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and large deviations of buffer size
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Abstract

We show global uniqueness of the solution to a class of constrained
variational problems, using scaling properties. This is used to establish
the essential uniqueness of solutions of a large deviations problem in
multiple dimensions. The result is motivated by models of buffers, and
in particular the probability of, and typical path to overflow in the
limit of small buffers, which we analize.

keywords Uniqueness of Variational problems, Large Deviations, Buffer
overflow, AMS model.

1 Introduction

We investigate uniqueness of solutions to variational problems that arise in
sample-path large deviations. Our motivation comes from models of buffers
in telecommunication systems. The original model was developed by Anick,
Mitra, and Sondhi [1]. Weiss [11] cast this model in the framework of sample-
path large deviations and showed for the probability of buffer overflow

lim
n→∞

1

n
logP (bn(t) ≥ B) = inf

(~r ,T )∈G(B)

∫ T

0
ℓ(~r (t), ~r ′(t)) dt, (1.1)
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where ℓ(~r (t), ~r ′(t)) is a positive “cost” function, and G(B) is the set of
paths ~r (d-dimensional functions of t) and terminal times T satisfying a
buffer overflow property (see § 7). Botvich and Duffield [2] (and indepen-
dently Courcoubetis and Weber [3] and Simonian and Guibert [7]) analyze
the probability of buffer overflow for more general traffic models. For a su-
perposition of n traffic sources, each bringing independent traffic A(t) to the
buffer in time (0, t), and with the buffer draining at rate nc for some con-
stant c, they show that the steady-state probability that the scaled buffer
content bn(t) = b(t)/n exceeds a level B is approximately

lim
n→∞

1

n
logP (bn(t) ≥ B) = − inf

t>0
sup
θ

{

θ(b+ct)− logE (exp(θA(t)))
}

. (1.2)

For more recent results see e.g. Mandjes and Mannersalo [6] and references
therein. Mandjes and Ridder [5] showed how to use the solution of (1.2) to
find a minimal sample path ~r (t) in (1.1); that is, a solution to the variational
problem. If this solution is unique, then this result is quite useful, as shown
by Freidlin and Wentzell [4]: if ~zn(t) represents the scaled state of the system
at time t, bn(t) the scaled buffer size, and ~r (t) is the unique solution to the
variational problem (1.1), then for each fixed s ≤ T ,

lim
n→∞

Pss

(

sup
s≤t≤T

|~zn(t)− ~r (t)| < ε

∣

∣

∣

∣

bn(T ) ≥ B

)

= 1. (1.3)

Here Pss is steady-state probability and P(A|B) is the probability of A condi-
tioned on B. Thus, conditioned on the buffer overflowing, we can determine
beforehand most likely how it did so. So the sample-path approach yields
interesting information when the minimizing ~r (t) is unique.

The general problem of uniqueness for variational problems is difficult.
In general, it is difficult to prove local uniqueness for variational problems,
and global uniqueness is even more difficult. In addition, our problem is an
optimization problem under a constraint (buffer exceeds B). Constraints can
often be handled using Lagrange multipliers, so that standard uniqueness
methods can be applied. However, this requires a proof that the multiplier
principle holds in this case. Note that due to our application, the minimum
must be shown to be unique in the class of absolutely continuous paths, not
simply C1 or piecewise C1 paths. Finally, in terms of the application, there
seem to be no direct probabilistic methods for establishing uniqueness.

In this note we consider a constrained variational problem where the
constraint is given by a single functional. We assume a certain scaling prop-
erty of the constraining functional together with homogeneity, convexity
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and superlinear growth of the Lagrangian ℓ to show global uniqueness of
the minimizing solution. For our motivating model this means the follow-
ing. In previous studies of this model ([8], Chapter 13) we showed, through
laborious calculations, the applicability of the multiplier principle as well
as uniqueness, for a simple one-dimensional case. We show here that the
assumptions of our new uniqueness result hold for a constant coefficient pro-
cess. Then we approximate our model with a constant coefficient one and
show that, in the limit as the buffer size B → 0, the variational problem
has an essentially unique solution, in the following sense. There is a unique
path ~r ∗(t), 0 ≤ t ≤ T , for the constant coefficient process, such that any
minimizing path ~r B(t) of the real process is close to a scaled version of ~r ∗(t):

lim
B→0

1√
B

(

~r B(t
√
B)− ~r B(0)

)

+ ~r ∗(0) = ~r ∗(t), 0 ≤ t < T, (1.4)

uniformly in t, and ~r B(0) → ~r ∗(0). In other words, for each ε > 0 there is
a δ > 0 such that for all B < δ,

sup
0≤t≤T−δ

∣

∣

∣

∣

1√
B

(

~r B

(

t
√
B
)

