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Abstract—We present a new approach to parameter estimation 

problems based on binary measurements, motivated by the need 

to add integrated low-cost self-test features to microfabricated 

devices. This approach is based on the use of original weighted 

least-squares criteria: as opposed to other existing methods, it 

requires no dithering signal and it does not rely on an 

approximation of the quantizer. In this paper, we focus on a 

simple choice for the weights and establish some asymptotical 

properties of the corresponding criterion. To achieve this, the 

assumption that the quantizer’s input is Gaussian and centered is 

made. In this context, we prove that the proposed criterion is 

locally convex and that it is possible to use a simple gradient 

descent to find a consistent estimate of the unknown system 

parameters, regardless of the presence of measurement noise at 

the quantizer’s input. 

 
Index Terms—parameter estimation, quantized observations, 

binary sensors, FIR digital filters. 

 

I. INTRODUCTION 

N this paper, we present a new parameter estimation 

method based on binary measurements. This work was 

originally motivated by the need to add integrated low-cost 

self-test features to microfabricated devices, such as MEMS 

and NEMS. Even though there exists a wide range of 

applications where identification methods based on binary 

observations are necessary or desirable [1], the focus is 

brought here on the test of microelectronic devices. It is well-

known that, as characteristic dimensions become smaller, the 

dispersions afflicting electronic devices tend to become larger. 

Typical sources of uncertainty and dispersion are variations in 

the fabrication process, changes in the operating conditions or 

imperfect knowledge of physics. As a consequence, it is 

usually impossible to guarantee a priori that a given device 

will function properly. Expensive tests must then be run after 

fabrication to ensure that only suitable devices are 

commercialized. Furthermore, self-test (and self-tuning) 

features, such as parameter estimation routines, must often be 

implemented, so that devices can adapt to changing conditions. 
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However, most parameter estimation methods [2-3] rely on 

high-resolution digital measurements. Their integration 

requires the implementation of high-resolution analog-to-

digital converters (ADCs) and, thus, results in longer design 

times, larger silicon areas and increased costs. Our objective is 

then to develop a parameter estimation method that relies on 

very low-resolution (ideally binary) measurements, in order to 

keep the added cost of testing as small as possible.  

In the field of micro-electronics, the issue of parameter 

estimation of linear systems from binary data has partially 

been addressed by Negreiros [4] and Juillard and Colinet [5]
1
. 

In [5], a white Bernoulli input is used to excite the unknown 

system. Provided the impulse response does not vanish too 

quickly, it is possible to establish an analytical relationship 

between the cross-covariance function of the binary outputs 

and inputs and the impulse response of the unknown system 

and, thus, to identify the system.  

Outside the context of micro-electronics, the most 

significant contributions come from Wigren [6], Wang [1,7-8], 

Rafajlowicz [9-10] and their co-workers. In [9-10], the author 

considers a linear system excited by a deterministic signal. The 

output of the system is measured via a quantizer whose 

threshold is “randomly specified”
2
. The author then uses an 

elegant argument based on Von Neumann’s theorem to 

estimate the Fourier transform of the quantizer’s input from the 

quantized data and, knowing the inputs, it becomes simple to 

estimate the transfer function of the system. In [1], Wang et al. 

introduced a new method for estimating parameters from 

binary (or quantized) data. The unknown system is excited by 

a periodic signal and, as in Rafajlowicz’s work, the threshold 

of the quantizer is randomly specified. However, the 

hypotheses on the quantizer’s input and on the random 

threshold are much less strict: the major constraint is that the 

cumulative distribution function (cdf) of the threshold must be 

invertible. The parameter estimation problem then reduces to 

solving a linear system. This approach is generalized in [7], 

                                                                                                     
 
1 The approach in [5] was actually developed as a “quick and dirty” way to 

initialize the optimization algorithms on which the method presented in 

section III relies. However, because of its minimal requirements, it can also be 

used as a standalone parameter estimation approach. 
2 From the point of view of electronics, this randomly specified threshold 

can be implemented as an addition of a dithering signal at the input of the 

(fixed-threshold) quantizer. 
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Fig. 1 – Framework and notations. 

  

where it is shown that the cdf of the threshold can be estimated 

along with the parameters of the system, and in [8] where the 

identification of infinite impulse response (IIR) systems and 

nonlinear Wiener systems is addressed. Finally, Wigren has 

developed a least mean squares (LMS) approach to the 

problem of online parameter estimation from binary 

observations [6]. This method is based on the definition of an 

approximate gradient of the (quantized) least-squares criterion. 

