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Abstract

This paper proposes a design methodology for non-linear state ob-
servers for invariant kinematic systems posed on finite dimensional con-
nected Lie groups, and studies the associated fundamental system struc-
ture. The concept of synchrony of two dynamical systems is specialised
to systems on Lie groups. For invariant systems this leads to a general
factorisation theorem of a nonlinear observer into a synchronous (inter-
nal model) term and an innovation term. The synchronous term is fully
specified by the system model. We propose a design methodology for
the innovation term based on gradient-like terms derived from invariant
or non-invariant cost functions. The resulting nonlinear observers have
strong (almost) global convergence properties and examples are used to
demonstrate the relevance of the proposed approach.

Keywords: Observers, Lie groups, Synchrony, Gradient systems.

1 Introduction

There has been a surge of interest recently in nonlinear observer design for sys-
tems on Lie groups. A driver for recent work is the growing demand for highly
robust state estimation algorithms for autonomous robotic systems such as un-
manned aerial, ground or submersible vehicles. Nonlinear observer design for
such applications offers the potential of computationally simple state-estimation
algorithms with strong robustness and global stability guarantees; as compared
to the alternative of nonlinear filter designs (eg. extended Kalman filters [1] or
particle filters [2]) that provide more information (posterior distributions for
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the state estimates) but usually require significant computational resources and
rarely have strong global stability or robustness guarantees. Previous work in
nonlinear observer design for systems on Lie groups is often closely linked to
specific applications. In the early nineties, Salcudean [3] proposed a nonlinear
observer for the attitude estimation of a rigid-body using the unit quaternion
representation of the special-orthogonal Lie group SO(3). This work is seminal
to a series of papers that develop nonlinear attitude observers for rigid-body
dynamics [4, 5, 6, 7, 8, 9, 10], exploiting either the unit quaternion group struc-
ture or the rotation matrix Lie-group structure of SO(3). The resulting attitude
observers have comparable performance to state-of-the-art nonlinear filtering
techniques [11], generally have much stronger global stability and robustness
properties, and are simple to implement. The full pose estimation problem has
also attracted recent attention [12, 13, 14, 15]. In this case the underlying state
space is the special Euclidean group SE(3) comprising both attitude and trans-
lation of a rigid-body. Theoretical work in this direction is less advanced due to
the more complex algebraic and geometric structure of SE(3). Recently, several
authors have made a start in developing a theoretical foundation for observer
design for general systems with invariance properties, and in particular systems
with a Lie-group state space and the natural left invariant dynamics [16, 17].
Early work in this direction considered uniform invariance properties across the
system, measurements and observer design. More recent work recognises that
it may be necessary to consider different invariance properties for the system
than the measurements in order to obtain well conditioned observers [18]. Re-
sults in this area are very recent and there is no well established observer design
methodology for invariant systems on a Lie group, even in the case of full state
measurement.

In this paper, we study the design of non-linear observers for state space sys-
tems where the state is evolving on a finite dimensional, connected Lie group.
We consider the case where full measurements are available for the system kine-
matics and provide a characterisation of invariant observer structures leading
to an observer design methodology. Traditional full state observers, for sys-
tems evolving on vector spaces, employ a design paradigm that goes back to
the work of Kalman [19] and Luenberger [20]: The observer system is designed
as a combination of a copy of the system or internal model (i.e. a part that
can in principle replicate the observed system’s trajectory), plus an innovation
term which serves to drive the observer trajectory towards the correct system
trajectory in the presence of initialization or measurement errors. We build on
the results presented in [16, 17] to systematically study the invariance properties
of internal models and innovation terms inherent in nonlinear observer design
on Lie groups. We define the concept of synchrony of a plant/observer pair
of systems (cf. also [21]) with Lie-group state-space in terms of constant error
evolution for a canonical invariant error term that is defined. This leads to a
definition of internal model and a very general concept of innovation term for
plant/observer systems on Lie groups. The internal model structure is shown
to be a copy of the invariant plant dynamics. To design the innovation term,
we utilise gradient like driving terms derived from algebraic cost functions on
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the Lie group. Under mild assumptions, we prove almost global exponential
convergence of the resulting observers and provide example derivations for the
important applications of attitude and pose observer design for rigid-body kine-
matics. Finally, we link gradient like dynamics of the canonical error back to
a specific structure of the observer consisting of a synchronous term (internal
model) and a gradient-like innovation term. Thus, the paper provides a coherent
theory of nonlinear observer design for systems with left (resp. right) invariant
kinematics on a Lie group for which one has a right (resp. left) invariant Morse-
Bott cost function and full measurements.

After the introduction, Section 2 provides an overview of the systems consid-
ered and notation used. Section 3 introduces the concept of synchrony, defines
left and right invariant errors, and proves some results concerning the canon-
ical nature of invariant errors. Section 4 defines a concept of internal model
and innovation term for systems on Lie groups. Section 5 goes on from the
characterisation of observers to propose a specific design methodology based on
using gradients of cost functions to define the innovation terms in the general
observer structure defined in Section 4. Examples of observer designs on SO(3)
and SE(3) are provided. The final technical section, Section 6, provides the link
from gradient error dynamics back to the structure of the observer, confirming
that the design methodology proposed in Section 5 is the only way to obtain
the natural gradient error dynamics associated with a known cost function. A
short paragraph of conclusions is also provided in Section 7.

A preliminary, short version of this paper has been accepted for publication
at the MTNS 2008 [22].

2 Notation and problem formulation

Let G be a finite dimensional, connected Lie group with Lie algebra g. Denote
the identity element in G by e, and left and right multiplication with an element
X ∈ G by LX and RX , respectively. The tangent space TXG of G at X

is represented by left or right translations of the Lie algebra, i.e. TeLXg or
TeRXg. We use the simplified notation Xv for vectors TeLXv ∈ TXG and vX

for vectors TeRXv ∈ TXG with v ∈ g. Furthermore, we assume that there is
a Riemannian metric 〈·, ·〉 on G. Some of the results presented in the paper
will depend on invariance properties of the metric, however, these will be stated
explicitly where required and there are no general assumptions made regarding
invariance of the metric. We use the norm ||v||2 = 〈v, v〉 for v ∈ g.