− ~r B(0)
)

− (~r ∗(t)− ~r ∗(0))

∣

∣

∣

∣

< ε. (1.5)

The conditions under which this result holds are mild.
Note that this result together with a local uniqueness result for the orig-

inal model—for small enough B— imply that there is a unique solution for
all B small enough, for each given starting point. We do not give general
conditions for the uniqueness of the full buffer model, but some discussions
appear in § 8. Our result does not imply full sample-path uniqueness for
the stochastic model with non-constant rates, although we are certain that
uniqueness does hold. In paticular, we have no effective bounds on the error
(the relationship between ε and δ in (1.5)).

In § 2 we introduce the general variational problem, and in § 3 we state
the abstract assumptions under which uniqueness holds. Sections 4 and 5
prove existence and uniqueness resp. In § 6 we derive a property of the shape
of optimal paths for buffer problems. In § 7 we formulate the stochastic
buffer problem and obtain some properties, in § 8 we prove weak uniqueness
and in § 9 we show a strong uniqueness result and discuss the desired full
uniqueness result.
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2 The variational problem

We assume throughout that the functional I[0,T ](~r ) on absolutely continuous
paths ~r (t) (d-dimensional functions of a real variable) has a representation

I[0,T ](~r )
△
=

∫ T

0
ℓ

(

~r (t),
d

dt
~r (t)

)

dt, (2.1)

where ℓ(~x, ~y) is a positive function, convex in ~y. The constant coefficient
problem has ℓ(~x, ~y) = ℓ(~y)—independent of ~x. We prove our uniqueness re-
sult for a general class of constraints. So, let B be a given positive functional
on absolutely continuous paths. Our optimization problem is

Problem A. Given ~x and B > 0, find a time T and an absolutely continuous
path ~r (t) that minimize I[0,T ](~r ) subject to B(~r , T ) ≥ B.

Denote this minimal cost by I. This is a “free time” problem; hence
straightofrward convexity arguements cannot be used to infer uniqueness.

3 Assumptions

Throughout, we use the sup norm on the space of (measurable) functions.
The following assumptions apply to the constant coefficient problem. We
shall use all save the last assumption in order to prove existence of solutions
to Problem A, and a different subset to prove uniqueness of solutions.

Assumption 1

[A] ℓ(~y) is positive and strictly convex in ~y.

[B] lim
|~y|→∞

ℓ(~y)/|~y| = ∞.

[C] B(~r , t) is positive, continuous in (~r , t), and B(~r , 0) = 0.

[D] For some ~s, ℓ(~s) <∞ and limt→∞ B(~r , t) = ∞ for ~r (t) = ~x+ t~s.

[E] Given ~x and B there is a T1 <∞ such that any path ~r (t) on 0 ≤ t ≤ T
with T > T1, ~r (0) = ~x and B(~r , T ) ≥ B has I[0,T ](~r ) > I + 1.

[F] For all ~r (t) and ~z(t) on 0 ≤ t ≤ T with ~r (0) = ~z(0) = ~x, B satisfies

1. For any γ ∈ (0, 1) and 0 ≤ t ≤ T we have

B(γ~r + (1− γ)~z, t) ≥ γB(~r , t) + (1− γ)B(~z, t). (3.1)
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2. There exists a positive increasing function f(α), defined for α >
0, that satisfies f(α)f(1/α) ≡ 1, and is either the identity (f(α) =
α), or is strictly convex for α ≥ 1 such that for every ~r (t) on

0 ≤ t ≤ T , the scaled path ~y(t)
△
= α~r (t/α) satisfies

B(~y, t) = f(α)B(~r , αt) 0 ≤ t ≤ αT (3.2)

Note that Assumption 1 [A] implies for any γ ∈ (0, 1) we have

I[0,T ](γ~r + (1− γ)~z) ≤ γI[0,T ](~r ) + (1− γ)I[0,T ](~z), (3.3)

where the inequality is strict unless ~r (t) ≡ ~z(t). Furthermore, the repre-
sentation of I as an integral implies that, for ~y defined in terms of ~r as in
Assumption 1 [F] 2, I[0,αT ](~y) = αI[0,T ](~r ).

The prototypical f(α) satisfying [F] 2 is f(α) = αβ for β > 1. Our
motivating example has β = 2; see (6.1). The conditions do not imply that
f(α) is convex for α < 1. They imply that f(1) = 1 and f(α) → 0 as α→ 0.

