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M ISTUNING-BASED CONTROL DESIGN TO IMPROVE CLOSED-LOOPSTABILITY OF

VEHICULAR PLATOONS
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Abstract— We consider a decentralized bidirectional control of
a platoon of N identical vehicles moving in a straight line. The
control objective is for each vehicle to maintain a constantvelocity
and inter-vehicular separation using only the local information
from itself and its two nearest neighbors. Each vehicle is modeled
as a double integrator. To aid the analysis, we use continuous
approximation to derive a partial differential equation (PDE)
approximation of the discrete platoon dynamics. The PDE model
is used to explain the progressive loss of closed-loop stability with
increasing number of vehicles, and to devise ways to combat this
loss of stability.

If every vehicle uses the same controller, we show that the least
stable closed-loop eigenvalue approaches zero asO( 1

N2 ) in the limit
of a large number (N ) of vehicles. We then show how to ameliorate
this loss of stability by small amounts of “mistuning”, i.e., changing
the controller gains from their nominal values. We prove that with
arbitrary small amounts of mistuning, the asymptotic behavior of
the least stable closed loop eigenvalue can be improved toO( 1

N
).

All the conclusions drawn from analysis of the PDE model are
corroborated via numerical calculations of the state-space platoon
model.

I. I NTRODUCTION

We consider the problem of controlling a one-dimensional
platoon ofN identical vehicles where the individual vehicles
move at a constant pre-specified velocityVd with an inter-
vehicular spacing of∆. Figure 1(a) illustrates the situation
schematically. This problem is relevant to automated highway
systems (AHS) because a controlled vehicular platoon with a
constant but small inter-vehicular distance can help improve
the capacity (measured in vehicles/lane/hour, as in [1]) ofa
highway [2]. Due to this, the platoon control problem has been
extensively studied [3], [4], [5], [1], [6], [7]. The dynamic and
control issues in the platoon problem are also relevant to a
general class of formation control problems including aerial
vehicles, satellitesetc. [8], [9].

Several approaches to the platoon control problem have been
considered in the literature. These approaches fall into two broad
categories depending on the information architecture available
to the control algorithm(s):centralizedand decentralized. We
call an architecture decentralized if the control action atany
individual vehicle is computed based upon measurements ob-
tained by on-board sensors and possibly wireless communication
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with a limited number of its neighbors. We call all other ar-
chitectures centralized. Decentralized architectures investigated
in the literature include the predecessor-following [1], [10],
[11] and the bidirectional schemes [12], [7], [13], [14], [15].
In the predecessor-following architecture, the control action at
an individual vehicle depends only on the spacing error with
the predecessor, i.e., the vehicle immediately ahead of it.In
the bidirectional architecture, the control action depends upon
relative position measurements from both the predecessor and
the follower. On the other hand, in a centralized architecture
measurements from all the vehicles may have to be continually
transmitted to a central controller or to all the vehicles. The
optimal QR designs of [4], [6] typically lead to centralized
architectures. Predecessor and Leader follower control schemes
(see [16], [17] and references therein), which require global
information from the first vehicle in the platoon are also ex-
amples of the centralized architecture. The high communication
overhead in a centralized architecture makes it less attractive for
platoons with a large number of vehicles. Additionally, with any
centralized scheme, the closed loop system becomes sensitive
to communication delays that are unavoidable with wireless
communication [18].

The focus of this paper is on a decentralized bidirectional
control architecture: the control action at an individual vehicle
depends upon its own velocity and the relative position errors
between itself and its predecessor and its follower vehicles. The
decentralized bidirectional control architecture is advantageous
because, apart from its simplicity and modularity, it does not
require continual inter-vehicular communication. Measurements
needed for the control can be obtained by on-board sensors
alone. Each vehicle is modeled as a double integrator. A double
integrator model is common in the platoon control literature
since the velocity dependent drag and other non-linear terms
can usually be eliminated by feedback linearization [1], [10].
The control objective is to maintain a constant inter-vehicular
spacing.

In spite of the advantages over centralized control, there
are a number of challenges in the decentralized control of a
platoon, especially when the number of vehicles,N , is large.
First, the least stable closed-loop eigenvalue approacheszero
as the number of vehicles increases [19]. Among decentralized
schemes, one particularly important special case is the so-
called symmetricbidirectional control, where all vehicles use
identical controllers that are furthermore symmetric withrespect
to the predecessor and the follower position errors. In this
case, the least stable closed loop eigenvalue approaches0 as
O( 1

N2 ) with a symmetric bidirectional control and this behavior
is independent of the choice of controller gains [19]. This
progressive loss of closed-loop damping causes the closed loop
performance of the platoon to become arbitrarily sluggish as
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the number of vehicles increases. It is interesting to note that
theO( 1

N2 ) decay of the least stable eigenvalue occurs with the
centralized LQR control as well [6].

The second challenge with decentralized control is that the
sensitivity of the closed loop to external disturbances increases
with increasingN . With predecessor following control, distur-
bances acting on the vehicles cause large inter-vehicular spacing
errors [3], [1], [20] The seminal work of [20] onstring instability
was partly inspired by this issue. It was shown in [7] that
sensitivity to disturbances with predecessor following control is
independent of the choice of the controller. Similar controller-
independent sensitivity to disturbances is also exhibitedby the
symmetric bidirectional architecture [7], [13], [21]. In [22], it
was shown that symmetric architectures have similarly poor
sensitivity even when every vehicle uses information from more
than two neighbors, as long as the number of neighbors is no
more thanO(N2/3).

Third, there is a lack of design methods for decentralized
architectures. ForN vehicles, in general,N distinct controllers
need to be designed, for which few control design methods
exist. This has led to the examination of only the symmetric
control among bidirectional architectures [7], [13], [22]. Some
symmetry aided simplifications are possible for analysis and
design in this case.

In summary, while issues such as stability and sensitivity to
disturbances become critical as the platoon size increases, a lack
of analysis and control design tools in decentralized settings
makes it difficult to address these issues.

In this paper we present a novel analysis and design method
for a decentralized bidirectional control architecture that amelio-
rates the progressive loss of closed loop stability with increasing
number of vehicles. There are three contributions of this work
that are summarized below.

First, we derive a partial differential equation (PDE) based
continuous approximation of the (spatially) discrete platoon
dynamics. Just as a PDE can be discretized using a finite
difference approximation, we carry out a reverse procedure:
spatial difference terms in the discrete model are approximated
by spatial derivatives. The resulting PDE yields the original set
of ordinary differential equations upon discretization.

Two, we use the PDE model to derive a controller independent
conclusion on stability with symmetric bi-directional architec-
ture. In particular, the behavior of the least stable eigenvalue
of the discrete platoon dynamics is predicted by analyzing the
eigenvalues of the PDE. We show that the least stable closed-
loop eigenvalue approaches zero asO( 1

N2 ). This prediction is
confirmed by numerical evaluation of eigenvalues for both the
PDE and the discrete platoon model. The real part of the least
stable eigenvalue of the closed loop is taken as a measure of
stability margin.

The third and the main contribution of the paper is a
mistuning-based control designthat leads to significant improve-
ment in the closed loop stability margin over the symmetric
case. The biggest advantage of using a PDE-based analysis is
that the PDE reveals, better than the state-space model does,

the mechanism of loss of stability and suggests a mistuning-
based approach to ameliorate it. In particular, analysis ofthe
PDE shows that forward-backward asymmetry in the control
gains is beneficial. The asymmetry refers to the assignment of
controller gains such that a vehicle utilizes information from the
preceding and following vehicles differently. Our main results,
Corollary 2 and Corollary 3, give control gains that achieve
the best improvement in closed-loop stability by exploiting this
asymmetry. In particular, we show that an arbitrarily smallper-
turbation (asymmetry) in the controller gains from their values
in the symmetric bidirectional case can result in the least stable
eigenvalue approaching0 only asO( 1

N ) (as opposed toO( 1
N2 )

in the symmetric bidirectional case). Numerical computations
of eigenvalues of the state-space model of the platoon is used
to confirm these predictions. Mistuning based approaches have
been used for stability augmentation in many applications;
see [23], [24], [25], [26] for some recent references. Our
paper is the first to consider such approaches in the context
of decentralized control design.

Although the PDE model is derived under the assumption of
largeN , in practice the predictions of the PDE model match
those of the state-space model accurately even for small values
of N . Similarly, the benefits of mistuning are significant even
for small values ofN (see Section VI).

