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A Gramian-based Approach to Model Reduction for
Uncertain Systems

Li Li, lan R. PeterserFellow, IEEE

Abstract—The paper considers a problem of model reduction for a
class of uncertain systems with structured norm bounded urertainty.
The paper introduces controllability and observability Gramians in terms
of certain parameterized algebraic Riccati inequalities.Based on these
Gramians, three model reduction approaches are investigat for the
underlying uncertain systems.

Index Terms—Model Reduction, Uncertain Systems, Linear Fractional
Transformation, Linear Matrix Inequality

. INTRODUCTION

Model reduction is an important aspect of linear systemsrihe

One commonly applied model reduction method for linear time

invariant (LTI) systems is balanced truncation [1]. By meaof

balancing controllability and observability Gramiansgeduced order
model is constructed together with an a priori error boung;, esee
[2], [3], [4]. In [5], it was shown that generalized contraitiility and

observability Gramians can also be used to charactétizenodel

reduction problems. For unstable systems, LQG balanceatdtion

was proposed in [6]; see also [7]. Beingcised-loopbalancing
approach, LQG balanced truncation removes a stabilityirespent

in balanced truncation anid., model reduction methods.

Uncertain systems commonly arise in robust control theery;,
see [8], [9]. Model reduction methods for uncertain systemesvery
useful in the design of practical robust control systems frictv the
dimension of controllers needs to be limited. In discréteetcases,
balanced truncation for uncertain systems can be tracddtbdt0],
[11] within the framework of linear fractional transfornais (LFTSs).
In [12], [13], balanced model reduction was extended todirténe-
varying (LTV) systems. In continuous-time cases, modeluctdn
for linear parameter-varying (LPV) systems was proposedl#],
[15]. Closely related problems, such as approximatiomdation and
simplification of uncertain systems were presented in [[5]].

In [18], [19], problems of controllability and unobservityi were
investigated for a class of structured uncertain systenwshich the
uncertainty is described by Integral Quadratic Constsa{hQCs).
These results motivate the question as to whether modettiedu
methods, based on controllability and observability Geamaj can

be obtained for uncertain systems. In this paper, we studglemo ,:a, <0 for any x# 0 in R™

reduction problems for continuous-time uncertain systemoslieled
by an LFT representation, as a counterpart to corresponaisigits
for discrete-time uncertain systems [10], [11]. We considecer-

tain systems with norm bounded uncertainty rather than @€ |
uncertainty description considered in [20], [18], [19].iFtenables
us to construct generalized Gramians and develop a seriedél

reduction methods for uncertain systems. These methodsmreced

truncation andH. model reduction for robustly stable uncertain

systems, and LQG balanced truncation for uncertain systenish
are not robustly stable.
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The main contribution of this paper is to characterize galimd
observability and controllability Gramians for contingetime un-
certain systems with structured norm bounded uncertaiptsnéans
of parameterized Riccati inequalities, and to develop desyatic
general framework for reducing the dimension of uncertgstesns.
We present a balanced truncation model reduction methodhtor
underlying uncertain systems and derive its error boundwesé&
results extend existing results for LTI systems [1], [2]], [B}] and
discrete-time uncertain systems [11], [21] to this classydtems.
The results also verify those in [16] in the context of IQCsewla
norm bounded uncertainty setting is adopted. In partictharsecond
error bound developed considers different uncertaintig¢be original
and the reduced uncertain system, and provides a Hausdstdhde
between the two uncertain systerfts, model reduction for uncertain
systems is also investigated. Analogous to [5], a sufficoemidition
for the existence of a reduced order model is provided whieblves
the underlying Gramians together with a rank constrainttuths
out that our method, compared to the related results in [$5kss
computationally demanding since [15] solves-22 (v is the number
of vertices of the underlying polytope) more matrix inedjies.
LQG balanced truncation is proposed for uncertain systefmishw
are not robustly stable, as a counterpart to the resultg.iis[Gilarly,

a coprime factorization technique was used in [22] for dissr
time unstable systems. However, the results in [22] rely an a
assumption that one of the system matrices is of full coluamkr
Our results overcome this restriction and provide a moreegdn
solution to constructing reduced-order uncertain systetris worth
noting that the same framework has been further developga3in

to construct contractive coprime factorizations for coatius-time
uncertain systems and to derive a corresponding model tieduc
algorithm, without the full rank assumption.

In this paper, we also present a tutorial overview of model
reduction methods for uncertain systems and aim to providiglt
into these methods from a Gramian-based point of view. Natethe
proposed balanced truncation ahid, model reduction approaches
face some computational and scalability difficulties. Heare the
problem of overcoming these difficulties is beyond the scofpthis
paper, and may be a topic for future research.