4 Existence

The real import of this paper is uniqueness; for completeness, we prove
that for the constant coefficient problem, there exist solutions to Problem
A under our assumptions.

Theorem 1 Under Assumption 1 parts [A]–[E], there exists a solution to
Problem A.

Proof: By Assumption 1 [D] the linear function ~r (t) = ~x + t~s has
I[0,T ](~r ) <∞ and makes B(~r , T ) ≥ B for T large enough. Therefore we are
not minimizing over an empty set. By Assumption 1 [E] we may restrict to
minimizations over sets of bounded time.

Take a minimizing sequence ~r i on [0, Ti] with B(~r i, Ti) ≥ B and ~r i(0) =
~x. To prove existence of an optimal ~r we need to show that a converg-
ing subsequence of approximate minimizers has a minimal limit. By [8,
Lemma 5.18], under Assumption 1 [A] and [B], a set of paths ~r i(t) over a
bounded interval [0, T ], having ~r i(0) in a compact set, and with bounded
I-functions, is uniformly absolutely continuous, hence pre-compact. There-
fore, since any minimizing sequence has bounded T , there exists a con-
vergent subsequence, and the limiting path ~r (t) is absolutely continuous.
Again under Assumption 1 [A] and [B], [8, Lemma 5.42] shows that the
functional I[0,T ] is lower semicontinuous in ~r ; therefore, the limiting path
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satisfies I[0,T ](~r ) ≤ limi I[0,T ](~r i). The continuity of B in (~r , T ) shows that
B(~r , T ) ≥ B.

5 Uniqueness

In this section we establish that the solution to the constant coefficient
problem is unique. Note that this is only interesting because Problem A
has the constraint B(~r , T ) ≥ B and T is not determined. If we were simply
trying to minimize I[0,T ](~r ) with fixed initial and final points, it is trivial to
show that the unique solution is a straight line path (e.g., [8, Lemma 5.15]).

Theorem 2 Fix ~x and B > 0. Suppose Assumption 1 [A], [B], [C], and [F]
hold. If ~r (t) 0 ≤ t ≤ T and ~y(t) 0 ≤ t ≤ T1 solve Problem A, then T = T1
and ~r (t) = ~y(t), 0 ≤ t ≤ T .

Note: in the proof, we need to rescale time in part because the optimal
paths may live on different time intervals.

Proof: Without loss of generality assume T1 ≥ T . Define α = T1/T ≥ 1.
By assumption,

I[0,T ](~r ) = I B(~r , T ) ≥ B

I[0,αT ](~y) = I B(~y, αT ) ≥ B.

Take ~u(t)
△
= α~r (t/α). Then I[0,αT ](~u) = αI and B(~u, αT ) ≥ f(α)B. Now for

any 0 < γ < 1 define ~v = γ~y(t) + (1− γ)~u(t). Then we have

I[0,αT ](~v) ≤ (γ + (1− γ)α)I, B(~v, αT ) ≥ (γ + (1− γ)f(α))B. (5.1)

Now scale ~v to get ~w(t) = δ~v(t/δ). Then we have

I[0,δαT ](~w) ≤ δ(γ+(1−γ)α)I, B(~w, δαT ) ≥ f(δ)(γ+(1−γ)f(α))B (5.2)

where the first inequality is strict unless ~u = ~y. Note that since f(1) = 1,
so γ + (1− γ)f(α) = γf(1) + (1− γ)f(α), we have by (5.2) that

B(~w, δαT ) > f(δ)f(γ + (1− γ)α)B (5.3)

by the strict convexity of f , as long as α > 1 and f is not the identity. If
there is strict inequality in (5.3), we may find a δ < 1/(γ + (1 − γ)α) so
that B(~w, δαT ) > B. But then by (5.2), I[0,δαT ](~w) < I, contradicting the
assumed minimality of I. If f is the identity, so that inequality (5.3) is not
strict, then we choose δ = 1/(γ + (1 − γ)α), and get a contradiction to the
assumed minimality of I from the strict inequality in (5.2).
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6 Integral constraint: concave buffer

This section illustrates our assumptions on B, and derives a result of inde-
pendent interest for the study of properties of buffer models. This result
is not needed for the main argument. We consider the constant coefficient
problem, and a functional B that is a the traditional buffer model, and show
that optimizing paths have to be concave in a preferred direction. For a
given vector ~a with positive components, we take

d

dt
B(~r , t) =

{

〈~r (t),~a〉 if 〈~r (t),~a〉 > 0 or B(~r , t) > 0

0 otherwise,
(6.1)

B(~r , 0) = 0. (6.2)

Clearly B satisfies Assumption 1 [C]–[D]1; we discuss [E] later. We now show
[F].