In addition to the stability margin improvements, the mis-
tuning design reduces the closed loop’s sensitivity to external
disturbances as well. In bidirectional architectures, theH∞
norm of the transfer function from the external disturbances
to the spacing errors is used as a measure of sensitivity to
disturbances [7]. Numerical computation of theH∞ norm of
this transfer function shows that mistuning design also reduces
sensitivity to disturbances significantly (see Section VI-D).

We briefly note that there is an extensive literature on mod-
eling traffic dynamics using PDEs; see the seminal paper of
Lighthill and Whitham [27] for an early reference, the paper
of Helbing [28] and references therein for a survey of major
approaches, and the papers of [29] and [30] for control-oriented
modeling. In spite of apparent similarities, our approach is
quite different from the existing approaches. PDE models of
traffic dynamics typically start with continuity and momentum
equations [28]. Moreover, one requires a model of human
behavior to determine an appropriate form of the external force
in the momentum equation. This difficulty frequently leads to
the introduction of terms in the PDE that are determined by
fitting data; see [28, Section III-D] for a thorough discussion of
such approximations used in various continuum traffic models.
In contrast, we approximate the closed loop dynamic equations
by continuous functions of space (and time) that are inspired by
finite-difference discretization of PDEs. Ad-hoc approximations
of human behavior is not needed. Moreover, the original dy-
namics can be recovered by discretizing the derived PDE, which
provides further evidence of consistency between the (spatially)
discrete and continuous models.

We also note that macroscopic models of traffic flow models
have been used for designing control laws for a complete
automated highway system (AHS) with lane changing, merging,
etc. in addition to a platoon in one lane (see [30], [31] and
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(a) A platoon with fictitious lead and follow vehicles.
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(b) Same platoon iny coordinates.

Fig. 1. A platoon withN vehicles moving in one dimension.

references therein). The PDE model derived in the paper is not
applicable to a complete AHS, but only to a single platoon.

The rest of the paper is organized as follows: section II states
the platoon problem in formal terms by describing a state-space
model of the closed loop platoon dynamics; section III then
describes the derivation of the PDE model from the state space
model. In section IV the PDE is analyzed to explain the loss of
stability withN , and section V describes how to ameliorate such
loss of stability by mistuning. Section V-C reports simulation
results that show the benefit of mistuning in time-domain. In
Section VI, we comment on various aspects of the proposed
mistuning design.

II. CLOSED LOOP DYNAMICS WITH BIDIRECTIONAL

CONTROL

Consider a platoon ofN identical vehicles moving in a
straight line as shown schematically in Figure 1(a). LetZi(t) and
Vi(t) := Żi(t) denote the position and the velocity, respectively,
of the ith vehicle for i = 1, 2, . . . , N . Each vehicle is modeled
as a double integrator:

Z̈i = Ui, (1)

whereUi is the control (engine torque) applied on theith vehicle.
Such a model arises after the velocity dependent drag and
other non-linear terms have been eliminated by using feedback
linearization [1], [10].

The control objective is to maintain a constant inter-vehicular
distance∆ and a constant velocityVd for every vehicle. Every
vehicle is assumed to know the desired spacing∆ and the
desired velocityVd. The control architecture is required to
be decentralized, so that every vehicle uses locally available
measurements. We assume that the error between the position
(as well as velocity) of a vehicle and its desired value is small,
so that analysis of the platoon dynamics with a linear vehicle
model and a linear control law is justified.

In this paper, we assume a bi-directional control architecture
for individual vehicles in the platoon (except the first and the
last vehicles). For the first and the last vehicles, we consider two
types of control architectures (termed as scenarios I and II) as
tabulated in Table I. In scenario I, we introduce (after [6],[5])

Scenario LengthL Leader Follower

I (N + 1)∆ ṽ0 = 0 ṽN+1 = 0

II N∆ ṽ0 = 0 –

TABLE I

THE TWO SCENARIOS.

a fictitious lead vehicle and a fictitious follow vehicle, indexed
as 0 and N + 1 respectively. Their behavior is specified by
imposing a constant velocity trajectories asZ0(t) = Vd t and
ZN+1 = Vd t− (N + 1)∆. In scenario II, only a fictitious lead
vehicle with indexi = 0 with Z0(t) = Vdt is introduced. For the
last vehicle in the platoon in scenario II, there is no follower
vehicle and it uses information only from its predecessor to
maintain a constant gap.

Consistent with the decentralized bidirectional linear control
architecture, the controlUi for the ith vehicle is assumed to
depend only on 1) its velocity errorVi −Vd, and 2) the relative
position errors between itself and its immediate neighbors. That
is,

Ui = k
(f)
i (Zi−1 − Zi −∆)− k

(b)
i (Zi − Zi+1 −∆)

− bi(Vi − Vd). (2)

wherek(·)i , bi are positive constants. The first two terms are used
to compensate for any deviation away from nominal position
with the predecessor (front) and the follower (back) vehicles
respectively. The superscripts(f) and (b) correspond tofront
and back, respectively. The third term is used to obtain a zero
steady-state error in velocity. In principle, relative velocity errors
between neighboring vehicles can also be incorporated intothe
control, but we do not examine this situation here. SinceVd
and∆ are known to every vehicle, the relative errors used in
the control law, including the velocity error, can be obtained in
practice by on-board devices such as radars, GPS, and speed
sensors.

The control law (2) represents state feedback with local (near-
est neighbor) information. Analysis of this controller structure
is relevant even if there are additional dynamic elements inthe
controller. There are several reasons for this. First, a dynamic
controller cannot have a zero at the origin. It will result ina pole-
zero cancellation causing the steady-state errors to grow without
bound asN increases [13]. Second, a dynamic controller cannot
have an integrator either. For if it does, the closed-loop platoon
dynamics become unstable for a sufficiently large values of
N [13]. As a result, any allowable dynamic compensator must
essentially act as a static gain at low frequencies. The results
of [13] indicate that the principal challenge in controlling large
platoons arises due to the presence of a double integrator with its
unbounded gain at low frequencies. Hence, the limitation and
its amelioration discussed here with the local state feedback
structure of (8) is also relevant to the case where additional
dynamic elements appear in the control.

To facilitate analysis, we consider a coordinate change

yi = 2π(
Zi(t)− Vdt+ L

L
), vi = 2π

Vi − Vd
L

, (3)
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whereL denotes thedesired platoon length, which equals(N+
1)∆ in scenario I andN∆ in scenario II. Figure 1(b) depicts
the schematic of the platoon in the new coordinates. The scaling
ensures thaty0(t) ≡ 2π, yi(t) ∈ [0, 2π], and yN+1(t) ≡ 0
(yN(t) = 0) in scenario I (II). Here, we have implicitly assumed
that deviations of the vehicle positions and velocities from their
desired values are small.

In the scaled coordinate, the dynamics of theith vehicle are
described by

ÿi = ui, (4)

whereui := 2πUi/L. The desired spacing and velocities are

δ :=
∆

L/2π
, vd :=

Vd − Vd
L/2π

= 0, (5)

and the desired position of theith vehicle is

ydi (t) ≡ 2π − iδ. (6)

The position and velocity errors for theith vehicle are given by:

ỹi(t) = yi(t)− ydi (t), ṽi = vi − vd = vi, and
˙̃yi = ṽi.

(7)

We note thatṽ0 = ṽN+1 = 0 for the fictitious lead and
follow vehicles. In the scaled coordinates, the decentralized
bidirectional control law (2) is equivalent to the following

ui = k
(f)
i (yi−1 − yi − δ)− k

(b)
i (yi − yi+1 − δ)− bi ṽi (8)

= k
(f)
i (ỹi−1 − ỹi)− k

(b)
i (ỹi − ỹi+1)− biṽi.

It follows from (4) and (8) that the closed loop dynamics of the
ith vehicle in theỹ-coordinate is

¨̃yi + bi ˙̃yi = k
(f)
i (ỹi−1 − ỹi)− k

(b)
i (ỹi − ỹi+1). (9)

To describe the closed-loop dynamics of the whole platoon, we
define

ỹ := [ỹ1, ỹ2, . . . , ỹN ]T , ṽ := [ṽ1, . . . , ṽN ]T .

For scenario I with fictitious lead and follow vehicles, the control
law (8) yields the following closed loop dynamics.