Consider a left invariant system on G of the form

Ẋ = Xu, (1)

where u : R → g is a function termed the input signal. An input u of sys-
tem (1) is admissible if solutions of the system are unique, exist for all time
and are sufficiently smooth. The system (1) has an equivalent right invariant
representation

Ẋ = vX (2)
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with v : R → g an admissible input. The input signals u and v for left and right
invariant representations of the same system are related by v = TXRX−1TeLXu =
AdX u.

This paper discusses the design of observers that fuse potentially noisy mea-
surements of X and u (resp. v) into an estimate of the state X .

Example 1 Consider the design of an observer to estimate the attitude of a
rigid-body [4, 5, 6, 7, 8, 9, 10]. The attitude of the rigid body is an element of
the special orthogonal group SO(3), represented by real, orthogonal 3×3 matrices.
The Lie algebra of SO(3), denoted so(3), is the set of real, skew-symmetric 3×3
matrices. The derivative of a curve R : R → SO(3) coincides with its derivative
in R

3×3. The maps TRLS : RΩ 7→ SRΩ and TRRS : RΩ 7→ RΩS are given
by left and right multiplication of the matrices in TR SO(3) with S, respectively.
The tangent spaces TR SO(3) are identified with

TR SO(3) ≡ {RΩ | Ω ∈ so(3)} ⊂ R
3×3.

The special orthogonal group has a bi-invariant Riemannian metric induced
by the Euclidean metric on a the skew symmetric matrices, i.e. 〈RΩ, RΠ〉 =
tr(Ω⊤Π).

Consider the left invariant dynamics

Ṙ = RΩ

on SO(3) with Ω: R → so(3) admissible. This system models the kinematics of
the attitude R of a coordinate frame fixed to a rigid body in 3D-space relative to
an inertial frame. Here, Ω ∈ so(3) encodes the angular velocity ω ∈ R

3 of the
rigid-body measured in the body-fixed frame

Ω =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 .

In robotic applications, measurements of the attitude R are provided by ex-
teroceptive sensor systems such as magnetometers, accelerometers and vision
systems. The measurement of Ω is typically obtained from on-board gyrometer
systems.

Example 2 The above example can easily be extended to model the full pose
of a rigid-body, including the position p in 3D-space, by considering invariant
systems on the special Euclidean group SE(3) [12, 13, 14, 15]. The special
Euclidean group SE(3) has a representation as a semidirect product [23] of SO(3)
and R

3

SE(3) = {(R, p) | R ∈ SO(3), p ∈ R
3},

where the group product is given by

(R, p)(S, q) = (RS, p+Rq).

4



Recall the shorthand notation

TeL“

R p
”

(

Ω V
)

=
(

R p
) (

Ω V
)

with
(

R p
)

∈ SE(3) and
(

Ω V
)

∈ se(3) and consider the left invariant system

d

dt

(

R(t) p(t)
)

=
(

R p
) (

Ω V
)

=
(

RΩ RV
)

with Ω: R → so(3) and V : R → R
3 admissible. Here, V is the linear velocity of

the rigid-body measured in the body-fixed frame.
In robotic applications, the measurement of p is provided by exteroceptive

sensor systems such as GPS (global positioning systems), radar or vision sys-
tems. The measurement of linear velocity V is more challenging as there are few
sensor systems that directly measure linear velocity. Typical measurement sys-
tems depend on fusing differentiated exteroceptive position measurements with
integration of accelerometer measurements.

The two examples (Ex. 1 and 2) provide an excellent means to demonstrate
the structure of the design principles proposed in this paper and indicate the
relevance of the results to real-world engineering problems. It is not the purpose
of this paper, however, to enter into the details of the practical implementation
of the proposed observers for a real world system and we will not consider issues
such as choice of sensor systems or characterisation of noise any further than
the brief discussion above and a couple of remarks later in the paper.

3 Synchrony and error functions

In this section, we introduce the general concept of synchrony between pairs
of systems that evolve on a given Lie group G and have a common input.
Loosely, synchrony refers to an equivalence, but not equality, of trajectories of
two dynamical systems. More formally, we will define synchrony of two systems
in terms of an error function E that quantifies the instantaneous difference
between the system trajectories. The pair of systems is called E-synchronous if
the error E is constant along trajectories. We show that synchronous invariant
systems on Lie-groups have a particular structure and that the error function E

associated with invariant synchronous systems is also structurally constrained.
Consider a pair of systems on G driven by the same admissible input u

Ẋ = FX(X,u, t), (3)

˙̂
X = F

X̂
(X̂, u, t) (4)

with FX , F
X̂
: G×g×R → TG, FX(X,u, t) ∈ TXG and F

X̂
(X̂, u, t) ∈ T

X̂
G. The

solutions of (3) and (4) are denoted by X(t;X0, u) and X̂(t; X̂0, u), respectively.
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Definition 3 Consider the systems (3) and (4). Let E : G × G → M be a
smooth error function, M a smooth manifold. The systems (3) and (4) are said
to be E-synchronous if for all admissible u : R → g, all initial values X0, X̂0 ∈ G

of (3) and (4) and all t ∈ R

d

dt
E(X̂(t; X̂0, u), X(t;X0, u)) = 0.

Two particularly simple error functions on a Lie group G are the canonical
right invariant error

Er(X̂,X) := X̂X−1 (5)

and the canonical left invariant error

El(X̂,X) := X−1X̂. (6)

Where the arguments X̂ and X are clear from the context we simply write Er

and El. The label “invariant” refers to simultaneous state space transformations
of both systems. That is, for all X, X̂, S ∈ G, one has Er(X̂S,XS) = Er(X̂,X)
and an analogous result for El.