Lemma 3 For any integrable function g(t), we have

uα(t)
△
=

∫ αt

αs
αg(w/α) dw = α2u1(t). (6.3)

Lemma 4 B(~r , t) defined by (6.1), (6.2) satisfies

B(~r , t) = sup
0≤s≤t

∫ t

s
〈~r (w),~a〉 dw. (6.4)

Corollary 5 Given ~r (t) set ~y(t)
△
= α~r (t/α). Then B(~y, T ) = α2B(~r , αT ).

These results are immediate; for a proof of Lemma 4 see [8, §13.2], [9].
We begin with an intuitive result: optimal paths never have 〈~r (t),~a〉 < 0.

If they did, then the buffer could be increased and the cost I decreased by
eliminating the point. The proof is exactly this argument, but we must
account for the shifting of time and position (shift segments of paths to
make them continuous) that come from eliminating intervals of time.

Lemma 6 Any minimal ~r (t), 0 ≤ t ≤ T with 〈~r (0),~a〉 ≥ 0 satisfies
〈~r (t),~a〉 ≥ 0, t ∈ [0, T ].

1[D] holds provided ℓ(~s) < ∞ for some ~s with 〈~s,~a〉 > 0.
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Proof: Eliminate any times with 〈~r (t),~a〉 < 0, then reconstitute ~r .
Mathematically, let

s(t) =

∫ t

0
1〈~r (u),~a〉≥0 du; (6.5)

Let τ(q) = inf{t : s(t) = q} be the first time by which 〈~r (u),~a〉 ≥ 0 for a
total time of q. Then τ(s(p)) = s(τ(p)) = p, that is, τ and s are inverses.
Then define

~r 1(t) = ~r (0) +

∫ τ(t)

0

d

du
~r (s(u)) du. (6.6)

This is well defined since ~r is absolutely continuous. The path ~r 1(t) has
the same increments as the path ~r (t) once the times 〈~r (t),~a〉 < 0 are
eliminated, and it is continuous. Clearly I[0,T ](~r ) ≥ I[0,s(T )](~r 1). But if
B(~r , T ) = B > 0 then B(~r 1, s(T )) ≥ B, since the two functions are equal
at corresponding (shifted) times whenever 〈~r (t),~a〉 ≥ 0; see (6.1) or (6.4).
In fact, if 〈~r (t),~a〉 < 0 anywhere, then B(~r 1, s(T )) > B. But in this case,
by the continuity of B (assumption 1 [C]) and its definition, there is some
T1 < s(T ) so that B(~r 1, T1) = B and, by definition (2.1), since ℓ is positive,
I[0,T ](~r ) > I[0,T1](~r 1), so that ~r is not optimal .

Lemma 7 Given B, T and ~x with 〈~x,~a〉 ≥ 0, any ~r (t) with ~r (0) = ~x that
has B(~r , T ) = B and has minimal cost I[0,T ](~r ), has the property that the
function 〈~r (t),~a〉 is concave, 0 ≤ t ≤ T .

Proof: Suppose that the function 〈~r (t),~a〉 lies strictly below its concave
envelope for some L < t < M . Let v(t) denote the concave envelope of
〈~r (t),~a〉; hence v(t) is linear on [L,M ]. By [8, Lemma 5.15], replacing ~r
with a linear function over the interval [L,M ] strictly decreases I, and since
v(t) > 〈~r (t),~a〉 for L < t < M , by (6.1), B(~r , t) increases for t > L .

7 Stochastic buffer model

This section gives an overview of the connection between a class of stochastic
traffic and buffer models and the variational Problem A. Precise definitions
and assumptions will be given later. There are two components in the
models: a Markov chain ~x(t) (called the state of the system) and the buffer
itself. The Markov chain operates in continuous time and its state lies in
the K-dimensional lattice with positive integer components. There are J
possible transitions, with transition rates λi(~x) in direction ~ei, 1 ≤ i ≤ J .