[
˙̃y
˙̃v

]

=

[
0 I

−K(f)
I MT −K

(b)
I M −B

]

︸ ︷︷ ︸

AL−F

[
ỹ

ṽ

]

(10)

where K
(f)
I = diag(k

(f)
1 , k

(f)
2 , . . . , k

(f)
N ), K

(b)
I =

diag(k
(b)
1 , k

(b)
2 , . . . , k

(b)
N ), B = diag(b1, b2, . . . , bN), and

M =






1 −1 0 ...
0 1 −1

...
... 0

1 −1
... 0 1




 .

For scenario II with a fictitious lead vehicle and no follow
vehicle, the closed loop dynamics are

[
˙̃y
˙̃v

]

=

[
0 I

−K(f)
II M

T −K
(b)
II Mo −B

]

︸ ︷︷ ︸

AL

[
ỹ

ṽ

]

, (11)

whereK(f)
II = K

(f)
I , K(b)

II = diag(k
(b)
1 , k

(b)
2 , . . . , k

(b)
N−1, 0), and

Mo =






1 −1 0 ...
0 1 −1

...
... 0

1 −1
... 0 0




 .

Our goal is to understand the behavior of the closed loop
stability margin with increasingN and to devise ways to
improve it by appropriately choosing the controller gains.While
in principle this can be done by analyzing the eigenvalues of
the matrix AL−F (scenario I) and ofAL (scenario II), we
take an alternate route. For large values ofN , we approximate
the dynamics of the discrete platoon by a partial differential
equation (PDE) which is used for analysis and control design.

III. PDE MODEL OF PLATOON CLOSED LOOP DYNAMICS

In this section, we develop a continuous PDE approximation
of the (spatially) discrete platoon dynamics. The PDE is derived
with respect to a scaled spatial coordinatex ∈ [0, 2π]. We recall
that in Section II, the scaled location of theith vehicle (denoted
as yi) was defined with respect to such a coordinate system.
In effect, the two symbolsx and y correspond to the same
coordinate representation but are used here to distinguishthe
continuous and discrete formulations. As in the discrete case,
the platoon always occupies a length of2π irrespective ofN .

A. PDE derivation

The starting point is a continuous approximation:

v(x, t) := vi(t) at x = yi

⇒ v(x, t) = ṽi(t). (from (7))

Similarly, b(x), k(f)(x), k(b)(x) are used to denote continuous
approximations of discrete gainsbi, k

(f)
i , k

(b)
i respectively. We

will construct a PDE approximation of discrete dynamics in
terms of these continuous approximations. To do so, it is
convenient to first differentiate (9) with respect to time,

¨̃vi + bi ˙̃vi = k
(f)
i (ṽi−1 − ṽi)− k

(b)
i (ṽi − ṽi+1). (12)

We recast this equation

¨̃vi+bi ˙̃vi = −k(+)
i ṽi+

1

2
(k

(+)
i +k

(−)
i )ṽi−1−

1

2
(k

(+)
i −k(−)

i )ṽi+1,

where

k
(+)
i := k

(f)
i + k

(b)
i , k

(−)
i := k

(f)
i − k

(b)
i . (13)

It follows that

¨̃vi + bi ˙̃vi =
1

2
k
(−)
i (ṽi−1 − ṽi+1) +

1

2
k
(+)
i (ṽi−1 − 2ṽi + ṽi+1)

=
1

ρ0
k
(−)
i

ṽi−1 − ṽi+1

2δ
+

1

2ρ20
k
(+)
i

ṽi−1 − 2ṽi + ṽi+1

δ20

where

ρ0 :=
1

δ
=
N

2π
. (14)
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ρ0 has the physical interpretation of themean density(vehicles
per unit length). Now, we make a finite-difference approximation
of derivatives

ṽi−1 − ṽi+1

2δ
=

[
∂

∂x
v(x, t)

]

x=yi

ṽi−1 − 2ṽi + ṽi+1

δ20
=

[
∂2

∂x2
v(x, t)

]

x=yi

,

where we recall thatv(x, t) is a continuous approximation of
the vehicle velocities (̃vi(t) = v(yi, t) etc). Denotingk(+)(x)

and k(−)(x) as continuous approximations ofk(+)
i and k(−)

i

respectively, the discrete model is written as:
[
∂2

∂t2
v(x, t)

]

x=yi

+

[

b(x)
∂

∂t
v(x, t)

]

x=yi

=

1

ρ0

[

k(−)(x)
∂

∂x
v(x, t)

]

x=yi

+
1

2ρ20

[

k(+)(x)
∂2

∂x2
v(x, t)

]

x=yi

Hence, we arrive at the partial differential equation (PDE)as a
model of the discrete platoon dynamics:

(
∂2

∂t2
+ b(x)

∂

∂t

)

v(x, t) =

(
1

ρ0
k(−)(x)

∂

∂x
+

1

2ρ20
k(+)(x)

∂2

∂x2

)

v(x, t) (15)

In the remainder of this paper, we assume thatk(+)(x) > 0.
Using (13), the continuous counterparts of the front and the
back gains are given by

k(f)(x) =
1

2

(

k(+)(x) + k(−)(x)
)

,

k(b)(x) =
1

2

(

k(+)(x) − k(−)(x)
)

,
(16)

so that the gain valuesk(·)i can be obtained ask(f)i = k(f)(yi)

andk(b)i = k(b)(yi). It can be readily verified that one recovers
the system of ordinary differential equations ((12) fori =
1, . . . , N ) by discretizing the PDE (15) using a finite difference
scheme on the interval[0, 2π] with a discretizationδ between
discrete points.

The boundary conditions for the PDE (15) depend upon the
dynamics of the first and the last vehicles in the platoon. For
scenario I with a constant velocity fictitious lead and follow
vehicles, the appropriate boundary conditions are of the Dirichlet
type on both ends:

v(0, t) = v(2π, t) = 0, ∀t ∈ [0,∞). (17)

For scenario II with the only a fictitious lead vehicle, the
appropriate boundary conditions are of Neumann-Dirichlettype:

∂v

∂x
(0, t) = v(2π, t) = 0. ∀t ∈ [0,∞) (18)

We refer the reader to Appendix I-A for a discussion on well-
posedness of the solutions to (15). It is shown in Appendix I-A
that a solution exists in a weak sense whenk(+), k(−), dk

(+)

dx ∈
L∞([0, 2π]).

Equation (15) describes spatio-temporal evolution of small
velocity perturbations in a platoon. It is worthwhile to note that
the PDE model is a hyperbolic equation. Without the two first

(a) Scenario I ( Dirichlet-
Dirichlet)

(b) Scenario II ( Neumann-
Dirichlet)

Fig. 2. Comparison of closed loop eigenvalues of the platoondynamics and
the eigenvalues of the corresponding PDE (19) for the two different scenarios:
(a) platoon with fictitious lead and follow vehicles, and correspondingly the
PDE (19) with Dirichlet boundary conditions, (b) platoon with fictitious lead
vehicle, and correspondingly the PDE (19) with Neumann-Dirichlet boundary
conditions. For ease of comparison, only a few of the eigenvalues are shown.
Both plots are forN = 25 vehicles; the controller parameters arek(f)i =

k
(b)
i = 1 and bi = 0.5 for i = 1, 2, . . . , N , and for the PDEk(f)(x) ≡

k(b)(x) ≡ 1 andb(x) ≡ 0.5.

order terms (i.e., forb(x) = k(−)(x) = 0), the PDE is a standard
wave equation with spatially inhomogeneous values of wave
speed. The term1

ρ0
k(−)(x) ∂v∂x is an advection term, andb(x)∂v∂t

is a damping term. The hyperbolic nature of the PDE model
means that a perturbation originating, say, in the middle ofa
long platoon will propagate both upstream and downstream with
finite speed. The two first order terms serve to modify aspects
of this propagation. The damping term causes a perturbationto
damp out in time. The advection term serves to create possible
asymmetries in upstream versus downstream propagation.

B. Eigenvalue comparison

For preliminary comparison of the PDE obtained above with
the state-space model of the closed loop platoon dynamics, we
consider the simplest case where the position control gainsare
constant for every vehicle, i.e.,k(f)(x) = k(b)(x) = k0 and
b(x) = b0. In such a casek(−)(x) ≡ 0, k(+)(x) ≡ 2k0 and the
PDE (15) simplifies to

(
∂2

∂t2
+ b0

∂

∂t
− k0
ρ20

∂2

∂x2

)

v = 0, (19)

which is a damped wave equation with a wave speed of
√
k0

ρ0
.