Remark 4 Observe that both Er and El are non-degenerate in the sense that
the partial maps E(X̂, ·) : G → M and E(·, X) : G → M are global diffeomor-
phisms (here, M = G).

The next proposition shows that any error E for which two invariant systems
are E-synchronous, can be factored into one of the canonical invariant errors
concatenated with a map from the Lie group into a manifold. Thus, the right
and left invariant errors can be thought of as the fundamental error functions
for pairs of invariant systems.

Proposition 5 Consider the pair of invariant systems on G

Ẋ = Xu, (7)

˙̂
X = X̂u (8)

for a single admissible input u : R → g. Let M be a smooth manifold. If there
exists a smooth error function E : G × G → M such that the systems (7) and
(8) are E-synchronous, then E has the form

E(X̂,X) = g(X̂X−1) = g(Er(X̂,X)),

where g : G → M is a smooth function.
The analogous result holds for right-invariant systems

Ẋ = vX

˙̂
X = vX̂.

In that case one has

E(X̂,X) = g(X−1X̂) = g(El(X̂,X))
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Proof: Consider the pair of systems (7) and (8) and an error function E as
above. Let X0, X̂0, S ∈ G be arbitrary. Choose a smooth, bounded curve
T : R → G with bounded derivatives such that T (0) = e and T (1) = S.
Let (X, X̂) denote the solution of the pair of systems (7) and (8) for u(t) =
T−1(t)Ṫ (t) and (X, X̂)(0) = (X0, X̂0). Note that (X, X̂)(t) = (X0T (t), X̂0T (t)).
The error function E is constant on the trajectory (X, X̂)(t) and therefore
E(X̂0, X0) = E(X̂0S,X0S). Since X0, X̂0 and S are arbitrary, the function
E is right invariant under the action of G, i.e.

E = E ◦RS for all S ∈ G.

But this implies that E(X̂,X) = E ◦RX−1(X̂,X) = E(X̂X−1, e) for all X, X̂ ∈
G. Hence E has the form E(X̂,X) = g(X̂X−1) where g : G → M is the smooth
function g(Z) = E(Z, e). The other case is proven by an analogous argument.

�

Given that the invariant errors El and Er play such a key role in the analysis
of invariant synchronous systems it is of interest to specialise the notion of
synchrony introduced above to the canonical errors.

Definition 6 A pair of systems (3) and (4) is termed right synchronous if they
are Er-synchronous and left synchronous if they are El-synchronous.

In the remainder of the section, we consider the structure of a pair of syn-
chronous systems. We are interested in the case where the “first” system is left
(resp. right) invariant (1) (resp. (2)). We consider a “partner” system that is
either left or right synchronous and derive constraints on the structure of the
partner system. The result will provide us with the first half of the template for
the design of non-linear observers. The proof of the main result (Theorem 8)
uses the following lemma.

Lemma 7 Let X : R → G and Y : R → G be two smooth curves. Then

˙(X−1)Y = −TX−1RY TeLX−1TXRX−1Ẋ + TY LX−1 Ẏ ,

Ẏ X−1 = TY RX−1 Ẏ − TX−1LY TeLX−1TXRX−1Ẋ.

Proof: Recall that for the inverse function inv(X) = X−1 we have TX inv =
−TX (LX−1RX−1). The equations for the derivatives now follow from the usual
calculus rules for the multiplication on Lie groups. �

Theorem 8 Consider the left invariant system (1) and let a second system be
given by the general expression

˙̂
X = F

X̂
(X̂, u, t). (9)
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The systems (1) and (9) are right synchronous if and only if

F
X̂
(X̂, u, t) = X̂u. (10)

The systems are left synchronous if and only if

F
X̂
(X̂, u, t) = X̂ Ad

X̂−1X u = X̂ AdE−1

l

u. (11)

Proof: By Lemma 7 we have for trajectories X(t) of (1) and X̂(t) of (9)
that

Ėr = T
X̂
RX−1

˙̂
X − TX−1L

X̂
TeLX−1TXRX−1Ẋ

= T
X̂
RX−1F

X̂
(X̂, u, t)

− TX−1L
X̂
TeLX−1TXRX−1TeLXu

= T
X̂
RX−1F

X̂
(X̂, u, t)− TX−1L

X̂
TeRX−1u

and

Ėl = −TX−1R
X̂
TeLX−1TXRX−1Ẋ + T

X̂
LX−1

˙̂
X

= −TX−1R
X̂
TeLX−1TXRX−1TeLXu

+ T
X̂
LX−1F

X̂
(X̂, u, t)

= −TX−1R
X̂
TeRX−1u+ T

X̂
LX−1F

X̂
(X̂, u, t).

Hence Er is constant if and only if

F
X̂
(X̂, u, t) = TeLX̂

u = X̂u.

and El is constant if and only if

F
X̂
(X̂, u, t) = TX−1X̂

LXTX−1R
X̂
TeRX−1u

= TeLX̂
Ad

X̂−1X u = X̂ AdE
−1

l

u.

�

In the case where the “first” system is right invariant the synchronous terms
for the different errors are interchanged.

Theorem 9 Consider the right invariant system (2) and let a second system
be given by

˙̂
X = F

X̂
(X̂, v, t). (12)

The systems (2) and (12) are left synchronous if and only if

F
X̂
(X̂, v, t) = vX̂.

The systems are right synchronous if and only if

F
X̂
(X̂, v, t) = (Ad

X̂X−1 v)X̂ = (AdEr
v)X̂.
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It is interesting to observe that for a left invariant system (1) and choos-
ing the right synchronous constraint, one obtains left invariant dynamics for
the partner system (10). The dynamics (10) are highly desirable as the funda-
mental component of a non-linear observer design since they are independent
of the observed system’s state X and yet ensure that the observer dynamics
“track” the system state. This contrasts to choosing the left synchronous con-
straint, where the resulting partner system structure (11) depends on the error
El = X−1X̂ that requires knowledge of the observed system’s state X and can-
not be implemented in a real observer system. Thus, it is natural to consider
right invariant errors and right synchronicity when designing observers for left
invariant systems (1); and vice-versa for right invariant systems (2).

