	����
���

� � ���� �
	����
���

� � �� ���

������

��� is nonsingular [21]. Moreover, SALE
(5) will be derived later in (9).

In order to guarantee the stability of the full-order closed-loop
system and the existence of solutions for the parameter-independent
subsystems, �� is necessarily restricted to the set ��.

Using the feedback strategy of (2) and the assumption that
�	������ ���
 � ���, it is immediately found that the closed-loop
stochastic system is exponentially mean square stable (EMSS) [2], [4]
and that the integral portion of � satisfies the relation
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where ��� �� �� �
�
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	�����
� and �� �� �

���
�����.

In order to clarify the existence of �� of (7), we now investigate the
asymptotic structure of the solution and establish the existence con-
dition that is confirmed by reduced-order and parameter-independent
calculations.

Since�� and	�� include �, the solutions�� of the SALE (7)—if the
solutions exist-should contain �. On the basis of this fact, the solution
of SALE (7) is assumed to have the following structure [10], [11]
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Substituting these matrices into SALE (7), setting � � �, and parti-
tioning SALE (7), the following reduced-order SALE (9) is obtained,
where ���� and ���� � � �� � � � � � are the zeroth-order solutions of SALE
(7) as � � �
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The asymptotic expansion of SALE (7) for � � � is described by the
following lemma.

Lemma 1: Suppose that ��� � ��. There exists a small constant
��� such that for all � � ��� ����, SALE (7) admits a unique positive
definite solution � �� that can be expressed as

� �� � �� ����� (10)

where �� � ����� 	
��� ���� � � � ���� �.
Proof: This can be proved by applying the implicit function the-

orem to SALE (7). In order to do so, it is sufficient to show that the
corresponding Jacobian is nonsingular at � � �. It should be noted that
��� � �� if and only if �� ������	��

���
���
�������	��

���
���
��

�� ���

������

��� is nonsingular. Since the abovementioned relation is
similar to that mentioned in [11], it is omitted.

It follows that the closed-loop stochastic system (1a) with ����� �
���
������� is EMSS because SALE (7) admits a unique positive def-
inite solution [2]. Moreover, it is easy to verify whether the behavior
of the closed-loop stochastic system (1a) for a small value of � can be
stated using the following observation.

Observation 1: If ����� � ��
�������� � � �� � � � � � are chosen
to satisfy the condition �� � ��, then, for all �, there exists a positive
scalar �� such that the following approximations hold for all all � �
��� ���:

����� � 
����� ����� (11a)

�
����� � 	��� �	����
��
�����
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�����������
 (11b)

It should be noted that subsystems (11b) are obtained from (1) by
setting � � �.

The necessary conditions for the Pareto optimality will be obtained
in terms of the SALEs.

Theorem 1: Let us assume that�� � �� solves the static output feed-
back Pareto-optimal control problem. Then, it is necessary that there
exist symmetric positive definite solutions�� and�� that satisfy SALE
(7) and SALE (12a), respectively; ��� is obtained using (12b)
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 (12b)

Proof: The result can be proved by using the Lagrange multiplier
approach. First, the closed-loop cost with the static output feedback
controller ����� � ������� � ��
������� is obtained using the relation
� � ��	��
, where �� is the solution of SALE (7). Let us consider the
Hamiltonian �

���� ��� ��� ���� � � � � ����

���	��
 ���	���� ��� ���� � � � � ������
 (13)

where �� is a symmetric positive definite matrix of Lagrange multi-
pliers. The necessary conditions for ��� to be optimal can be found by
setting ����� and ������ to zero and solving the resulting (12b) si-
multaneously for ���.

Remark 1: It should be noted that Theorem 1 only gives the neces-
sary conditions for a controller to be optimal. It is likely that the con-
trollers obtained are not Pareto optimal even if the solutions of (7) and
(12) exist.

Remark 2: The stochastic static output feedback Pareto-optimal
strategy under consideration cannot be treated using the approach
mentioned in [3] because of the existence of multiple decision makers.
In fact, SALE (7) and (12) obtained are significantly different from
those mentioned in [3].
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Observation 2: If full-state information is available, i.e.,�� �� �� ,
and �� is nonsingular, then, according to (12b)

��� � �������
��
�
�
����	 (14)

On the other hand, the following SARE (15) can be obtained by sub-
stituting ��� into (7)
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� is nonsingular, then, (12b) may be solved for ��� to ob-
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In the remaining part of this section, we will discuss the asymptotic
structure of �� and ��� for proposing the Pareto-optimal strategy set.