The wave equation is consistent with the physical intuitionthat a
symmetric bidirectional control architecture causes a disturbance
to propagate equally in both directions.

Figure 2 compares the closed loop eigenvalues of a discrete
platoon withN = 25 vehicles and the PDE (19). The eigenval-
ues of the platoon are obtained by numerically evaluating the
eigenvalues of the matricesAL−F andAL (defined in (10) and
(11)). The eigenvalues of the PDE are computed numerically
after using a Galerkin method with Fourier basis [32]. The figure
shows that the two sets of eigenvalues are in excellent match. In
particular, the least stable eigenvalues are well-captured by the
PDE. Additional comparison appears in the following sections,
where we present the results for analysis and control design.
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boundary condition eigenvalueλl
eigenfunction
ψl(x)

l

η(0) = η(2π) = 0
(Dirichlet - Dirichlet) −

l2

4
sin( lx

2
) l = 1, 2, . . .

∂η
∂x

(0) = η(2π) = 0
(Neumann - Dirichlet) −

(2l−1)2

16
cos(

(2l−1)x
4

) l = 1, 2, . . .

TABLE II

THE EIGEN-SOLUTIONS FOR THELAPLACIAN OPERATOR WITH TWO

DIFFERENT BOUNDARY CONDITIONS.

IV. A NALYSIS OF THE SYMMETRIC BIDIRECTIONAL CASE

This section is concerned with asymptotic formulas for
stability margin (least stable eigenvalue) for the symmetric
bidirectional architecture with symmetric and constant control
gains:k(f)(x) = k(b)(x) ≡ k0 and b(x) ≡ b0. The analysis is
carried out with the aid of the associated PDE model:

(
∂2

∂t2
+ b0

∂

∂t
− a20

∂2

∂x2

)

ṽ = 0, (20)

wherex ∈ [0, 2π] and

a20 :=
k0
ρ20

(21)

is the wave speed. The closed-loop eigenvalues of the PDE
require consideration of the eigenvalue problem

d2η

dx2
= λη(x), (22)

whereη is an eigenfunction that satisfies appropriate boundary
conditions: (17) for scenario I and (18) for scenario II. The
eigensolutions to the eigenvalue problem (23) for the two
scenarios are given in Table II. The eigenfunctions in either
scenario provide a basis ofL2([0, 2π]).

After taking a Laplace transform, the eigenvalues of the PDE
model (20) are obtained as roots of the characteristic equation

s2 + b0s− a20λ = 0, (23)

where λ satisfies (22). Using Table II, these roots are easily
evaluated. For instance, thelth eigenvalue of the PDE (20) with
Dirichlet boundary conditions is given by

s±l =
−b0 ±

√

b20 − a20l
2

2
, (24)

wherel = 1, 2, . . .. The real part of the eigenvalue depends upon
the discriminantD(l, N) := (b20 − a20l

2), where the wave speed
a0 depends both on control gaink0 and number of vehicles
N (see (21)). For a fixed control gain, there are two cases to
consider:

1) If D(l, N) < 0, the rootss±l are complex with the real
part given by− b0

2 ,
2) If D(l, N) > 0, the rootss±l are real withs+l +s−l = −b0.

In the former case, the damping is determined by the velocity
feedback termb0 ∂

∂t , while in the latter case one eigenvalue (s−l )
gains damping at the expense of the other (s+l ) which looses
damping. Whens±l are real, the eigenvalues+l is closer to the

boundary condition s+
l

for l << lc lc

Dirichlet-Dirichlet −
π2k0
b0

l2

N2 +O( 1
N4 )

b0N

2π
√

k0

Neumann-Dirichlet −
π2k0
4b0

l2

N2 +O( 1
N4 )

b0N

2π
√

k0

TABLE III

THE TREND OF THE LESS STABLE EIGENVALUEs+l FOR THEPDE (20)

origin than s−l ; so we call s+l the lth less-stableeigenvalue.
The following lemma gives the asymptotic formula for this
eigenvalue in the limit of largeN .

Lemma 1:Consider the eigenvalue problem for the linear
PDE (20) with boundary conditions (17) and (18), corresponding
to scenarios I and II respectively. Thelth less-stable eigenvalue
s+l approaches0 as O(1/N2) in the limit asN → ∞. The
asymptotic formulas appear in Table III. �

Proof of Lemma 1.We first consider scenario I with Dirichlet
boundary conditions (17). Using (24) and (21),

2s±l = −b0 ± b0

(

1− a20l
2

b20

)1/2

= −b0 ± b0

(

1− 2π2k0
b20

l2

N2

)

+O(
1

N4
)

for a20l
2/b20 << 1. The asymptotic formula holds for wave

numbers

l ≪ b0
a0

=
b0N

2π
√
k0

=: lc, (25)

and in particular for eachl as N → ∞. The proof for the
scenario II with Neumann-Dirichlet boundary conditions (18)
follows similarly.

The stability margin of the platoon can be measured by the
real part ofs+1 , the least stable eigenvalue.

Corollary 1: Consider the eigenvalue problem for the linear
PDE (20) with boundary conditions (17) and (18), corresponding
to scenarios I and II respectively. The least stable eigenvalue,
denoted bys+1 , satisfies

s+1 = −π
2k0
b0

1

N2
+O(

1

N4
) (Dirichlet-Dirichlet) (26)

s+1 = −π
2k0
4b0

1

N2
+O(

1

N4
) (Neumann-Dirichlet) (27)

asN → ∞. �

The result shows that the least stable eigenvalue of the closed
loop platoon decays as1N2 with symmetric bidirectional control.

We now present numerical computations that corroborates
this PDE-based analysis. Figure 3 plots as a function ofN the
least stable eigenvalue of the PDE and of the state-space model
of the platoon, as well as the prediction from the asymptotic
formula. The eigenvalues for the discrete platoon are obtained
by numerically evaluating the eigenvalues of the matricesAL−F

andAL (see (10) and (11)) with constant control gainsk(f)i =

k
(b)
i = k0 = 1 and bi = b0 = 0.5 for i = 1, . . . , N . The
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Fig. 3. Comparison of the least stable eigenvalue of the closed loop platoon
dynamics and that predicted by Corollary 1 with symmetric bidirectional control.
There are three plots each for scenarios I and II (corresponding legends are
boxed together), and those three should be compared with oneanother. In
the plot legends, “D-D” stands for “Dirichlet-Dirichlet”,“N-D” for “Neumann-
Dirichlet”, “L-F” for fictitious leader-follower, and “L” for fictitious leader. The
plot for “PDE (20), D-D” should be compared with “platoon, L-F” since they
both correspond to scenario I. Similarly, “PDE (20), N-D” and “platoon, L”
correspond to scenario II. Note that the predictions (26) and (27) are valid for
1 << lc (defined in (25)), which in this case means forN >> 12.
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Fig. 4. A schematic explaining the loss of stability asN increases and how
mistuning ameliorates this loss.

comparison shows that the PDE analysis accurately predictsthe
eigenvalue of the state-space model of the platoon dynamics.

Figure 4(a) graphically illustrates the destabilization by de-
picting the movement of eigenvaluess±1 asN increases. For
sufficiently small values ofN , the discriminantD(1, N) is
negative and the eigenvalues±1 are complex. The real part of
the eigenvalue depends only on the value ofb0. At a critical
value ofN = Nc := π

√
2k0

b0
, the discriminant becomes zero,

s+1 = s−1 and the eigenvalues collide on the real axis. For values
of N > Nc and in particular asN → ∞, the eigenvalues+1
asymptotes to0 while staying real, ands−1 asymptotes to−b.
Their cumulative damping, as reflected in the sums+l + s−l =
−b0, is conserved. In other words,s+1 is destabilized at the
expense ofs−1 .