4 Internal models and innovation terms

In this section, we define the concept of internal model specialised for Lie group
systems. This definition is used to show that any observer of an invariant system
on a Lie group containing an internal model, can be split into a synchronous
term, providing the internal model properties of the observer, and a second term
that we identify as an innovation term. Thus, a natural approach to observer
design is to choose the observer as a sum of a synchronous (internal model)
term plus an innovation term, analogous to the “internal model plus innovation
term” design paradigm for linear systems.

Consider an observed system

Ẋ = FX(X,u, t) (13)

with FX : G× g× R → TG, FX(X,u, t) ∈ TXG and an observer

˙̂
X = F

X̂
(X̂, Y, w, t) (14)

with F
X̂
: G × G × g × R → TG, F

X̂
(X̂, Y, w, t) ∈ T

X̂
G. Note that the ob-

server (14) has two inputs Y and w, with Y to be fed with measurements of
X and w to be fed with measurements of u, respectively. The idea behind an
internal model is that the observer should be able to replicate the exact trajec-
tory of the observed system if it is provided with exact input information; that
is, the actual initial condition of the observed system’s state and exact mea-
surements. There is no a priori requirement that the system and the observer
are identical dynamical systems, only that they correspond along certain very
specific trajectories.

Definition 10 Consider the pair of systems (13) and (14). One says that (14)
has an internal model of (13) if for all admissible u : R → G, X0 ∈ G and all
t ∈ R

X̂(t;X0, X(t;X0, u), u) = X(t;X0, u), (15)

where X(t;X0, u) and X̂(t; X̂0, Y, w) denote the solutions of (13) and (14),
respectively.
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Note that by Theorem 8 a right synchronous system for the left invariant
system (1) has the form

˙̂
X = X̂w (16)

with w = u. It is straightforward to verify that (16) has an internal model of
the original left invariant system. The following result shows that any observer
of a left invariant system containing an internal model can be split into two
parts; the first or which is right synchronous with the original system, providing
the internal model properties of the observer, and a second term that will be
identified as an innovation term.

Theorem 11 Consider the left invariant system (1) and the observer (14).
Assume that the observer has an internal model of the system. Then the right
hand side of the observer can be written

F
X̂
(X̂, Y, w, t) = X̂w + α(X̂, Y, w, t), (17)

where α : G ×G× g× R → TG is a smooth function satisfying α(X̂, Y, w, t) ∈
T
X̂
G and

α
(

X̂(t;X0, X(t;X0, u), u), X(t;X0, u), u, t
)

= 0 (18)

for all admissible u : R → g, X0 ∈ G and t ∈ R.

Proof: Define α(X̂, Y, w, t) = F
X̂
(X̂, Y, w, t)− X̂w for all X̂, Y ∈ G, w ∈ g

and t ∈ R. Differentiating the internal model equation (15) and using the system
and observer equations yields

F
X̂

(

X̂(t;X0, X(t;X0, u), u), X(t;X0, u), u, t
)

=

X(t;X0, u)u

for all admissible u : R → g, X0 ∈ G and t ∈ R. We hence get

α
(

X̂(t;X0, X(t;X0, u), u), X(t;X0, u), u, t
)

=

F
X̂

(

X̂(t;X0, X(t;X0, u), u), X(t;X0, u), u, t
)

−

X̂(t;X0, X(t;X0, u), u)u =

X(t;X0, u)u− X̂(t;X0, X(t;X0, u), u)u = 0

where the last equality follows again from the definition of an internal model. �

A similar result can obviously be obtained for right invariant observed sys-
tems.

The decomposition (17) is analogous to the internal model plus innova-
tion term decomposition of linear observers. The concept of right (resp. left)
synchronicity provides a structural characterisation of internal models for left
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(resp. right) invariant systems. The α term in Equation (17) is analogous to the
innovation term in classical linear observer design. Condition (18) means that
α is zero along corresponding trajectories of the system and the observer.

Definition 12 Consider the pair of systems (13) and (14) and assume that
(14) has an internal model of (13). We call a map α : G×G× g×R → TG an
innovation term if

(C1) α(X̂, Y, w, t) ∈ T
X̂
G for all X̂, Y ∈ G, w ∈ g, t ∈ R and

(C2) α(X̂(t;X0, X(t;X0, u), u), X(t;X0, u), u, t) = 0 for all admissible u : R →
g, X0 ∈ G and t ∈ R.

Note that the conditions specified in Definition 12 are the least restrictive
possible. In general, an innovation term must be chosen carefully to ensure that
the trajectory of the observed system is an asymptotically stable limit set of the
observer trajectory. We discuss design of the innovation term in Section 5.

Note further that Condition (C2) in Definition 12 is in particular implied by
the following stronger condition

(C2’) α(Y, Y, w, t) = 0 for all Y ∈ G, w ∈ g and t ∈ R.

Conditions (C2) and (C2’) are in general not equivalent since there is no guar-
antee that for a given admissible input u the trajectories of the system (and/or
those of the observer) will cover all of G at any given time.

In summary, we propose the following structure for the design of non-linear
observers for invariant systems on Lie groups.

˙̂
X = X̂wl + α(X̂, Y, wl, t) (left observer) (19)

This observer is intended for left invariant observed systems of the form (1), with
Y receiving measurements of X and wl receiving measurements of u. Note that
this observer is in general not left invariant, since α need not be left invariant.

˙̂
X = wrX̂ + α(X̂, Y, wr, t) (right observer) (20)

Correspondingly, this observer is intended for right invariant observed systems
of the form (2), with Y receiving measurements of X and wr receiving measure-
ments of v. Note that this observer is in general not right invariant.

5 Gradient observers

In this section, we present an approach to choosing innovation terms for non-
linear observers of the form (19) and (20) based on using the gradient descent
direction of a suitable cost function.