8



This means that the state jumps from ~x to ~x+ ~ei with Poisson rate λi(~x).
The interpretation of the state is that there are xi sources of traffic in state i.
There is a single buffer with continuous contents B(t). The buffer contents
are filled by each source in state i at rate ai > 0, and the total buffer
drain rate is C. Mathematically, the buffer satisfies the following equation
(cf. (6.1)–(6.4)):

d

dt
B(t) =

{

〈~x(t),~a〉 − C if 〈~x(t),~a〉 > C or B(t) > 0

0 otherwise.
(7.1)

If B(0) = 0 then it is easy to see that

B(t) = sup
0≤s≤t

∫ t

u=s
〈a, ~x(u)〉 du. (7.2)

We define B(~x, t) as this B(t) for a given (state) sample path ~x(t).
As an example, suppose that there are K = 2 types of traffic sources,

phone and data. Type 1 sources, phone, generate traffic at rate 1, arrive at
Poisson rate λ, and depart at rate µ each. Type 2 sources, data, generate
traffic with rate 5, arrive at rate θ, and depart at rate ψ each. Furthermore,
a phone source can turn into a data source (a person talks for a while, then
starts sending a fax); this occurs at rate γ for each source in state 1, and, of
course, a data source can become a phone source with rate δ. We suppose
the buffer drain rate is 100. This leads to a model with the following jump
rates and transitions:

~e1 = (1, 0) λ1 = λ ~e2 = (−1, 0) λ2 = µx1

~e3 = (0, 1) λ3 = θ ~e4 = (0,−1) λ4 = ψx2

~e5 = (−1, 1) λ5 = γx1 ~e6 = (1,−1) λ6 = δx2

d

dt
B(t) =

{

x1(t) + 5x2(t)− 100 if x1(t) + 5x2(t) > 100 or B(t) > 0

0 otherwise.

This is an open model, since sources arrive and depart. For λi = 0, 1 ≤ i ≤ 4,
this is a closed model: transitions are between types of sources, and the total
number of sources is constant. We could also allow for correlated arrivals
and departures. For example, we could have a person arrive and start to talk
on the phone and use his email at the same time; this would be an arrival
with e7 = (1, 1). Similarly, this type of person could depart (e8 = (−1,−1)),
stop one of his activities (e2 or e4), or a couple could start their day together
with e9 = (2, 2) etc.
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We suppose that the process ~x(t) may be scaled to ~zn(t) with jumps of
~zn having size ~ei/n with rate nλi(~zn(t)). The scaled buffer bn(t) is defined
similarly to (7.1):

d

dt
bn(t) =

{

〈zn(t),~a〉 − C if 〈zn(t),~a〉 > C or bn(t) > 0

0 otherwise.
(7.3)

In some models C is also scaled by n so as to have a finite limit as n→ ∞.
In general we suppose that the jump rates λi(~x) keep each component of
~zn(t) positive; that is, we do not consider “sources” that might drain the
buffer. Clearly bn(t) = B(~zn, t) under appropriate scaling.

We showed in [10] that, under a wide variety of assumptions on the
λi(~x), the process ~zn(t) satisfies a large deviations principle. Furthermore,
we showed in [9, 8, Chapter 13], that in a buffer model very similar to
the one just described, statistical properties of the buffer size process may
also be approximated by solutions to variational problems. (There have
been many other analyses of these problems; typically, they consider steady
state statistics. See, e.g. Mandjes and Ridder [5] or, for a non-sample-
path approach Botvich and Duffield [2].) In particular, it was shown that
the steady-state probability that the buffer exceeds a level B is given by
exp(−nI+o(n)), where I is the solution to a variational problem we describe
below.

7.1 The variational problem for Buffer overflow

Given the rates and jump directions, define the local cost function by

ℓ(~x, ~y)
△
= sup

~θ∈RK

(

〈~θ, ~y〉 −
∑

i

λi(~x)
(

exp〈~θ,~ei〉 − 1
)

)

. (7.4)

Then define the action functional, or cost of an absolutely continuous func-
tion ~r (t) ∈ R

K

I[0,T ](~r )
△
=

∫ T

0
ℓ

(

~r (t),
d

dt
~r (t)

)

dt. (7.5)

The variational problem associated with making a buffer exceed level B
is given as follows. We assume that the process is typically near its steady
state value, denoted by ~q, and that at that point the capacity C suffices to
serve the traffic, namely 〈~q,~a〉 < C. Let I be defined by

I = inf
{

I[0,T ](~r ) : ~r (0) = ~q, T <∞, B(~r , T ) ≥ B
}

. (7.6)
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Usually the optimizing T is infinite, since the time to leave ~q is infinite, so
we perform a standard shifting of time so that the upcrossing of the path ~r
to the hyperplane 〈~r ,~a〉 = C takes place at time 0. The time T after time 0
required to fill the buffer is then typically finite. If there is a unique solution
(T,~r ) with I[−∞,T ](~r ) = I and B(~r , T ) ≥ B then equation (1.3) holds; in
other words, given a buffer overflow, we know how it was almost certain to
have happened. For a proof of this assertion see [8, Chapter 13].