Under some stationarity hypotheses and in the absence of 

measurement noise at the quantizer’s input, it is possible to 

guarantee the asymptotical convergence of this method to the 

nominal parameters. 

Each of these methods has its merits and weaknesses. It is 

our opinion that Wigren’s approach is the one that fits better in 

the context of test of electronics system: as opposed to Wang’s 

or Rafajlowicz’s methods, it does not require a varying 

threshold (dithering signal), which can only be implemented 

with a high-resolution DAC or a surface-consuming analog 

component. Furthermore, it can be used online as well as 

offline. However, it does rely on an approximation of the 

quantizer (and, thus, it is not an exact method, stricto sensu, as 

opposed to [1]). Moreover, convergence is not guaranteed in 

the presence of measurement noise at the quantizer’s input. 

The weighted least-squares (WLS) method we introduce in 

the present paper bears some likeness to Wigren’s, in the sense 

that it is also based on the minimization of a least-squares 

criterion. Its distinguishing features are that no approximation 

of the quantizer is made and that convergence can be 

guaranteed, even in the presence of measurement noise. 

Furthermore, this approach is more general than [1] in the 

sense that it does not require the presence of noise at the 

quantizer input. 

The outline of the article is the following. In section II, the 

framework and the notations are introduced. In section III, we 

show how to construct exact WLS continuous criteria for 

parameter estimation from binary data. The asymptotic 

properties (when the number of data goes to infinity) of one of 

these criteria are established in section IV. Using probabilistic 

arguments, it is shown that this approach leads to a consistent 

estimate of the nominal parameters of the system, even in the 

presence of measurement noise. Section V contains some 

concluding remarks.  

II. FRAMEWORK AND NOTATIONS 

Let us consider a discrete-time linear time-invariant (LTI) 

system H . We assume H  has a finite impulse response of 

length L , i.e. the impulse response can be represented by a 

column vector ( )L
kk 1== θθ . Let lu  be the known scalar value 

of the system input at time l  and ly  be the (scalar) value of 

the system output, so that: 

θφT

Llly ,= ,  (1) 

where ( )l
LlkkLl u

1, +−==φ  is the L  sample-long (column) 

regression vector at time l . Let ld  be an additive dithering 

signal at the system output and lb  an additive noise (in other 

words, ld  is known whereas lb  is not). Let xm  and 
2

xσ  

denote the first- and second-order moments of any signal x . 

The system output is measured via a 1-bit ADC so that only 

the sign ( )ll zSs =  of the system output is known, where 

( )
( )




−=
≥=

otherwise ,1

0 if ,1

xS

xxS
,  (2) 

and llll bdyz ++= . 

We are interested in finding an offline estimate θ̂  of θ , 

based on N  observations of lu , ls  and ld . Let us also 

introduce lŷ , the estimated system output, 

ll

T

Lllll ddyz +=+= θφ ˆˆˆ ˆ,
, the estimated input of the 

comparator, and ( )ll zSs ˆˆ = . These notations are summed up in 

Fig. 1. Finally, the notation 
L̂

θ  designates: 

• θ  padded with LL −ˆ  zeros if LL >ˆ , 

• θ  truncated to length L̂ , if LL <ˆ . 

III. DEFINITION OF WLS CONTINUOUS CRITERIA 

In the following sections, we concentrate on criteria of the 

form: 

( )

∑

∑

=

=

−
=

N

l

p

l

N

l

ll

p

l

N

p

z

ssz

J

1

2

1

22

ˆ

ˆˆ

4

1
, 1≥p .  (3) 

Note that taking 0=p  in (3) yields ( )∑
=

−=
N

l

ll

N
ss

N
J

1

2

0
ˆ

4

1
, 

the “classical” unweighted least-squares criterion. However, 

because of the quantization of ls  and lŝ , NJ 0  is piecewise-

constant with respect to θ̂  (and, thus, not easily amenable to 

optimization). In the numerator of (3), the term 
p

lz
2

ˆ  acts as a 

(positive) weight to the binary-valued error ( )2ˆ
ll ss − . Since 

p

lz
2

ˆ  is continuous and is equal to 0 when ( )ll zSs ˆˆ =  changes, 

( )22 ˆˆ
ll

p

l ssz −  is a continuous function of θ̂  and so is N

pJ . 