Let f : G × G → R be a smooth, non-negative cost function. Furthermore,
let the diagonal ∆ = {(X,X) | X ∈ G} consist of global minima of f . Recall
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that the Riemannian gradient of f with respect to the product metric 〈·, ·〉p on
G×G is defined by

〈grad f(X̂, Y ), (η, ζ)〉p = df(X̂, Y )(η, ζ)

for all X̂, Y ∈ G, η ∈ T
X̂
G, ζ ∈ TY G. Since we use the product metric, the

gradient splits into the gradients with respect to the first and second parameter,
i.e.

〈grad f(X̂, Y ), (η, ζ)〉p =

〈grad1 f(X̂, Y ), η〉+ 〈grad2 f(X̂, Y ), ζ〉.

We propose to use the gradient of f with respect to the first parameter as
an innovation term α in the design of observers. Given the observed system (1)
(resp. (2)) then the design of the observer is

˙̂
X = X̂wl − grad1 f(X̂, Y ), (left observer) (21)

respectively
˙̂
X = wrX̂ − grad1 f(X̂, Y ). (right observer) (22)

It remains to analyze the dynamics associated with this choice and show
that the observer trajectory asymptotically converges to the observed system’s
trajectory.

5.1 Error dynamics

To understand the stability of the proposed observers (21) and (22) we ana-
lyze the case where exact measurements of the input u (resp. v) of system (1)
(resp. (2)) as well as exact measurements of the stateX are available. In terms of
the variables introduced in Section 4 one has Y = X and wl = u (resp. wr = v)
in the case of the observer for a left (resp. right) invariant system.

The following result is used in the development later in the section.

Lemma 13 Let G be a Lie group. Let f : G ×G → R be a left invariant cost
function and take a left invariant Riemmanian metric. Then for all X,Y, Z ∈ G

TXLY −1 grad1 f(X,Y Z) = grad1 f(Y
−1X,Z)

If f and the Riemmanian metric are right invariant, then for all X,Y, Z ∈ G

TXRZ−1 grad1 f(X,Y Z) = grad1 f(XZ−1, Y )

Proof: If f is left invariant, then f ◦LY = f . Using this fact and the standard
rules for transformations of Riemannian gradients, we have that

grad1 f(Y
−1X,Z) = grad1(f ◦ LY )(Y

−1X,Z)

= (TY −1XLY )
∗ grad1 f(X,Y Z),
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where (TY −1XLY )
∗ denotes the Hilbert space adjoint of the linear map TY −1XLY .

Since the Riemannian metric is left invariant, we have that (TY −1XLY )
∗ =

TXLY −1 . The right invariant case follows from an analogous argument. �

To analyze the asymptotic stability of the observer trajectory to the ob-
served system’s trajectory it is convenient to consider the dynamics of the error
functions Er and El and prove that their trajectories converge to the identity
element of the Lie group. Since Er and El are non-degenerate, this will imply
the desired asymptotic stability. In particular, under suitable invariance condi-
tions on the cost function and the Riemannian metric the error dynamics for
the “correct” invariant error are autonomous.

Theorem 14 Consider the left invariant system (1). Let f : G ×G → R be a
right invariant cost function and take a right invariant Riemannian metric on
G. Consider the left observer dynamics (21). Then the error dynamics of the
right invariant error Er (5) are given by

Ėr = − grad1 f(Er, e).

If the right invariant system (2) is considered with a left invariant cost func-
tion and Riemannian metric along with the right observer dynamics (22), then
the error dynamics of the left invariant error El (6) are given by

Ėl = − grad1 f(El, e).

Proof: Directly from the system equations and the equations of the left
observer it follows that

Ėr = −T
X̂
RX−1 grad1 f(X̂, Y )

= −T
X̂
RX−1 grad1 f(X̂,X).

Using Lemma 13 and the right invariance of f and the Riemannian metric, we
get that

Ėr = − grad1 f(X̂X−1, e) = − grad1 f(Er, e).

The result for the right observer follows from an analogous argument. �

The gradient dynamics of the error yield the following convergence result in
the noise-free case.

Theorem 15 Assume that Y 7→ f(Y, e) is a Morse-Bott function with a global
minimum at e and no other local minima. If f and the Riemannian metric on
G are both right invariant, then both errors Er and El of the left observer (21)
converge to e for generic initial conditions. Furthermore, f(Er, e) converges
monotonically to f(e, e) and this convergence is locally exponential near e. If f
and the Riemannian metric on G are both left invariant, then both errors Er

and El of the right observer (22) converge to e for generic initial conditions.
Furthermore, f(El, e) converges monotonically to f(e, e) and this convergence
is locally exponential near e.
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Proof: Let us consider the left observer. The gradient structure of the
error dynamics (Theorem 14) and the conditions on the cost function yield the
monotonic convergence of f(Er, e) and therefore the convergence of Er to e.
As f is a Morse-Bott function, the convergence of f(Er, e) is exponential near
e. Since convergence of Er to e implies the convergence of El to e, we get the
convergence of the left invariant error, too. The result for the right observer is
proved by an analogous argument. �

Remark 16 Consider the left invariant system (1) and noisy measurements
wl = u+δ and Y = NlX, with additive driving noise δ ∈ g and left multiplicative
state noise Nl ∈ G. A straightforward calculation yields

Ėr = Ad
X̂
δEr − grad1 f(Er, Nl)

for the canonical right invariant error of the left observer (21). There is an anal-
ogous formula for the canonical left invariant error of the right observer (22),
this time best expressed in terms of right multiplicative state noise Y = XNr.
It is intuitively clear that suitably bounded noise will yield at least a practical
stability result in these cases.

Theorems 14 and 15 are the main results of this section. Together, these
results provide a template for the design of non-linear observers for invariant
systems on a Lie-group, Equations (21) and (22). There is still an outstanding
question of how to find suitable cost functions that we will address in Section
5.3. In the remainder of this section, we consider some of the special cases that
were not addressed in Theorems 14 and 15.