Remark 1:The preceding analysis shows that the loss of
stability experienced with a symmetric bidirectional architecture
is controller independent. The least stable eigenvalue approaches
0 asO(1/N2) irrespective of the values of the gainsk0 andb0,
as long as they are fixed constants independent ofN . Corollary 1
also implies that for the least stable eigenvalue to be uniformly
bounded away from0, one has to increase the control gaink0 as
N2. In [6], the same conclusion was reached for the least stable
eigenvalue with LQR control of a platoon on a circle. LQR
control typically leads to a centralized architecture, whereas
symmetric bidirectional control is decentralized. It is interesting
to note that the least stable eigenvalue behaves similarly in these
distinct architectures. �

V. REDUCING LOSS OF STABILITY BY MISTUNING

In this section, we examine the problem of designing the
control gain functionsk(f)(x), k(b)(x) so as to ameliorate the
loss of stability margin with increasingN that was seen in the
previous sections whenk(f)(x) = k(b) ≡ k0. Specifically, we
consider the eigenvalue problem for the PDE (15) where the
control gains are changed slightly (mistuned) from their values
in the symmetric bidirectional case in order to minimize the
least-stable eigenvalues+1 . With symmetric bidirectional control,
one obtains anO( 1

N2 ) estimate for the least stable eigenvalue
because the coefficient of∂

2

∂x2 term in PDE (15) isO( 1
N2 ) and

the coefficient of ∂
∂x term is 0. Any asymmetry between the

forward and the backward gains will lead to non-zerok(−)(x)
and a presence ofO( 1

N ) term as coefficient of∂∂x . By a judicious
choice of asymmetry, there is thus a potential to improve the
stability margin fromO( 1

N2 ) to O( 1
N ).

We begin by considering the forward and backward position
feedback gain profiles:

k(f)(x) = k0 + ǫk(f,purt)(x),

k(b)(x) = k0 + ǫk(b,purt)(x),

where ǫ > 0 is a small parameter signifying the amount of
mistuning andk(f,purt)(x), k(b,purt)(x) are functions defined
over the interval[0, 2π] that captureperturbation from the
nominal valuek0. Define

ks(x) := k(f,purt)(x) + k(b,purt)(x),

km(x) := k(f,purt)(x) − k(b,purt)(x),

so that from (16),

k(+)(x) = 2k0 + ǫks(x), k(−)(x) = ǫkm(x).

The mistuned version of the PDE (15) is then given by

∂2v

∂t2
+ b0

∂v

∂t
= a20

∂2v

∂x2
+ ǫ

[
km
ρ0

∂v

∂x
+

ks
2ρ20

∂2v

∂x2

]

(28)

We study the problem of improving the stability margin by
judicious choice ofkm(x) and ks(x). The results of our in-
vestigation, carried out in the following sections, provide a
systematic framework for designing control gains in the platoon
by introducing small changes to the symmetric design.
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A. Mistuning-based design for scenario I

The control objective is to design mistuning profileskm(x)
andks(x) to minimizethe least stable eigenvalues+1 . To achieve
this, we first obtain an explicit asymptotic formula for the
eigenvalues when a small amount of asymmetry is introduced
in the control gains (i.e., whenǫ is small). For scenario I, the
result is presented in the following theorem. The proof appears
in Appendix I-B.

Theorem 1:Consider the eigenvalue problem for the mis-
tuned PDE (28) with Dirichlet boundary condition (17) corre-
sponding to scenario I. Thelth eigenvalue pair is given by the
asymptotic formula

s+l (ǫ) = ǫ
l

2b0N

∫ 2π

0

km(x) sin(lx)dx +O(ǫ2) +O(
1

N2
),

s−l (ǫ) = −b0 − ǫ
l

2b0N

∫ 2π

0

km(x) sin(lx)dx +O(ǫ2) +O(
1

N2
),

that is valid for eachl in the limit asǫ→ 0 andN → ∞. �

It is apparent from the Theorem above that to minimize
the least stable eigenvalues+1 , one needs to choose onlykm
carefully; ks has only O( 1

N2 ) effect. Therefore we choose
ks(x) ≡ 0, or, equivalently,k(f,purt)(x) = −k(b,purt)(x), which
leads tokm(x) = 2k(f,purt)(x). The most beneficial control
gains are now can be readily obtained from Theorem 1, which
is summarized in the next corollary.

Corollary 2 (Mistuning profile for Scenario I):Consider the
problem of minimizing the least-stable eigenvalue of the
PDE (28) with Dirichlet boundary condition (17) by
choosing k(f,purt)(x) ∈ L∞([0, 2π]) with norm-constraint
‖k(f,purt)(x)‖L∞ = maxx∈[02π] k

(f,purt)(x) = 1 and
k(b,purt)(x) = −k(f,purt)(x). In the limit asǫ→ 0, the optimal
mistuning profile is given byk(f,purt)(x) = 2(H(x− π) − 1

2 ),
whereH(x) is the Heaviside function:H(x) = 1 for x ≥ 0
andH(x) = 0 for x < 0. With this profile, the least stable
eigenvalue is given by the asymptotic formula

s+1 (ǫ) = − 4ǫ

b0N

in the limit asǫ→ 0 andN → ∞. �

The result shows that even with anarbitrarily small amountof
mistuningǫ, one can improve the closed-loop platoon damping
by a large amount, especially for large values ofN . The least-
stable eigenvalues+1 asymptotes to0 asO( 1

N ) in the mistuned
case as opposed toO( 1

N2 ) in the symmetric case.

Figure 5(a) shows the gains for the individual vehicles (that
are obtained from sampling the functionsk(f)(x) andk(b)(x)),
suggested by Corollary 2 for a20 vehicle platoon, withk0 = 1
andǫ = 0.1:

k
(f)
i = 1 + 0.2(H(π − iδ)− 0.5), and

k
(b)
i = 1− 0.2(H(π − iδ)− 0.5),

where δ is the desired inter-vehicular spacing in the scaled
y coordinates, and is defined in (5). A confirmation of the
predictions of Corollary 2 is presented in Figure 6. Numerically
obtained mistuned and nominal eigenvalues for both the PDE
and the platoon state-space model are shown in the figure, with
mistuned gains chosen as shown in Figure 5(a). The figure shows
that

Fig. 5. Mistuned front and back gainsk(f)i and k(b)i of the vehicles in
a platoon withk0 = 1 and ǫ = 0.1. Figure (a) shows the gains chosen
according to Corollary 2 to be optimal for scenarioI for small ǫ: k(f)i =

k0 (1 + 0.1(2H(π − iδ) − 1)) , k
(b)
i = k0 (1− 0.1(2H(π − iδ) − 1)),

whereH(·) is the Heaviside function andδ is defined in (5). Figure (b) shows
the optimal mistuned gains for scenario II with the same parameters, which turns
out to be (see Corollary 3)k(f)i = 1.1k0 andk(b)i = 0.9k0 for i = 1, . . . , N .
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Fig. 6. Stability margin improvement by mistuning in Scenario I. The figure
shows the least stable eigenvalue of the closed loop platoon(i.e., ofAL−F in
(10)) and of the PDE (28) with Dirichlet boundary conditions, with and without
mistuning, for a range of values ofN . Parameters for the nominal case are
k0 = 1 and b0 = 0.5, and the mistuning amplitude isǫ = 0.1. The mistuned
control gains are shown in Figure 5(a). The legend “Corollary 2” refers to the
prediction by Corollary 2 for largeN .

1) the platoon eigenvalues match the PDE eigenvalues accu-
rately over a range ofN , and

2) the mistuned eigenvalues show large improvement over
the nominal case even though the controller gains differ
from their nominal values only by±10%. The improve-
ment is particularly noticeable for large values ofN , while
being significant even for small values ofN .

For comparison, the figure also depicts the asymptotic eigen-
value formula given in Corollary 2.

Figure 4(b) graphically illustrates the mechanism by which
mistuning affects the movement of eigenvaluess±1 as N in-
creases. By properly choosing the mistuning patternskm(x) and
ks(x), damping can be “exchanged” between the eigenvaluess+1
ands−1 so that the less stable eigenvalues+1 “gains” stability at
the expense of the more stable eigenvalues−1 . The net amount
of damping is preserved, sinces+1 + s−1 = −b0 (as seen from
Theorem 1).

B. Mistuning-based design for scenario II

For scenario II, asymptotic formula for the eigenvalue (coun-
terpart of Theorem 1) is summarized in the following theorem.
The proof is entirely analogous to the proof of Theorem 1, and
is therefore omitted.