Moreover, ( )22 ˆˆ
ll

p

l ssz −  is continuously differentiable with 
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respect to lẑ . Since ( )θ̂ˆ
lz  is continuously differentiable 

everywhere, ( )θ̂N

pJ  is also continuously differentiable 

everywhere, except when: 

0θ

φ

φ

=
















+
















⇔≤≤=⇔=∑
=

N

T

LN

T

L

l

N

l

p

l

d

d

Nlzz MM

1

ˆ,

ˆ,1

1

2 ˆ1 ,0ˆ0ˆ . (4) 

Provided LN ˆ>  and under some mild assumptions on lu , 

there usually exists no θ̂  that verifies (4)
3
. The major 

exception is when 0=ld , Nl ≤≤1 , in which case (4) has 

0θ =ˆ  for solution, regardless of lu
4
. Note that 10 ≤≤ N

pJ . 

Thus, it is possible to construct continuously differentiable 

WLS criteria for parameter estimation problems based on 

binary observations without having to rely on an 

approximation of the quantizer. These WLS criteria are 

“exact” in the sense that 000 =⇒= N

p

N JJ
5
 and they can be 

minimized using any standard optimization method [2]. Note 

that it is impossible to guarantee their convexity a priori, 

without further assumptions on the inputs.  

In [11], Bai shows that minimizing NJ 0  yields a consistent 

estimation of θ , supposing u  is white, 0== db , LL ˆ=  and 

N  goes to infinity. Since 000 =⇒= N

p

N JJ , it follows that 

the same is true of N

pJ . In the next section, we establish 

asymptotic properties of NJ1  under different assumptions, 

some less restrictive than in [11] ( LL ˆ≠ , 0≠b , 0≠d , 

coloured input), some not (Gaussianity of ẑ  and z ).  

IV. ASYMPTOTIC PROPERTIES OF ( )θ̂1

NJ  

A. Asymptotic expression of ( )θ̂1

NJ  

In order to perform the asymptotic analysis of NJ1 , some 

assumptions must be made. A1- lu , ld  and lb  are stationary 

ergodic Gaussian processes (not necessarily white) with mean 

0. NJ1  can then be interpreted as the ratio of empirical means 

of stationary ergodic processes:  

( ) ∑∑
==

−=
N

l

l

N

l

lll

N
z

N
ssz

N
J

1

2

1

22

1
ˆ

1
ˆˆ

4

1
, (5) 

 
3 In a deterministic context, it suffices to design the input so that the first 

1ˆ +L  lines of (4) are independent. In a stochastic context, one can find 

simple conditions under which (4) has no solution with probability 1. 

4 Note that these properties also hold when one replaces 
p

lz
2ˆ  by ( )lzf ˆ  

in (3), where f  is any positive even continuously-differentiable function 

such that ( ) 00 =f . 

5 If lẑ  is a continuous random variable, one can also prove that 

00 0 =⇒= NN

p JJ  with probability 1. 

Thus:  

( )( )
( )2

22

11
ˆE

ˆˆE

4

1
lim

z

ssz
JJ
N

N

−==
∞→

∞ . (6) 

From A1, ẑ  and z  are jointly Gaussian with mean 0
6
. One 

may then write: 

( ) ( )( ) ( )

( ) ( )













+=

−=

∫ ∫∫ ∫

∫ ∫
∞

∞−∞−

∞

∞

∞−

∞

∞−

∞

0

0

2

0

0

2

2

ˆ

22

2

ˆ

1

ˆ,ˆˆˆ,ˆˆ
4

1

ˆ,ˆˆˆ
4

1

dzzdzzpzdzzdzzpz

dzzdzzpzSzSzJ

z

z

σ

σ
,  (7) 

( )
( )

2
ˆ

ˆ
2

2

2

ˆ

2

2

12

ˆ2ˆ

12

1
exp

,ˆ

r

zzrzz

r
zzp

zz

zzzz

−




























−+

−
−

=
σπσ

σσσσ
,  (8) 

where r  is the cross-correlation coefficient of z  and ẑ . (7) 

can be expressed as: 

( ) 




 −−=∞ 2

1 1acos
1

rrrJ
π

.  (9) 

The same reasoning applies to the classical least-squares 

criterion. This yields: 

( )rJJ
N

N
acos

1
lim 00 π

==
∞→

∞
. (10) 

∞
1J  is a decreasing convex function of r , for [ ]1,0∈r , 

whereas ∞
0J  is decreasing and concave on the same interval 

(Fig. 2).  
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Fig. 2 – Comparison of ( )rJ ∞
0  and ( )rJ ∞

1 . 