The convergence result in Theorem 15 raises the question of what the dy-
namics of the other error, i.e. El for the left observer and Er for the right
observer, looks like and if its cost converges monotonically to f(e, e). Under
suitable invariance conditions, one obtains the following result on the dynamics
of the other errors for each observer.

Theorem 17 Consider the left invariant system (1). Let f : G ×G → R be a
left invariant cost function and take a left invariant Riemannian metric on G.
Consider the left observer dynamics (21). Then the error dynamics of the left
invariant error El are

Ėl = (TeLEl
− TeREl

)u− grad1 f(El, e)

= (Elu− uEl)− grad1 f(El, e).

If the right invariant system (2) is considered with a right invariant cost
function and Riemannian metric along with the right observer dynamics (22),
then the error dynamics of the right invariant error Er are

Ėr = (TeREr
− TeLEr

)v − grad1 f(Er, e)

= (vEr − Erv)− grad1 f(Er, e).
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Proof: Let us consider the left observer. Using Lemmas 7 and 13 one
obtains

Ėl = −TX−1R
X̂
TeLX−1TXRX−1TeLXu+ T

X̂
LX−1TeLX̂

u

− T
X̂
LX−1 grad1 f(X̂, Y )

= (T
X̂
LX−1TeLX̂

− TX−1R
X̂
TeRX−1)u

− T
X̂
LX−1 grad1 f(X̂,X)

= (TeLEl
− TeREl

)u− grad1 f(El, e).

The statement for the right observer follows from an analogous calculation. �

It is interesting to consider the case of a bi-invariant cost function f . In
this case it is possible to show that the non-gradient term in the error dynamics
(Theorem 17) is passive with respect to the cost, i.e. an element of the kernel
of the differential of the cost.

Lemma 18 Consider a Lie-group G with Lie-algebra g. Assume that there
exists a bi-invariant cost f : G × G → R. Then for all u, v ∈ g and any
El, Er ∈ G

〈(TeLEl
− TeREl

)u, grad1 f(El, e)〉 = 0

〈(TeREr
− TeLEr

)v, grad1 f(Er, e)〉 = 0

Proof: For all u ∈ g we have by the bi-invariance of f and standard
transformation rules for the gradient that

〈TeLEl
u, grad1 f(El, e)〉 = 〈u, (TeLEl

)∗ grad1 f(El, e)〉

= 〈u, grad1 f(e, E
−1
l )〉

= 〈u, (TeREl
)∗ grad1 f(El, e)〉

= 〈TeREl
u, grad1 f(El, e)〉.

This yields the first equation. The other equation follows from an analogous
argument. �

Proposition 19 Consider the left invariant system (1). Let f : G×G → R be
a bi-invariant cost function and take a left invariant Riemannian metric on G.
Consider the left observer dynamics (21). Then the time derivative of the cost
function along trajectories of (1) and (21) is given by

d

dt
f = −|| grad1 f(El, e)||

2.

The analogous result holds for a right invariant Riemannian metric on G

and the right observer dynamics (22).
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Proof: Consider the left invariant case. The differential of f is given by

d

dt
f = 〈grad1 f(El, e), (TeLEl

− TeREl
)u− grad1 f(El, e)〉

= −〈grad1 f(El, e), grad1 f(El, e)〉

= −|| grad1 f(El, e)||
2

by applying Lemma 18. The analogous result for right invariant dynamics is
similarly direct. �

The above result can be developed into a convergence result analogous to
Theorem 15. In practice, the case that is of most interest is when both the cost
function and the metric are bi-invariant, a situation that occurs for the attitude
estimation example on SO(3). In this case the following convergence result is
obtained.

Corollary 20 Consider the left invariant system (1) and the right invariant
system (2). Assume that G admits a bi-invariant metric and let f : G×G → R

be a bi-invariant cost function. Assume that Y 7→ f(Y, e) is a Morse-Bott
function with a global minimum at e and no other local minima.

For both the left and right observers (21) and (22) then f(Er, e) and f(El, e)
converge monotonically to f(e, e) for generic initial conditions. The convergence
is locally exponential near e.

Proof: The convergence of the cost of one type error for each filter is shown
in Corollary 15. The convergence of the other error follows from the structure
of the error dynamics, cf. Theorem 17, and Proposition 19 by a straightforward
Lyapunov argument. �

5.2 Example: Attitude estimation on SO(3)

We revisit Example 1 on the special orthogonal group SO(3). The left invariant
attitude kinematics are

Ṙ = RΩ,

where R denotes the attitude of a coordinate frame fixed to a rigid body in 3D-
space relative to an inertial frame and Ω encodes the angular velocity measured
in the body-fixed frame. The velocity measurements are given by wl = Ω and
the state measurements are given by Y = R. The right invariant and left
invariant errors have the form Er = R̂R⊤ and El = R⊤R̂, respectively.

We define the cost function f(R̂, Y ) = k
2‖R̂−Y ‖2F , with ‖ ·‖F the Frobenius

matrix norm and k a positive constant. Since the Frobenius norm is invariant
under orthogonal transformations it follows that f is bi-invariant. Moreover, the
standard Riemannian metric on SO(3), induced by the Euclidean inner product
on R

3×3 restricted to the Lie-algebra of skew symmetric matrices, is also bi-
invariant. Let us recall the well-known methods to calculate the gradient of
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R̂ 7→ f(R̂, Y ), see e.g. [24]. As we use the induced metric on SO(3), the gradient
is given by the orthogonal projection of the Euclidean gradient in R

3×3 to the
tangent space of SO(3). This projection to T

R̂
SO(3) can be readily calculated

to be Z 7→ R̂P(R̂⊤Z), where P denotes the orthogonal projection onto the skew-
symmetric matrices, that is P(Z) = 1

2 (Z−Z⊤). Since the Euclidean gradient of

R̂ 7→ f(R̂, Y ) is just k(R̂−Y ), this yields that grad1 f(R̂, Y ) = kR̂P(I−R̂⊤Y ) =
−kR̂P(R̂⊤Y ). Hence we have the observer

˙̂
R = R̂wl + kR̂P(R̂⊤Y ) (left observer)

which coincides with the passive filter

˙̂
R = R̂Ω+ kR̂P(R̂⊤R)

proposed in [8, 6] (recall that wl = Ω and Y = R in the noise free case).
Starting with right invariant attitude kinematics

Ṙ = ΓR

and measurements wr = Γ and Y = R, we have the observer

˙̂
R = wrR̂ + kR̂P(R̂⊤Y ) (right observer)

which, using Γ = AdR Ω, coincides with the direct filter

˙̂
R = AdR ΩR̂ + kAd

R̂
P(R̂⊤R)R̂

discussed in [8, 6] but also extensively studied over the last ten years by a range
of authors [4, 5, 7, 9, 10].