Theorem 2:Consider the eigenvalue problem for the mis-
tuned PDE (28) with Neumann-Dirichlet boundary condi-
tion (18) corresponding to scenario II. Thelth eigenvalue pair
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is given by the asymptotic formula

s+l (ǫ) = −ǫ l

4b0N

∫ 2π

0

km(x) sin(
lx

2
)dx+O(ǫ2) +O(

1

N2
),

s−l (ǫ) = −b0 + ǫ
l

4b0N

∫ 2π

0

km(x) sin(
lx

2
)dx +O(ǫ2) +O(

1

N2
),

that is valid for eachl in the limit asǫ→ 0 andN → ∞. �

As with scenario I, here again we use the above result to
determine the most beneficial profilekm(x) for small ǫ:

Corollary 3 (Mistuning profile for Scenario II):Consider
the problem of minimizing the least-stable eigenvalue of the
PDE (28) with Neumann-Dirichlet boundary conditions (18)
by choosingk(f,purt)(x) ∈ L∞([0, 2π]) with norm-constraint
maxx∈[0,2π] k

(f,purt)(x) = 1, andk(b,purt)(x) = −k(f,purt)(x).
In the limit as ǫ → 0, the optimal k(f,purt) is given by
k(f,purt)(x) = 1. With this profile, the least-stable eigenvalue
is given by the asymptotic formula

s+1 (ǫ) = − ǫ

b0N

in the limit asǫ→ 0 andN → ∞. �

The result shows that, as in scenario I, it is possible to
improve the closed-loop stability margin in scenario II with an
arbitrary small amount of mistuningǫ such that the least-stable
eigenvalues+1 asymptotes to0 asO( 1

N ) in the mistuned case as
opposed toO( 1

N2 ) in the symmetric case. The gains suggested
by Corollary 3, withk0 = 1 andǫ = 0.1 are:

k
(f)
i = 1.1, and k

(b)
i = 0.9,

which are shown in Figure 5(b). Numerically obtained least
stable eigenvalues for the PDE and the platoon state-space model
for scenario II are shown in Fig. 7 for a range of values ofN .
It is clear from the figure that, as in scenario I, the mistuned
eigenvalues show an order of magnitude improvement over their
values in the symmetric bidirectional case with only±10%
variation.

Remark 2 (Robustness to small changes from the optimal gains):
An advantage of the mistuning design is that mistuned closed
loop eigenvalues are robust to small local discrepancies in
the control gains from the optimal ones. This can be seen
(for scenario I) from the asymptotic eigenvalue formulas of
Theorem 1, which shows that one would obtain aO( 1

N ) estimate
for any choice ofkm(x) such that

∫ 2π

0 km(x) sin(x)dx 6= 0. A
similar argument holds for scenario II.

C. Simulations

We now present results of a few simulations that show the
time-domain improvements – manifested in faster decay of
initial errors – with the mistuning-based design of controlgains.
Simulations were carried out for a platoon ofN = 20 vehicles
with scenario I, i.e., with fictitious lead and follow vehicles.
The desired gap was∆ = 1 and desired velocity wasVd = 5.
The initial velocity of every vehicle was chosen as the desired
velocity and the initial position of theith vehicle was chosen as
Zi(0) = i∆ − 0.5 for i = {1, . . . , N}. As a result, the initial
relative position error and velocity error of every vehiclewas
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Fig. 7. Stability margin improvement by mistuning in scenario II. The figure
shows the least stable eigenvalue of the closed loop platoon(i.e., ofAL in (10))
and of the PDE (28) with Neumann-Dirichlet b.c., with and without mistuning,
for a range of values ofN . The parameters for the nominal case arek0 = 1
and b0 = 0.5, and the mistuning amplitude isǫ = 0.1. The mistuned control
gains that are used are shown in Figure 5(b). The legend “Corollary 3” refers
to the prediction by Corollary 3 of mistuned PDE eigenvalues.

zero except for the first vehicle, whose relative position error
with respect to the fictitious lead vehicle was0.5.

Figure 8 shows the time-histories of the absolute and relative
position errors of the individual vehicles with a symmetric
bidirectional control, where the control gains were chosenas
k
(f)
i = k

(b)
i = 1 andbi = 0.5 for i = {1, . . . , 20}. The absolute

position error of theith vehicle is Zi − Zd
i and the relative

position error isZi−1 − Zi −∆.

Figure 9 shows the time-histories of the absolute and relative
position errors for the platoon with mistuned controller gains.
The mistuning gains used for the simulation are the ones
shown in Figure 5(a) (chosen according to Corollary 2) so that
maximum and minimum gains over all vehicles is within±10%
of the nominal value. On comparing Figures 8 and 9, we see
that the errors in the initial conditions are reduced fasterin the
mistuned case compared to the nominal case. These observations
are consistent with the improvement in the closed-loop stability
margin with the mistuned design.

VI. D ISCUSSION ON MISTUNING DESIGN

There are several remarks to be made regarding the mistuning
based design. We first comment on the implementation issues,
in particular, on the effect of small platoon size on the proposed
design, and on the information requirements for its implemen-
tation.

A. Large vs. smallN

The PDE model is developed for largeN . However, detailed
numerical comparison between the PDE and the discrete state
space model shows that the PDE model provides quantitatively
correct predictions even for small values ofN (see Figures 3, 6
and 7). The PDE has an infinite number of eigenvalues as
opposed to a finite number for the discrete platoon. So, one can
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Fig. 8. Performance of symmetric bidirectional control in time-domain: time histories of the absolute and relative position errors of the vehicles in a platoon
with symmetric bidirectional control (scenario I). The control gains arek(f)i = k

(b)
i = 1 andbi = 0.5 for every i = 1, . . . , 20.
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Fig. 9. Performance of mistuned control in time-domain: time histories of the absolute and relative position errors of the vehicles in a platoon (scenario I) with
mistuned bidirectional control, cf. Figure 8. The control gains used are those shown in Figure 5(a). The legends refer tothe vehicle indices.

not expect an exact match. However, PDE eigenvalues exactly
match the least stable and other dominant eigenvalues of the
discrete platoon (see Figure 2 and Figure 10). In a similar vein,
the benefits of mistuning are also realized for small values of N .
For example, when the number of vehicles is20, a mistuning
of ±10% results in an improvement in the stability margin –
as measured by the real part of the least stable eigenvalue –
of 150% (from −0.0491 to −0.1281 ) in scenario I and an
improvement of400% (from −0.012 to −0.05) in scenario II
over the symmetric case.

B. Information requirements

In order to implement the beneficial mistuned controller gains
designed above, every vehicle needs the following information
(in addition to what is needed to use a symmetric bidirectional
control): (1) the mistuning amplitudeǫ, and (2) in scenario I,
whether it is in the front half of the platoon or not. This
information can be provided to the vehicles in advance. In
scenario II, only the value ofǫ is needed.

It is possible that due to vehicles leaving and joining the
platoon, information on whether a vehicle belongs to the front
half of the platoon may become erroneous with time, especially
for the vehicles that are close to the middle. In scenario I, such
error may lead to a non-optimal gains used by the vehicles.

However, since the improvement in closed loop stability margin
due to mistuning is robust to small deviations in the gains from
the optimal ones (see Remark 2), errors in determining whether
a vehicle belongs to the front half of the platoon or not will not
greatly affect the improvement in stability margin. Note that in
scenario II this issue does not even arise.

C. Large asymmetry

Although the mistuning profiles described in Corollaries 2
and 3 are optimal in the limit asǫ → 0, one would like to be
able to use them with somewhat larger values ofǫ to realize
the benefit of mistuning. To do so, one has to preclude the
possibility of “eigenvalue cross-over”, i.e., of the second (s+2 )
or some other marginally stable eigenvalue from becoming the
least stable eigenvalue in the presence of mistuning. It turns
out that such a cross-over is ruled out as a consequence of
the Strum-Liouville (S-L) theory for the elliptic boundaryvalue
problems. The standard argument relies on the positivity ofthe
eigenfunction corresponding tos+1 ; the reader is referred to [33]
for the details. Figure 10 verifies this numerically by depicting
the six eigenvalues closest to0 (for both the PDE and the
discrete platoon) as a function ofN when mistuning is applied.
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platoon dynamics for Scenario I, and their comparison with the PDE eigenvalues
with Dirichlet-Dirichlet boundary conditions, with controller gains mistuned
as those shown in Figure 5. As predicted by the S-L theory, theleast stable
eigenvalue stays the least stable, although eigenvalues that are more stable merge
with it asN increases.

D. Sensitivity to disturbance

Automated platoons suffer from high sensitivity to external
disturbances; which is referred to as “string instability”or
“slinky-type effects” [20], [1], [15]. Here we provide numerical
evidence that mistuning also helps in reducing the sensitivity to
disturbances.