B. Properties of ( )θ̂1

∞J  

 The following assumptions must be added to A1: A2- ld  

and lb  are white. A3- lu , ld  and lb  are independent. 

Defining PQ

uR  the QP×  covariance matrix of P.,φ  and Q.,φ , 

we also assume : A4- LL

u

ˆˆ
R  has full rank. The following 

theorem can then be established. 

Theorem - If A1, A2, A3 and A4 hold, the following 

properties are true: 

 
6 In practice, the joint Gaussianity of ẑ  and z  may be approximately 

achieved with less stringent assumptions on the distribution of the system 

input. 
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Property 1 - If LL ≥ˆ ,  

a) if 0
2 ≠dσ  , the minimum of ∞

1J  is unique and it 

is reached for 
L̂

ˆ θθ = . 

b) if 0
2 =dσ , ∞

1J  has infinitely many minima of the 

form 
L̂

ˆ θθ κ= , ] [+∞∈ ,0κ . 

Property 2 - If LL <ˆ  and u  is white, Property 1 

still holds.  

Property 3 - ( )θ̂1

∞J  is convex in a neighbourhood of 

its minimum (minima). 

Property 4 - Properties 1 and 2 hold for ( )θ̂0

∞J . 

 

Proof - The cross-correlation coefficient of two centred 

variables is ( ) ( ) ( )zzzzr ˆ
ˆEˆ σσ=θ . Under A2-A3, ( )θ̂r  can be 

expanded into: 

( )
θRθ

θRθ

θRθ

θ
ˆˆ

ˆ1ˆ
ˆˆ2

ˆ2

22 LL

u

T

d

LL

u

T

d

LL

u

T

db

r

+

+

++
=

σ

σ

σσ
.  (11) 

The extrema of ( )θ̂r  are given by differentiating (11): 

( ) ( ) θRθRθθRθRθ0
θ

ˆˆˆˆ
ˆ

ˆˆˆ2ˆˆˆ2 LL

u

LL

u

T

d

LL

u

LL

u

T

d

r +=+⇔=
∂
∂ σσ . (12) 

Thus, provided A4 holds and 0ˆˆ2 ≠+ θRθ LL

u

T

dσ ,  

opt

LL

u

LL

uLL

u

T

d

LL

u

T

d θθRR
θRθ

θRθ
θ ˆ

ˆ

ˆˆ
ˆ ˆ1ˆˆ

ˆ2

ˆˆ2

κ
σ
σ =

+
+=

−
, with 

 
θRθ

θRθ

ˆ

ˆˆ

ˆ2

ˆˆ2

LL

u

T

d

LL

u

T

d

+

+
=

σ
σ

κ  and θRRθ LL

u

LL

uopt

ˆ1ˆˆˆ
−

= .  (13) 

Replacing θ̂  by optθ̂κ  in the expression of κ  yields: 

( ) 01
2 =− dσκ .  (14) 

One can then distinguish two cases, depending on whether 

0=dσ . If 0
2 ≠dσ , then 1=κ . To determine whether optθ̂  is 

a maximum, we show that ( )θ̂r  is concave in the 

neighbourhood of optθ̂ . Since ( )θ̂r  is at least 2
C  on L̂ℜ , we 

can determine its Hessian matrix H :  

( ) ( )
( )
( )( )























+
++















++

+
−

=
LL

u

TLL

uLL

u

T

d

LL

u

T

d

LL

u

LL

u

T

d

LL

u

TLL

u

LL

u

TLL

u

f

ˆˆˆˆ

ˆˆ2

ˆ2

ˆˆˆ2

ˆˆˆˆˆˆ

ˆˆ
ˆˆ

ˆ
3

ˆ

ˆˆ

ˆ,

RθθR
θRθ

θRθ

RθRθ

RθθRRθθR

θθH

σ
σ

σ
,  (15) 

where ( )θθ ˆ,f  is a scalar-valued positive function. Thus ( )θ̂r  is 

concave when: 

( ) ( ) 0ˆ3ˆˆ2ˆ,0ˆˆ 2ˆˆˆ2 ≤−−=⇔≤ d

LL

u

TLL

u

T

d

T g σσ θRθθRθθθθHθ . (16) 

We find: 

( ) 0ˆ,
2ˆ1ˆˆˆ2 <





 +−=

−

d

LL

u

LL

u

LL

u

T

doptg σσ θRRRθθθ .  (17) 

Thus ( )θ̂1

∞J  is minimal when optθθ ˆˆ = . If 0
2 =dσ , then, from 

(13), ( )θ̂r  is maximal and positive when optθθ ˆˆ κ= , 0>∀κ . 