The problem of finding the minimal cost path ~r starting from ~q and
making B(~r , T ) ≥ B naturally splits into finding the cheapest path from
~q to sone ~x with 〈~x,~a〉 = C, followed by the cheapest path starting from
~x making B(~r , T ) ≥ B, and then minimizing the total cost I over all such
~x. This is clearly valid because the buffer cannot begin to increase until
〈~r ,~a〉 > C. It is also clear that the cost I[0,T ](~r ) of making a buffer B
tends to zero as B → 0 (since we can take a small period of time to make
the small buffer, and ℓ is finite for some directions). Therefore, if there is a
unique upcrossing point ~x∗, then for small B, the optimal point x (in the full
problem of making a small buffer) will be close to ~x∗, the optimal upcrossing
point.

7.2 Typical behavior

To describe the typical behavior of the state and buffer size processes, define
the process ~z∞(t)

~v(~x)
△
=
∑

i

λi(~x)~ei,
d

dt
~z∞(t) = ~v(~z∞(t)). (7.7)

Kurtz’s theorem [8, Chapter 5.1] states that, over finite time intervals, the
process ~zn(t) is extremely likely to remain close to the path ~z∞(t) that starts
at the same point ~z∞(0) = ~zn(0). The intuition is that ~v is the average drift
of the process ~zn(t), in the sense that

lim
δ↓0

lim
n→∞

~zn(t+ δ)− ~zn(t)

δ
− ~v(~zn(t)) = 0 with probability one. (7.8)

From this one can infer [9, Cor. 8] that the buffer size process bn is also
extremely likely to remain close to a limiting path, which can be calculated.

We will show next that given an initial point ~x with 〈~x,~a〉 = C, and
given a small B, there is an essentially unique path ~r with ~r (0) = ~x and
B(~r , T ) ≥ B). This clearly does not solve the full uniqueness problem,
because although we know that ~x ≈ ~x∗, for each B we have no idea whether
there is a unique associated point ~x.
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8 Weak uniqueness

We now state the assumptions under which the probabilistic problem of the
buffer being large is described by the deterministic variational Problem A.

Assumption 2

A. The processes ~zn(t) and bn(t) satisfy a sample-path large deviations
principle; the rate function for ~zn is I[0,T ].

B. There is a unique globally attracting point ~q of ~z∞(t).

C. 〈~q,~a〉 < C.

D. The Freidlin-Wentzell theory [8, Chapter 6] applies to both ~zn(t) and
bn(t).

E. There is a unique endpoint ~x∗ of the upcrossing problem from ~q to
{~x : 〈~x,~a〉 = C}.

F. 〈~x∗, ~v(~x∗)〉 < 0.

Since B is a continuous functional, the assumption that the buffer process
satisfies a large deviations principle is a consequence of the fact that ~zn
satisfies the principle, and the rate function for bn can be derived from
I[0,T ] [8, §2.3]: see e.g. [9, Cor. 8].

Theorem 8 Let Pss denote steady state probability. Under Assumption 2,

lim
n→∞

1

n
log Pss(B(~zn, t) ≥ B) = − inf

~r ,T

{

I[0,T ](~r ) : ~r (0) = ~q, B(~r , T ) ≥ B
}

.

Furthermore, if ~r is unique to within a time shift, then (shifting time so that
the buffer overflow takes place at time t = 0) the estimate (1.3) holds. That
is, ~zn(t) ≈ ~r (t) over each fixed interval of time before the time of overflow,
assuming that overflow occurs at time T .

The proof of Theorem 8 is standard from the Freidlin-Wentzell theory,
and will not be given here; see [4] or [8, Chapter 6, 13]. However, we must
explain when Assumption 2 can hold. Part A was proved in [10], under the
following conditions. The process ~zn(t) is assumed to live on the positive
quadrant G (in fact, the domain G in [10] is quite general). The jump rates
λi(~x) were assumed Lipschitz continuous, strictly positive in the interior
of the domain G, and λi(~x) → 0 as x → ~y ∈ ∂G for every i such that
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a jump in direction ~ei from ~y would take ~zn out of G. The associated ~ei
were assumed to positively span all of RK (that is, for any ~x ∈ R

K there are
βi ≥ 0 such that ~x =

∑

i ~eiβi). There were some further technical conditions
that are quite minor and will not be described here. Part B of Assumption
2 is simply that the process ~zn(t) tends to go to a small neighborhood of
~q. Part C means that the buffer B(t) tends to decrease when the process
is in its most likely state. Part D implies that steady-state quantities can
be calculated from the transient sample-path large deviations principle [8,
Chapters 6,13]. Part F means once the process ~zn(t) reaches the most likely
point where the buffer can begin to fill, the process tends to go in a direction
that has the buffer decrease. This means that, most likely, even when the
buffer begins to fill, it will almost immediately begin to decrease.