5.3 Construction of invariant cost functions

In this section we investigate the question of finding invariant cost functions on
Lie groups.

For a left invariant system, Theorem 14 shows that the canonical right invari-
ant error for the left observer has gradient dynamics if the cost and Riemannian
metric are right invariant. A right invariant Riemannian metric can be easily
constructed on any Lie group by transporting a scalar product on the Lie al-
gebra to other tangent spaces by right translation. However, it is a priori not
clear how to obtain a right invariant cost function, in particular if the group
is non-compact. For example, the most natural cost function on SE(3) (cf.
Example 2) would be

f((R, p), (Y, y)) = ‖R− Y ‖2 + ‖p− y‖2, (23)

however, it is easily verified that this cost function is not right invariant. It
should be noted that finding a Morse-Bott cost function is usually fairly straight-
forward, (23) is an example of such a function, the challenge lies in ensuring
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the function chosen has the desired invariance properties. The next proposition
provides a method to obtain an invariant cost function on a Lie group given
that a suitable Morse-Bott function on G is available.

Proposition 21 Let G be a Lie group and let g : G → R be a smooth function.
Then f : G×G → R, f(X,Y ) = g(XY −1) is a smooth, right invariant function.
Furthermore, if g is a Morse-Bott function with a unique global minimum at e
and no further local minima, then Y 7→ f(Y, e) is Morse-Bott with a global
minimum at e and no further local minima.

Proof: The smoothness of f is obvious. For all X,Y, Z ∈ G we have
f(XZ, Y Z) = g(XY −1) = f(X,Y ) and thus f is right invariant. The sec-
ond statement follows directly from f(Y, e) = g(Y ) for all Y ∈ G. �

An analogous construction yields a left-invariant cost function. Furthermore,
we can obtain a right invariant cost function from any left invariant cost function
and vice-versa from the following result.

Proposition 22 Let G be a Lie group and let f : G×G → R be a left invariant
function. Then f̃ : G×G → R defined by

f̃(X,Y ) = f(X−1, Y −1)

is a right invariant function. Furthermore, if Y 7→ f(Y, e) is a Morse-Bott
function such that e is the only local minimum and a global minimum, then
Y 7→ f̃(Y, e) has the same properties.

Proof: The right invariance is checked by a straight forward calculation. The
second statement follows from the fact that the map inv: G → G, X 7→ X−1 is
a global diffeomorphism. �

5.4 Example: Pose estimation on SE(3)

As an application of the cost function construction above, let us recall Example
2, the special Euclidean group SE(3). The system on SE(3) is given by

d

dt

(

R(t) p(t)
)

=
(

RΩ RV
)

,

where R resp. p are the attitude resp. position of a coordinate frame fixed to
a rigid body in 3D-space relative to an inertial frame, Ω denotes the angular
velocity and V denotes the linear velocity measured in the body-fixed frame. As
mentioned before, the natural cost function (23) on SE(3) is not right invariant,
and hence Theorem 15 cannot be applied. However, Proposition 21 yields a
construction procedure for a right invariant cost function. For this we need to
choose a suitable function g on SE(3). We use

g(R, p) =
1

2

(

‖R− I‖2 + ‖p‖2
)

.
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It is straightforward (although tedious) to verify that g is a Morse-Bott function
with a unique global minimum at (I, 0) and no further local minima. Proposition
21 yields the right invariant cost function

f((R̂, p̂), (Y, y)) = g((R̂, p̂)(Y, y)−1)

=
1

2

(

‖R̂− Y ‖2 + ‖p̂− R̂Y ⊤y‖2
)

.

Note that

f((R̂, p̂), (Y, y)) =
1

2

(

‖R̂⊤ − Y ⊤‖2 + ‖ − R̂⊤p̂− (−Y ⊤y)‖2
)

.

Hence we can view f also as the result of applying Proposition 22 to the cost
function (23). In order to construct a left observer, such that Theorem 15
can be applied, we also need a right invariant Riemannian metric. Note that
T(I,0)R(R̂,p̂)(Ω, V ) = (ΩR̂, V + Ωp̂) for all (R̂, p̂) ∈ SE(3) and (Ω, V ) ∈ se(3).
Hence we can define a Riemannian metric by

〈(Ω1R̂, V1 +Ω1p̂), (Ω2R̂, V2 +Ω2p̂)〉 = tr(Ω⊤

1 Ω2) + V ⊤

1 V ⊤

2

for all (Ω1R̂, V1+Ω1p̂), (Ω2R̂, V2+Ω2p̂) ∈ T(R̂,p̂) SE(3). Note, that we have used
the representation of tangent vectors by right translation of the Lie algebra in
this definition. For our filter we have to calculate the gradient with respect
to the Riemannian metric. As a first step we derive a closed formula for the
differential of f with respect to the first variable.

d1f((R̂, p̂), (Y, y))(ΩR̂, V +Ωp̂) = − tr(ΩR̂Y T ) + 〈p̂− R̂Y ⊤y, V 〉

where P again denotes the orthogonal projection onto the skew-symmetric ma-
trices. Hence we have the following formula for the gradient,

grad1 f((R̂, p̂), (Y, y))

= T(I,0)R(R̂,p̂)(P(R̂Y ⊤), p̂− R̂Y ⊤y)

= T(I,0)L(R̂,p̂) Ad(R̂,p̂)−1(P(R̂Y ⊤), p̂− R̂Y ⊤y).