To pursue the analysis further, one can distinguish two more 

cases:  

• LL ≥ˆ . It follows from (13) that 
Lopt ˆ

ˆ θθ = . This 

proves Property 1. 

• LL <ˆ . In general, 
Lopt ˆ

ˆ θθ ≠ . A notable exception is 

when u  is a white noise, in which case IR 2ˆˆ

u

LL

u σ=  

and 
Lu

LL

u ˆ

2ˆ
θθR σ=  imply 

Lopt ˆ
ˆ θθ = , i.e. the first L̂  

coefficients of the impulse response are correctly 

identified. This proves Property 2. 

Since ( )rJ ∞
1  is decreasing and convex for [ ]1,0∈r  and r  is 

positive and concave in the neighbourhood of optθ̂ (resp. optθ̂κ  

if 0
2 =dσ ), ( )θ̂1

∞J  is convex in a neighbourhood of optθ̂  

(resp. optθ̂κ ): this proves Property 3. Finally, because of the 

one-to-one correspondence between ( )rJ ∞
0  and ( )rJ ∞

1 , ( )θ̂0

∞J  

has the same minimum (or minima) as ( )θ̂1

∞J : this proves 

Property 4.□ 

It is notable that optθ̂  is independent of bσ : thus, Properties 

1 to 4 hold regardless of the value of the variance of the 

measurement noise.  

As a consequence of Property 3, it is sufficient to use a 

gradient algorithm to estimate the coefficients of the impulse 

response, provided a “good” initial guess is known (found with 

[5], for example) and the number of samples is “large enough”. 

The corresponding gradient iteration is given by: 

( )nnnn θgθθ ˆˆˆ
1 λ−=+ , 0>nλ ,  

( ) ( ) ( )[ ]
( ) ( )

( ) ( )













=−=

=−=

−+−=

∑∑

∑∑

==

==
N

l

lLl

N

l

lllLl

N

l

T

LlLl

N

l

ll

T

LlLl

NN

T

dssd

ss

JJ

1

ˆ,
1

2

ˆ,

1

ˆ,ˆ,
1

2

ˆ,ˆ,

11

ˆˆ

ˆˆ

4ˆ4
ˆˆ

1

2

1ˆ

φqφθp

φφQφφθP

qpθQP
θQθ

θg

. (18) 

A line-search method can be used to find an optimal value 

of the step parameter nλ . Because of its simplicity, we have 

called the identification method based on the minimization of  
NJ1  “BIMBO”, for Basic Identification Method using Binary 

Observations. We show in Fig. 3 typical contour lines of 256

0J  

and 256

1J  and the result of the gradient algorithm, when 

[ ]1,1=Tθ , 2ˆ =L , 1=uσ , 2.0=bσ and 0=dσ  or 1=dσ . All 

processes are white and Gaussian. Although the number of 

samples is large w.r.t. L , it is hardly conceivable to optimize 
256

0J .
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Fig. 3 - Contour lines of 
256
0J  (left) and 

256
1J  (right), when 0=dσ  (top) and 1=dσ  (bottom). 

V. CONCLUSION 

In this paper, we have introduced general WLS criteria for 

parameter estimation problems based on binary observations. 

Some asymptotical properties of this criterion were established 

in the simple case when 1=p  (BIMBO method), under 

assumptions of Gaussianity. In particular, we have proved that 

this approach leads to consistent estimates of the system 

parameters, regardless of the variance of the measurement 

noise at the quantizer’s input or of a dithering signal. 

Moreover, we have established that the corresponding criterion 

is locally convex, which makes it amenable to simple 

optimization tools. The extension of this approach to less 

simple systems (IIR or nonlinear) or to a framework of online 

identification is also being studied.  
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