The assumptions can be largely eliminated if we change the question we
ask. Suppose we want to know how the buffer fills, starting from some point
~x with 〈~x,~a〉 = C, and how likely it is to fill to a level B.

Theorem 9 Under Assumption 2 A, given ~x with 〈~x,~a〉 = C,

lim
n→∞

1

n
log P(B(~zn, T ) ≥ B) = − inf

{

I[0,T ](~r ) : ~r (0) = ~x, T, B(~r , T ) ≥ B
}

.

Furthermore, if ~r (and T <∞) are unique then for every ε > 0

lim
n→∞

P

(

sup
0≤t≤T

|~zn(t)− ~r (t)| < ε

∣

∣

∣

∣

B(~zn, T ) ≥ B

)

= 1. (8.1)

The proof is standard: see [9].
It is because of Theorem 8 and (8.1) of Theorem 9 that we are motivated to
study uniqueness for solutions to Problem A. This concludes our discussion
of the connection between the probability and variational problems. We
return to the study of the variational problem.

Suppose that there is a unique upcrossing point ~x∗, the lowest cost point
from ~q to the hyperplane 〈~x,~a〉 = C. Consider the local cost function
ℓ(~x∗, ~y), which is defined for any (~x, ~y) in (7.4). When viewed as a constant
coefficient cost ℓ(~y), by [8, Chapter 5.2] ℓ(~x∗, ~y) satisfies Assumption 1 [A],
[B] and [E] and, for nontrivial Markov models, also [D]. When combined
with the functional B given in (7.1), it is easy to check that all of Assump-
tion 1 [A]–[F] hold (see [8, Chapter 5.2] for properties of ℓ(~y), Chapter 13
for properties of B). Therefore, the solution to Problem A for constant co-
efficient cost function, with paths starting at ~x∗ making buffer at least B,
exists and is unique. For the case B = 1 we call the resulting solution ~r (t),
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and the time T . Actually, the path may start at any ~x1 with 〈~x,~a〉 = C, as
long as we take the cost function given by ℓ(~x∗, ~y), not ℓ(~x1, ~y), and then the
solution will be ~r (t) + ~x1 − ~x∗, since I[0,T ] is invariant under shifts, while B
is invariant under shifts along the hyperplane {~x : 〈~x,~a〉 = 0}. Furthermore,
our scaling property gives the optimal path for any B 6= 1 as a scaled version
of ~r , namely α~r (t/α) + ~x∗ − α~x∗, for 0 ≤ t ≤ Tα, where α =

√
B.

We now switch back to cost function ℓ(~x, ~y) depending on ~x. Many
properties of this function are detailed in [8, Chapter 5]. If the positive
cone spanned by the ~ei is the entire space R

K , and if all λi(~x) > 0, then
0 ≤ ℓ(~x, ~y) < ∞, and ℓ(~x, ~y) is convex in ~y. [8, Thm. 5.35] shows that
for any ε > 0, c > 0, there exists a δ > 0 such that if J[0,T ](~r ) is defined

to be the same as I[0,T ](~r ) except using the local cost ℓ(~x∗, d
dt~r (t)), and if

J[0,T ](~r ) ≤ c and |λi(~r (t)) − λi(~x
∗)| < δ then |I[0,T ](~r ) − J[0,T ](~r )| < ε. In

other words, the functional I[0,T ] is uniformly continuous in sets of bounded
cost. Also, [8, Prop. 5.46] shows that for any c, T <∞, the set of ~r (t) with
~r (0) in a compact set, and with I[0,T ](~r ) ≤ c, is compact. Compactness is

in the sup norm topology for the paths in [0, T ] → R
K .