Lemma 2: If ��� � ��, there exists a small constant 
�� such that for
all � � ��� 
���, SALE (12a) and the linear (12b) admit the positive
definite solution ��� and feedback gain � ��� that can be expressed as
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Without loss of generality, as an additional technical assumption, we
suppose that �� is confined to the following set:
�� �� ��� � �� ����

�����
�
�� � �, where ���� satisfies (18a). �.

The positive definiteness condition holds, for example, when ���� is
positive definite, and ��� has full row rank. In this case, ��� can be
written as
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III. NUMERICAL ALGORITHMS FOR SOLVING SALES

The Pareto-optimal strategy ��� of (16) can be obtained by solving
SALE (7) and (12). We now propose two numerical approaches for
designing Pareto-optimal strategy.

First, let us consider the following new iterative algorithm
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� � ��� 	� is chosen to ensure the minimum is not overshot,
that is, ������ � �
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over, the matrices �
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 � � are chosen as the ini-

tial conditions such that the reduced-order closed-loop system
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�������������� is EMSS.

Theorem 2: The sequence � ���
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 in (20c) converges to

a stationary point in ��.
Before proving the theorem, we define the following set.

�� �� ���� � �� �� � �
� is Hurwitz. �.
Proof: From (12b), the gradient of the Lagrangian with respect
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 � � and � 	� �. The continuity of the gradient
implies that for each iteration, there exists some �� sufficiently small
so that (20c) is satisfied for � � � 
 ��. Under these conditions, the
sequence ����� � � �� 	� 
 
 
 with �

���
�� is convergent because it is

monotonic and bounded. Finally, the continuity of � implies that the
sequence � ���

�� � � � �� 	� 
 
 
 is also convergent. This completes the
proof of Theorem 2.

It should be noted that the initial stabilizing gain � ���
�� remains to be

determined in a stochastic case; however, in a deterministic case [22],
there are certain algorithms that can be used to estimate � ���

�� .
Moreover, the convergence rate of algorithm (20) is unclear. While

carrying out the computation, it is found that the computation is very
sensitive because of the existence of the design parameter �. If this
parameter is not chosen appropriately, the algorithm might converge to
a different solution. From our past experiences, it can be concluded a
sufficiently small parameter generally works well for the determination
of the convergence rate of algorithm (20).

In order to improve the convergence rate and remove the design pa-
rameter �, Newton’s method can also be applied

�
�����
�

�
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� � �
����

� �
�����
� �

�
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�� ��

� �
�
� �
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�� ��� ��� � � (21a)
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�� � ���� � � �� 	� 
 
 
 	

The initial conditions for the algorithm given in (21) are obtained
by solving (9), (18a), and (18b). These equations can be solved by ap-
plying Newton’s method.

Theorem 3: There exists a small constant �
 such that for all � �
��� �
�� �
 
 
�, and Newton iteration (21) converges to the exact so-
lutions of � �� � �

�

� and � ��� with the rate of the quadratic convergence
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TABLE I
ERROR PER ITERATIONS OF NEWTON’S METHOD

TABLE II
NUMBER OF ITERATIONS

rate. Moreover, the convergence solutions attain unique local solutions
� �� � �

�

� and � ��� of SALE (7) and (12) in the neighborhood of the initial
conditions � ���

� � �� � �
���
� � �� and � ���

�� � ���. That is to say, the
following conditions are satisfied:

� ���
� � � �� � ���� � (22a)

����
� � ��� � ���� � (22b)

�
���
�� � � ��� � ���� �� � � �� � � � � �	 (22c)

Proof: Since the proof is given directly by applying the Newton-
Kantorovich theorem [14] to SALE (7) and (12) as a slight modification
of the proof described in [10], it is omitted.

Although it has been generally shown that there exist several solu-
tions to CSAREs [15], it should be noted that for weakly coupled sys-
tems, both positive semidefiniteness and uniqueness of the solutions
are guaranteed as long as the value of � is small.

It should be noted that since the equations used to obtain the static
output feedback gain are based on the necessary conditions, the pro-
posed sequential algorithm (20) and Newton’s method (21) may con-
verge to a local minimum. Hence, we must pay attention to the solutions
obtained required.