When external disturbances are present, we model the dy-
namics of vehiclei by Z̈i = Ui+Wi, whereWi is the external
disturbance acting on the vehicle. In they coordinates, the
vehicle dynamics becomẽ̈yi = ui +wi, wherewi := 2πWi/L.
In scenario I, the state space model of the entire platoon
becomes,

ψ̇ = AL−F ψ +

[
0

I

]

︸︷︷︸

B

w, e = Cψ (29)

whereψ = [ỹT , ṽT ]T , AL−F , w = [w1, w2, . . . , wN ]T , and
e := [e

(f)
1 , . . . , e

(f)
N ]T is a vector of front spacing errorse(f)i :=

ỹi−1 − ỹi.
TheH∞ norm of the transfer functionGwe from the distur-

bancew to the inter-vehicle spacing errorse is a measure of
the closed loop’s sensitivity to external disturbances [7], [13].
Figure 11 shows a plot of theH∞ norm ofGwe as a function
of N , with and without mistuning. The mistuning profile used
is the same as the one used for the eigenvalue trends reported
in Figure 6. It is clear from the figure that±10% mistuning
results in large reduction of theH∞ norm ofGwe. Although this
reduction is more pronounced for largeN , it is still significant
for smallN . In particular, forN = 20, a 10% mistuning yields
approximately50% reduction in theH∞ norm (from 6.69 to
3.38).

Apart from theH∞ norm of Gde, there are other ways to
measure sensitivity to disturbances. In [21], the transferfunction
from disturbance acting on the lead vehicle to spacing erroron
the ith vehicle is analyzed. Detailed analysis of the effect of
mistuning on sensitivity to disturbances will be a subject of
future work.
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Fig. 11. H∞ norm of the transfer functionGwe from disturbancew to spacing
error e in (29), with and without mistuning, for scenario I. The mistuned gains
used are shown in Figure 5(a). Norms are computed using the Control Systems
Toolbox in MATLAB c©.

VII. C ONCLUSION

We developed a PDE model that describes the closed loop
dynamics of anN -vehicle platoon with a decentralized bidirec-
tional control architecture. Analysis of the PDE model revealed
several important features of the problem. First, we showedthat
when every vehicle uses the same controller with constant gain
that is independent ofN (the so-called symmetric bidirectional
architecture), the least stable eigenvalue of the closed loop
decays to0 asO( 1

N2 ). Second, and more significantly, analysis
of the PDE suggested a way to ameliorate the progressive loss
of stability with increasingN , by introducing small amounts
of “mistuning”, i.e., by changing the controller gains fromtheir
nominal symmetric values. We proved that with arbitrary small
amounts of mistuning, the decay of the least stable closed loop
eigenvalue can be improved toO( 1

N ). Several comparisons with
the numerically computed eigenvalues of state-space modelof
the platoon confirm the predictions of the PDE-based analysis.

Although the PDE model is derived under the assumption that
the number of vehicles,N , is large, in practice the PDE pro-
vides quantitatively correct predictions for the discreteplatoon
dynamics even for relatively small values ofN . The amount of
information that is needed to implement the mistuned control
gains (over that in the symmetric bidirectional architecture) is
quite small and need to be provided only once. Furthermore,
the stability improvement due to mistuning is robust to small
errors (between the actual gains used and the optimal mistuned
gains) that may occur in practice due to changes in the number
of vehicles in the platoon over time.

The advantage of the PDE formulation is reflected in the ease
with which the closed loop eigenvalues are obtained for two
different boundary conditions, with lead and follow vehicles as
well as with only a lead vehicle. Certain important aspects of
the problem, such as the beneficial nature of forward-backward
asymmetry in control gains, is revealed by the PDE while
they are difficult to see with the (spatially) discrete, state-space
model.

Numerical calculations show that the mistuning design also
reduces sensitivity to disturbances of the closed-loop platoon.
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Analysis of the beneficial effect of mistuning in reducing
sensitivity to external disturbances is a subject of futureresearch.
In the future, we also plan to examine PDE-based models for
modeling and analysis of fleet of vehicles as in2 or 3 spatial
dimensions.
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APPENDIX I
TECHNICAL RESULTS

A. Solution properties of PDE(15).

In this section, we use the semigroup theory to obtain results
on well-posedness of the PDE (15). To apply these methods, we
first re-write the PDE as a first order evolution equation:

∂ρ̃
∂t = −ρ0 ∂v

∂x
∂v
∂t = −

[
1

ρ02
k1(x)ρ̃+

1
2ρ03

∂
∂x (ρ̃k0(x)) + bv

] := A

[
ρ̃
v

]

,

(30)
whereA is a linear operator;k0(x) := k+(x) and k1(x) :=

k−(x) − 1
2ρ0

dk+

dx (x). We will assume these coefficients
k0(x), k1(x) ∈ L∞([0, 2π]) and k0(x) > 0. ρ̃ has the units
of and the physical interpretation of density perturbation.

Using (30), we denote the initial/boundary value problem as:

ż(x, t) = Az(x, t) for x ∈ X, t > 0

z(x, 0) = z0(x), (31)

where z(x, t) := [ρ̃(x, t), v(x, t)], z0(x) = [ρ̃0(x), v0(x)] and
A is defined in (30);ρ̃0 and v0 will be assumed to functions
in appropriately defined Banach spaces. The main goal of this
section will be to show that the solution for the linear prob-
lem (30) can be expressed in terms of aC0 semigroup provided
eigenvalues of the operatorA satisfy appropriate bounds. We
begin with a discussion of the notation.

Preliminaries and Notation.We denotez := [ρ̃, v], L2(X)
denotes the Hilbert space of square integrable functions onX
(‖v‖2L2 :=

∫
v2dx), Hk denotes the Sobolev space of functions

such that derivatives up tokth-order exist in a weak sense and
belong toL2(X) (the Sobolev norm is denoted by‖ · ‖Hk ), and
H1

0 denotes the Sobolev spaceH1 of functions that satisfy the

http://www.hamilton.ie/rick/publications/StringStability.pdf
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Dirichlet boundary condition. We denoteZ := L2 × L2, and
equip it with a norm‖ · ‖. Let D(A) := H1 × (H1

0 ∩ L2) and
consider the right hand side of evolution equation (30) as an
unbounded but closed densely defined linear operator

A : D(A) ⊂ Z → Z. (32)

A real numbers belongs toρ(A), the resolvent set forA,
provided the operatorsI − A : D(A) → Z is 1-1 and onto.
For s ∈ ρ(A), the resolvent operatorRs := (sI − A)−1.
Finally, we recall that a one-parameter family of linear operators
{S(t)}t≥0 is aC0-semigroup if 1)S(0)z = z for all z ∈ Z, 2)
S(t + s)z = S(t)S(s)z for all t, s ≥ 0 and z ∈ Z, and 3) the
mappingt → S(t)z is continuous from[0,∞) into Z. A C0

semigroup is a contraction semigroup if‖S(t)z‖ ≤ ‖z‖ for all
t ≥ 0. The Hille-Yosida theorem states that a closed densely
defined linear operatorA is the generator of a contraction
semigroup if and only if

(0,∞) ⊂ ρ(A) and ‖Rsz‖ ≤ 1

s
‖z‖ ∀z ∈ Z. (33)

Our strategy will be to apply Hille-Yosida theorem to deduce
solution properties of the evolution equation (31). Following
closely the development in [33], there are three steps to accom-
plish this: 1) we show thatA is a densely defined closed linear
operator onZ, 2) characterize the resolvent set by considering
the eigenvalue problem, and 3) show the bound (33) for the
resolvent. Step 2 will lead to an eigenvalue problem, whose
analysis and optimization is the subject of this paper. We present
details for the three steps next:

1) The domain ofA, D(A), is dense inZ becauseH1 is
dense inL2. To showA is closed, consider a sequence
{ρ̃m, vm} ⊂ D(A) such that

(ρ̃m, vm)
Z→ (ρ̃, v) (34)

A(ρ̃m, vm)
Z→ (f, g), (35)

where the arrow notation denotes the fact that the conver-
gence is inZ = L2 × L2. Sincevm

L2

→ v so −ρ0 ∂v
∂x =

f ∈ L2, i.e.,v ∈ H1. Now, {vm} is Cauchy inL2 by (34)
and{∂vm

∂x } is Cauchy inL2 by (35) and

‖vm − vl‖H1 ≤ C

(

‖∂vm
∂x

− ∂vl
∂x

‖L2 + ‖vm − vl‖L2

)

,

(36)

so {vm} is Cauchy inH1 and vm
H1

→ v. By repeating
essentially the same argument, one also finds thatρ̃ ∈ H1

and ρ̃m
H1

→ ρ̃. Consequently,A(ρ̃m, vm)
Z→ A(ρ̃, v) and

A(ρ̃, v) = (f, g).
2) Let s > 0, (f, g) ∈ Z = L2 × L2, and consider the

operator equation

(sI −A)

[
ρ̃
v

]

=

[
f
g

]

. (37)

This is equivalent to two scalar equations

sρ̃+ ρ0
∂v

∂x
= f (ρ̃ ∈ L2 ∩H1),

(38)

sv +

[
1

ρ20
k1(x)ρ̃+

1

2ρ30

∂

∂x
(k0(x)ρ̃) + bv

]

= g (v ∈ L2 ∩H1
0 ).