To obtain a representation of grad1 f as left-translated elements of se(3) we
check that

Ad(R̂,p̂)−1(P(R̂Y ⊤), p̂− R̂Y ⊤y) = (P(Y ⊤R̂), R̂⊤p̂− Y ⊤y + R̂⊤
P(R̂Y ⊤)p̂)

Assume now that we measure the angular and linear velocities (wΩ, wV ) =
(Ω, V ) and the system state (Y, y) = (R, p). Using the construction above we
get the left filter

˙̂
R = R̂wΩ − R̂P(Y ⊤R̂)

˙̂p = R̂wV − (p̂− R̂Y ⊤y)− P(R̂Y ⊤)p̂.
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By Proposition 21, and since g was a suitable Morse-Bott function, we can apply
Theorem 15 and see that the right invariant error for this observer converges to
the identity for generic initial values.

To the best of our knowledge, the above observer on SE(3) has not been
proposed in the literature before. Previous work by two of the authors [14]
yielded an observer on SE(3) with exactly the same structure, but with the last
term in the p̂-equation, i.e. −P(R̂Y ⊤)p̂, replaced by−R̂Y ⊤

P(R̂Y ⊤)y. Moreover,
Lyapunov-type stability results were proven in that paper for the observers
including or not including that term, respectively.

6 Gradient-like observers

In this section we relax the invariance requirements placed on the cost function
we have used to design the innovation term in our gradient observers and con-
sider general cost functions. To provide structure for the observer design we
require that the error dynamics exhibit autonomous gradient dynamics. This
approach leads to a version of an internal model principle for invariant systems
on a Lie group. The principle states that observers for invariant systems that
exhibit gradient dynamics for the canonical invariant errors will contain an in-
ternal model of the observed system and can be decomposed into a synchronous
term plus an innovation term analogous to that discussed in Section 4. The
innovation term is not itself a gradient term unless the cost function has the
invariance properties discussed in Section 5 and we term the resulting observers
gradient-like. This result sharpens a related structural result in [17] (see also
[16]), where less stringent conditions were placed on the error dynamics. Sharp-
ening these requirements allows us to derive an almost global convergence result
in a very general context.

Theorem 23 Let f : G×G → R be a smooth cost function. Consider a general
left observer for system (1),

˙̂
X = F

X̂
(X̂, Y, wl, t) (24)

with measurements Y = X and wl = u. Then the canonical right invariant
error Er displays gradient dynamics

Ėr = − grad1 f(Er, e), (25)

if and only if

F
X̂
(X̂, Y, wl, t) = X̂wl − T

X̂Y −1RY grad1 f(X̂Y −1, e).

The analogous result holds for right observers for system (2) with measure-
ments Y = X and wr = v, and the canonical left invariant error El. In this
case, the dynamics of the left invariant error are gradient dynamics

Ėl = − grad1 f(El, e), (26)
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if and only if

F
X̂
(X̂, Y, wr, t) = wrX̂ − TY −1X̂LY grad1 f(Y

−1X̂, e).

Proof: Assume that we have an observer (24) with error dynamics (25).
We can split F

X̂
(X̂, Y, wl, t) = X̂wl +α into the synchronization term X̂wl and

a remainder term α by defining α = F
X̂
(X̂, Y, wl, t) − X̂wl. By Lemma 7 and

using the same argument as in the proof of Theorem 8, as well as wl = u, we
see that

Ėr = T
X̂
RX−1α.

We see that α = −T
X̂Y −1RY grad1 f(X̂Y −1, e) by using X = Y and (25). In

particular, α is an innovation term in the sense of Section 4. If on the other
hand F

X̂
(X̂, Y, wl, t) has the form as given in the Theorem then a straightfor-

ward calculation shows that we get the error dynamics (25). The statement for
the error dynamics (26) follows analogously. �

Theorem 23 yields the two gradient-like observers

˙̂
X = X̂wl − T

X̂Y −1RY grad1 f(X̂Y −1, e) (27)

and
˙̂
X = wrX̂ − TY −1X̂LY grad1 f(Y

−1X̂, e). (28)

Note that by Lemma 13 these observers coincide with the gradient observers
(21) and (22), respectively, if the cost function and the Riemannian metric are
right, respectively left, invariant.

Corollary 24 Assume that Y 7→ f(Y, e) is a Morse-Bott function with a global
minimum at e and no other local minima. Both errors (Er and El) of the left
observer (27) and both errors of the right observer (28) converge to e for generic
initial conditions. Furthermore, f(Er, e) converges monotonically to f(e, e) for
the left filter and f(El, e) converges monotonically to f(e, e) for the right filter,
and this convergence is locally exponential near e in both cases.

Proof: The proof is entirely analogous to that of Theorem 15. �

Remark 25 In the case of noisy measurements wl = u + δ and Y = XNr, a
straightforward calculation shows

Ėr = Ad
X̂
δEr − TErN

−1

r
RX−1NrX grad1 f(ErN

−1
r , e)

for the canonical right invariant error of the left gradient-like observer (27).
The formula for the canonical left invariant error of the right gradient-like ob-
server (28) is analogous. It is intuitively clear that these systems will have
strong practical stability properties.
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7 Conclusion

This paper provides a coherent theory of nonlinear observer design for systems
with left (resp. right) invariant kinematics on a Lie group for which one has a
right (resp. left) invariant, non-degenerate, Morse-Bott cost function and full
measurements. The key contributions are the observer equations (21) and (22)
along with Theorems 14 and 15. The results in Section 5.3 are of practical
importance in generating invariant cost functions. Finally, the results presented
in Section 6 provide a practical design methodology in the case where a non-
invariant cost function is considered. A limitation of the approach described in
this paper is the requirement for full measurement of both state and velocity. In
work in progress, we are investigating the structure of observers for kinematic
systems on Lie groups with partial state measurements.
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