IV. DEGRADATION OF COST PERFORMANCE

Now, we focus on the design of high-order approximate Pareto-op-
timal strategies, which are obtained using iterative solution (21)



���
� ��� � �

���
�� ��
��� � �

���
�� ���
����� � � �� �� � � � � �	 (23)

Theorem 4: Let us assume that a quadratic convergence rate in (22)
is attained. The high-order approximate Pareto-optimal strategies (23)
provide the following relation:

�
���
� � ��� � � �� (24)

where ����� �� ��	���
� �
�
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where ���� �� �� �
�

�������
�

���� .
Proof: Subtracting (25b) from (25a) and using the result of

(22), we obtain ��� � ��� � ��� satisfies ��� ��
���
� � ��

����
� ��� �

�

��� �
�
�������� � ���� � � �. Without loss of generality, it is

assumed that the following structure holds:

��� ��

���� ����� � � � �����
������ ���� � � � �����

...
...

. . .
...

������ ������ � � � ����

� ������	 (26)

Using the implicit function theorem under the condition
��� � ��, it can be shown that there exists a neighborhood
of � � � and a unique function ��� �� ��� � ����, where
��� � ����� 	
��� ����� � � � ����� �. Substituting ��� into
(26) and letting � � �� ����� � � � �� � � � � � is satisfied
�������������

����������������
�������

� ��������
���

��������� � �.
Then, since ��� � ��� �� ���������

�������
����������

�������
��

�� � ��
��� � ��

��� is nonsingular. Hence, ����� � � for all �. Con-
sequently, we have ��� � ����. Subsequent iterations of the
above-mentioned steps result in ��� � ���� �. This immediately
leads to the desired result.

The proposed Pareto-optimal strategy brings the following reli-
ability and usefulness. The strategy set can be computed with the
reduced-order dimension. Moreover, the feedback uses the information
regarding the local output measurement only.

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the stochastic Pareto-op-
timal strategies, we present the results obtained for the megawatt-fre-
quency control problem of multiarea electric energy systems. The
model is based on the multistage decomposition of two interconnected
areas [5]. The system matrices with slight modifications are given in
the equation shown at the bottom of the next page.

In order to verify the exactitude of the solution, the remainder after
each iteration is computed for several values of � by substituting � ���

� �

�
���
� and � ���

�� into SALE (7) and (12) by using Newton’s method (21).
Table I shows the errors ���� per iteration for various values of �, where
���� �� �� �	�
��
��. It should be noted that when � � �	��,
Newton’s method (21) converges to the exact solution with an accuracy
of ���� � �	�� � �� after four iterations. Hence, it can be observed
from Table I that Newton’s method (21) attains quadratic convergence.

The proposed sequential algorithm (20) can be applied using the
same data (remainder after each iteration) with � � �	
. It is evident
from Table II that the sequential algorithm (20) requires a large number
of iterations. As a result, it is concluded that even though the conver-
gence rate of this algorithm is unclear, the convergence speed is slow.

Using the design procedure and setting � � �	��, Pareto-optimal
strategies can be given by

��� � 	��	���
 �
	���� ��	������ �� 


��� � 	�
	���� ��	�
�� ��	���� 
	

These strategies would function as a Pareto-optimal strategy set that
delivers a good performance such that the relation (24) is attained.

Finally, we evaluate the costs using the high-order approximate
Pareto-optimal strategies (23). The values of the cost functional per
iteration are listed in Table III, where �� � ��

���
� � ��� ���

� . It can
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TABLE III
APPROXIMATE AND OPTIMAL VALUES FOR THE COST

be seen that the simulation results are consistent with the statement of
Theorem 4.

VI. CONCLUSION

In this note, the static output feedback Pareto-optimal strategy for
a stochastic system governed by Itô differential equations is devel-
oped. First, the necessary conditions for the decentralized controllers
to be Pareto-optimal strategies are derived. The boundedness of the so-
lution to the CSAREs and their asymptotic structures are then estab-
lished. Secondly, a new sequential numerical algorithm for solving the
reduced-order CSAREs is developed for the first time. The following
conclusions can be drawn from this study: 1) The strategy set can be
computed successively; 2) The strategies are based on the decentralized
control technique; 3) Since the optimal strategy can be implemented
using the local output measurements, the results can be practically ap-
plied in a realistic manner. These features will help realize a novel de-
sign technique for a controller that would be simple to implement.
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On Constrained Steady-State Regulation:
Dynamic KKT Controllers

Andrej Jokić, Mircea Lazar, and Paul P. J. van den Bosch

Abstract—This technical note presents a solution to the problem of
regulating a general nonlinear dynamical system to an economically
optimal operating point. The system is characterized by a set of exogenous
inputs as an abstraction of time-varying loads and disturbances. The
economically optimal operating point is implicitly defined as a solution
to a given constrained convex optimization problem, which is related
to steady-state operation. The system outputs and the exogenous inputs
represent respectively the decision variables and the parameters in the
optimization problem. The proposed solution is based on a specific dy-
namic extension of the Karush–Kuhn–Tucker optimality conditions for the
steady-state related optimization problem, which is conceptually related
to the continuous-time Arrow–Hurwicz–Uzawa algorithm. Furthermore,
it can be interpreted as a generalization of the standard output regulation
problem with respect to a constant reference signal.