(39)

Using the first equation to writesρ̃ = −ρ0 ∂v
∂x + f , this

implies
s2v + bsv + Lv = h, (40)

where

Lv :=
1

2ρ20

∂

∂x
(−k0(x)

∂v

∂x
)− 1

ρ0
(k1(x)

∂v

∂x
) (41)

is an elliptic operator (becausek0(x) > 0 for all x ∈ X)
and h = sg − 1

2ρ3
0

∂
∂x (k0(x)f) − 1

ρ2
0
k1(x)f (note that

h ∈ H−1(X)). Consequently, solutions of ((37)) can be
studied in terms of solutions of ((41)). The spectrum ofA
is completely characterized by the spectrum ofL. We will
obtain spectral bounds, dependent uponk0(x) andk1(x),
in the following sections. In particular, we will establish
that Real[s] < α for someα < 0 and thusρ(A) ⊃ (α,∞).
For k1(x) = 0, its turns out that[0,∞) ⊂ ρ(A) for
any choice of positivek0(x) (this is also clear from the
symmetric eigenvalue problem (41)).

3) If a positive s ∈ ρ(A), there exists a unique solution
(ρ̃, v) ∈ Z for (38)-(39) via the theory of elliptic opera-
tors: solve (40) to obtainv ∈ H1

0 andsρ̃ = −ρ0 ∂v
∂x+f . We

write the solution as(ρ̃, v) = Rs(f, g), define a bilinear
form

B[ρ̃, s] :=
1

2ρ40

∫

X

k0(x)ρ̃(x)s(x)dx, (42)

for ρ̃, s ∈ L2 and consider an equivalent norm (onZ) for
solutions(ρ̃, v) as:

‖(ρ̃, v)‖ := B[ρ̃, ρ̃] + ‖v‖L2 (43)

To obtain the resolvent bound, we multiply (39) byv and
use integration by parts:

s(‖v‖L2 +B[ρ̃, ρ̃]) + b‖v‖L2 +
1

ρ2

∫

k1(x)ρ̃vdx

=

∫

gvdx+B[ρ̃, f ].

In general, the bound depends uponk1(x). Fork1(x) = 0,
we have

s‖(ρ̃, v)‖2 ≤ (s+ b)‖v‖L2 +B[ρ̃, ρ̃]) =
∫

gvdx+B[ρ̃, f ] ≤ ‖(f, g)‖ · ‖(ρ̃, v)‖,

where the first inequality holds becauses > 0 and
b > 0 and the last inequality follows from the generalized
Cauchy-Schwarz inequality. As a result,‖Rs(f, g)‖ ≤
1
s‖(f, g)‖ and‖Rs‖ ≤ 1

s .
For the general case wherek1(x) is not identically zero,
one expresses the operator

A = A0 + Ã, (44)

where

A0

[
ρ̃
ṽ

]

=

[

0 −ρ0 ∂
∂x

− 1
2ρ3

0

∂
∂x(k0(x)·) −b

] [
ρ̃
v

]

,

Ã

[
ρ̃
v

]

=

[
0 0

− 1
ρ2
0
k1(x) 0

] [
ρ̃
v

]

.
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In words,A0 is the operator withk1(x) = 0 and Ã is
the operator due tok1(x). We note thatÃ is a bounded
perturbation ofA0 (on Z). We have already showed the
existence of aC0-semigroup forA0. For the general op-
eratorA, the existence follows from using a perturbation
theorem (see Theorem 1.1 in Ch. 3 of [34]).

B. Proof of Theorem 1

Proof of Theorem 1.The spatial inhomogeneity introduced by
thex-dependent coefficientskm(x) andks(x) destroy the spatial
invariance of the nominal PDE (20). Hence, the Fourier basis
– eigenfunctions of the Laplacian – no longer lead to a diag-
onalization of the mistuned PDE. The methods of section IV
thus need to be suitably modified. In order to compute the
eigenvalues for the mistuned PDE (28), we take a Laplace
transform of (28) and get

− a20
∂2η

∂x2
+ s2η + b0sη = ǫ

[
km
ρ0

∂η

∂x
+

ks
2ρ20

∂2η

∂x2

]

, (45)

where η(x) is the Laplace transform (with respect tot) of
ṽ(x, t). We are interested in eigenvalues of (45) with Dirichlet
boundary conditions, i.e., the values ofs for which a solution
to the homogeneous PDE (45) exists with boundary conditions
η(0) = η(2π) = 0. To obtain these eigenvalues, we use a per-
turbation method expressing the eigenfunction and eigenvalue
in a series form:

η(x) = η0(x) + ǫη1(x) +O(ǫ2), s = r0 + ǫr1 +O(ǫ2).
(46)

We note thatǫ r1 denotes the perturbation to the nominal
eigenvaluer0 as a result of the mistuning. Substituting (46)
in (45) and doing anO(1) balance, we get

O(1) : −a20(η0)xx + r20η0 + br0η0 = 0, (47)

whose eigen-solution is given by

η0 = dl sin(
lx

2
), r0 = s±l (0),

where l = 1, 2, . . ., dl is an arbitrary real constant, ands±l (0)
is given by (24). Next,

O(ǫ) :

(

−a20
∂2

∂x2
+ (r20 + b0r0)

)

η1 =
km
ρ0

∂η0
∂x

+
ks
2ρ20

∂2

∂x2
η0 − (2r0r1 + b0r1)η0 =: R

Substituting r0 = s±l (0) on the left hand side leads to a
resonance condition for the right hand side term, denoted by
R. In particular for a solutionη1 to exist,R must lie in the
range space of the linear operator

(

−a20
∂2

∂x2
+ (r20 + br0)

)

. (48)

For this self-adjoint operator, the range space is the complement
of its null space{sin( lx2 )}. This gives the resonance condition
as

〈R, sin( lx
2
)〉 = 0,

where< ·, · > denotes the standard inner product inL2(0, 2π).
This leads to an equation

(2r0 + b0)r1 =
l

4πρ0

∫ 2π

0

km(x) sin(lx)dx

− l2

8πρ20

∫ 2π

0

ks(x) sin
2(
lx

2
)dx (49)

For values ofr0 = s±l (0), wheres±l (0) is given by (24), the
equation above leads to an expression for perturbation in the
two eigenvalues. We denote these perturbations asr±1 . For r0 =
s+l (0), we have from from Lemma 1 thatb0 >> |2r0| when
l << lc, which happens for everyl asN → ∞ (see eq. (25)),
so that

r+1 ≈ l

4πρ0b0

∫ 2π

0

km(x) sin(lx)dx +O(
1

N2
). (50)

Note that we have dropped the second integral on the right hand
side of (49) because1

ρ2
0
= O(1/N2) for largeN . For r0 =

s−k (0), 2r0 ≈ −2b0 for l << lc and

r−1 ≈ − l

4πρ0b0

∫ 2π

0

km(x) sin(lx)dx +O(
1

N2
). (51)

Note that

r+1 + r−1 = 0.

Putting the formulas for the perturbation to the eigenvalues (50)
and (51) in (46), we get

s+l (ǫ) ≈ s+l (0) + ǫ
l

4πb0ρ0

∫ 2π

0

km(x) sin(lx)dx+O(ǫ2) +O(
1

N2
),

s−l (ǫ) ≈ −b0 − ǫ
l

4πb0ρ0

∫ 2π

0

km(x) sin(lx)dx +O(ǫ2) +O(
1

N2
).

Sinces+l (0) = O( 1
N2 ) for l < lc (Lemma 1) andρ0 = N

2π , the
result follows.
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