The basis of our argument is that when B is small, paths ~r B(t), 0 ≤
t ≤ TB , can stay very near ~r B(0) and have TB small, and still make
B(~r B, TB) = B. So the local cost function ℓ(~r B(t),

d
dt~r B(t)) is very nearly

equal to ℓ(~r B(0),
d
dt~r B(t)), a constant coefficient cost, for which we know

uniqueness applies. This motivates the following cost function, which is
based on considering a small neighborhood of ~r B(0). Given B and ~r B(0)
with 〈~r B(0),~a〉 = C, define

ℓB(~x, ~y)
△
= ℓ

(

~r B(0) +
√
B(~x− ~r B(0)), ~y

)

. (8.2)

For any such path ~r B(t) that has B(~r (TB)) = B we define a scaled path

~sB(t)
△
= ~r B(0) +

1√
B

(

~r B(t
√
B)− ~r B(0)

)

, 0 ≤ t ≤ TB/
√
B. (8.3)

A simple calculation shows that

B
(

~sB , TB/
√
B
)

= 1. (8.4)
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Now we find

∫ TB/
√
B

0
ℓB

(

~sB(t),
d

dt
~sB(t)

)

dt

=

∫ TB/
√
B

0
ℓB

(

~r B(0) +
1√
B
(~r B(t

√
B)− ~r B(0)),

d

dt
~r B(t

√
B)

)

dt

=

∫ TB/
√
B

0
ℓ

(

~r B(0) + (~r B(t
√
B)− ~r B(0)),

d

dt
~r B(t

√
B)

)

dt

=
1√
B

∫ TB

0
ℓ

(

~r B(u),
d

du
~r B(u)

)

du.

(8.5)

It is easy to show that, under Assumption 2 E, as B → 0, minimal
solutions to Problem A starting from ~r B(0) with 〈~r B(0),~a〉 = C must have
TB/

√
B bounded, since there are paths ~r (t) that have T/

√
B bounded, and

have cost of order
√
B, and any path that stays above 〈~r (t),~a〉 = C for time

T has cost that is bounded below by a function linear in T . Therefore, if we
consider solutions to Problem A with buffer size B small, then the scaled
problem with ℓB cost function has solution ~sB in bounded time TB/

√
B.

Theorem 10 Suppose all of Assumption 2 holds, and further that the up-
crossing point ~x∗ is unique. For any set of paths ~r B(t) satisfying B(~r (TB)) =
B and with minimal cost, starting from the point ~q, the scaled paths ~sB(t)
satisfy the following.

lim
B→0

TB√
B

= T (8.6)

lim
B→0

~sB(t) = ~r (t), 0 ≤ t ≤ T, uniformly in t. (8.7)

This theorem gives a connection between solutions to Problem A for constant
coefficient costs, and solutions with costs depending on ~x, but for small buffer
B. Proof of existence of solutions to Problem A for non constant coefficient
costs is the same as the proof for Theorem 1.

Proof: By [8, Prop. 5.46], the paths ~sB(t) lie in a compact set, since
they have bounded cost and their initial points ~sB(0) approach ~x

∗. Take a
convergent subsequence of ~sB. By [8, Thm. 5.35], the costs (based on ℓB) of
these paths converge to the cost of the constant coefficient path starting at
~x∗ and making buffer size 1 in time T . But Theorem 2 shows that this path
is unique among paths that start at ~x∗ and make buffer size 1. Therefore
any limiting sequence of the ~sB must converge to the same path, and do so
uniformly, and their times must converge also.
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We note that the point ~x∗ will be unique if the Markov chain can be
written as a superposition of sources, either an open model (with product-
form Poisson steady-state distribution) or a closed model (with multinomial
distribution). In these cases, ~x∗ is the solution of Sanov’s theorem (see [8,
Chapter 2]). Explicitly, if the steady-state distribution of the chain is π(i),
1 ≤ i ≤ K, then the upcrossing point is given by the minimum entropy point
(i.e., minimum Kullback-Leibler measure) on the hyperplane 〈~x,~a〉 = C. If
the level curves of this entropy are strictly convex, then the point ~x∗ is
unique. But it is easy to see that these level curves are strictly convex for
the two models under study, and the strict convexity also holds in the limit
as we scale n→ ∞.

9 Strong uniqueness

The preceding result may be combined with traditional variational calculus
to show strong (true) uniqueness for the solution to Problem A from a given
initial point ~r (0) where 〈~r (0),~a〉 = C. As mentioned before, this result
still does not give full uniqueness for the steady-state variational problem,
because that problem has ~r (0) = ~q where ~q is the unique attracting point
for the fluid limit ~z∞(t), and which satisfies 〈~q,~a〉 < C. Nevertheless, it is a
step in that direction.

Theorem 11 If the positive cone of the {~ei} equals R
K , and log λi(~x) are

Lipschitz and C2 functions, then given ~x∗ with 〈~x∗,~a〉 = C, there are B0

and δ > 0 so that for all B ≤ B0 and |~x − ~x∗| ≤ δ with 〈~x,~a〉 = C, the
solution to Problem A starting at ~r (0) = ~x is unique.
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