Index Terms—Complementarity systems, constraints, convex optimiza-
tion, optimal control, steady-state.

I. INTRODUCTION

In many production facilities, the optimization problem reflecting
economical benefits of production is associated with steady-state op-
eration of the system. The control action is required to maintain the
production in an optimal regime in spite of various disturbances, and
to efficiently and rapidly respond to changes in demand. Furthermore,
it is desirable that the system settles in a steady-state that is optimal
for novel operating conditions. The vast majority of control literature
is focused on regulation and tracking with respect to known setpoints
or trajectories, while coping with different types of uncertainties and
disturbances in both the plant and its environment. Typically, setpoints
are determined off-line by solving an appropriate optimization problem
and they are updated in an open-loop manner. The increase of the fre-
quency with which the economically optimal setpoints are updated can
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result in a significant increase of economic benefits accumulated in
time. If the time-scale on which economic optimization is performed
approaches the time-scale of the underlying physical system, i.e., of
the plant dynamics, dynamic interaction in between the two has to be
considered. Economic optimization then becomes a challenging con-
trol problem, especially since it has to cope with inequality constraints
that reflect the physical and security limits of the plant [1].

In this technical note, we consider the problem of regulating a gen-
eral nonlinear dynamical system to an implicitly defined economically
optimal operating point. The considered dynamical system is charac-
terized by a set of exogenous inputs as an abstraction of time-varying
loads and disturbances acting on the system. Economic optimality
is defined through a convex constrained optimization problem with
system outputs as decision variables, and with the values of exogenous
inputs as parameters in the optimization problem. A similar problem
has already been considered in [1], see also the references therein,
where the authors propose a solution that uses penalty and barrier func-
tions to deal with inequality constraints. We propose a novel solution
based on a specific dynamic extension of the Karush–Kuhn–Tucker
(KKT) optimality conditions, which is conceptually related to the
continuous-time Arrow–Hurwicz–Uzawa algorithm [2]. The proposed
feedback controller belongs to the class of complementarity systems
(CS), which was formally introduced in 1996 by Van der Schaft and
Schumacher [3] (see also [4] and [5]) and have become an extensive
topic of research in the hybrid systems community.

Nomenclature: For a matrix � � ���� ����� denotes the element
in the �th row and �th column of �. For a vector � � �� ���� de-
notes the �th element of �. A vector � � � is said to be nonnegative
(nonpositive) if ���� � ������ � �� for all � � ��� � � ���, and in
that case we write � � � �� � ��. The nonnegative orthant of �

is defined by �
� �	 �� � ��� � ��. The operator 
����� � � � � ��

stacks its operands into a column vector, and 
������ � � � � �� denotes a
square matrix with its operands on the main diagonal and zeros else-
where. For �� � � � we write � � � if ��� 	 �. We use the com-
pact notational form � � � � � � � to denote the complementarity
conditions � � �� � � �� � � �. The matrix inequality � 	 	
means � and 	 are Hermitian and � 
 	 is positive definite. For a
scalar-valued differentiable function 
 � � � ��
��� denotes its
gradient at � 	 
������ � � � � ��� and is defined as a column vector, i.e.,
�
��� � �� ��
����� 	 ��
�������. For a vector-valued differen-
tiable function 
 � � � �� 
��� 	 
���
����� � � � � 
�����, the
Jacobian at � 	 
������ � � � � ��� is the matrix 

��� � ��� and
is defined by �

������ 	 ��
�����������. For a vector valued func-
tion 
 � � � �, we will use �
��� to denote the transpose of the
Jacobian, i.e., �
��� � �����
��� 

����, which is consis-
tent with the gradient notation �
 when 
 is a scalar-valued function.
With a slight abuse of notation we will often use the same symbol to
denote a signal, i.e., a function of time, as well as possible values that
the signal may take at any time instant.

II. PROBLEM FORMULATION

In this section, we formally present the constrained steady-state op-
timal regulation problem considered in this technical note. Further-
more, we list several standing assumptions, which will be instrumental
in the subsequent sections. Consider a dynamical system

�� 	 
����� �� (1a)

� 	 ���� �� (1b)

where ���� � � is the state, ���� � � is the control input, ���� �
� is an exogenous input, ���� � � is the measured output, 
 �
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