Notation Let LJ' = L7[0,») be the space of square integrable
functions inR™, and £ (L") denote the space of all linear bounded
operators mapping fromh]' to LY. The gain of an operato in

£(LY) is given by||A| = %, and the adjoint operator
2L 7[0,0),z#0

if Ais linear. If A=A*, A <0 means that
. We also useM* to denote the
complex conjugate transpose of a complex mabix For ze R™
and a nonnegative matrik € R™™, |22 = z*/Az, and A is omitted
when it is an identity matrix. The state-space realizatiba transfer

matrix is denoted by3(s) = { é g } :=C(sl-A)"1B+D.

of A is denoted ag\*

Il. PROBLEM FORMULATION
We consider the uncertainty structure
A® = {diag(Ay,--- %) 1 & € £(LY), A causal||ni| < 1},
and the following uncertain system:

X = AX+E&+Bu,

| z=Kx+Gy, 1)
ga y=Cx+D§,
E=NAz, AchC



wherex(t) € R" is the state u(t) € R™ is the control input z(t) €  whereS> 0,P >0, and/A. € Pg, /Ao € Pg are such that;* — GG* >
RN is the uncertainty outputy(t) € R! is the measured outpuand 0,A, — D*D > 0. Alternatively, (6) and (7) can be rewritten as
&(t) € RM is the uncertainty input hereh = hy +--- 4 hy. Note that

ok —1p*
it is assumed in (1) tha§ does not appear in This assumption is ASHSA +SKAKS+EA:'E .
made only for notational simplification purposes, and theults in + (B+SK'AG)(Im— G*AcG) " (B* +G*AKS) <0, (8)
the paper can be readily extended to more general cases. A*P 4+ PA+ pE/\(;lE*pJr K*AoK
Let the nominal system be denoted by +(C +PE/\51D*)(I| _ D/\ng*)’l(CJrD/\glE*P) <0. (9)
~_ [M11 M| KTo G The following example shows th& in (6) or (8) is analogous to
T [Ma1 Mpo| h ’ the LTI controllability Gramians. A similar result also ldisl for P in
CIP Oum (7) or (9).

Then, the uncertain system (1) is defined by an LFT repreSenta  Observation 5:(Controllability Gramian ) Consider the uncertain
as Fu(M,A) ;= Moo+ Mo A(l — MllA)*lMlz, wheneverl —M11A is  system (1) on the intervglo, 0] with x(—%) =0, and assume that

non-singular. Define operators ARI (8) admits a solutiorS > 0 for some/A¢ € Pg such thatly, —
* H * 1 H H
2y 5] [A+EAK B1EAG G /\;G > 0. Using x*(t)S *x(t) as a candidate Lyapunov function,
cpn Da|_ |C+DAK  DAG we have

0
Definition 1 (Robust Stability [24]):The uncertain system (1) is / |uj?dt
robustly stableif (I —My34)~2 exists inz (L5) and is causal, for all -

c r a1 0 2 2 0 el 2
Aenc. >80+ [ (|2fh, ~ A )des [ [e-ActEs at
Definition 2: The uncertain system (1) is said to hlebustly 0 - —o , Ac
stabilizableif there exists a static state feedback law= Fx such +/ ‘u— (Im—G*AcG) " 1(B*S ™1 + G*AcK)x dt
that the corresponding closed-loop uncertain system isstbpstable. —o (In—G*AG)
Also, robust detectabilitycan be defined similarly. >x5S %o.

The following lemma states a necessary and sufficient dondit
for robust stability. This lemma is given in terms of the pvsi
commutant set corresponding A5 defined as

Therefore, migg /%, [u?dt > X3S 1xo. Recall that equality is
achieved for LTI cases (without uncertainty); while for tinecertain
system (l)x6§1x0 provides a lower bound on the minimum control

Pg = {diag(B1ln,,--- ,6kln,) : 6i > O}. (2) energy required to drive the state froffi-c) = 0 to x(0) = Xo.
. . Solutions to (6-7) or (8-9) are closely related to geneealiz
Lemma 3:(see [24]) The uncertain system (1) is robustly stablg ,wians for the uncertain system (1). Before showing tiiss

if and only if there exis©© € P and X > 0, such that necessary to address the feasibility of the inequalitie®)(6

A*X + XA+ K*OK +XEOLE*X < 0. 3) Theorem 6:The following statements are equivalent:
(i) The uncertain system (1) is robustly stable.
1. CONTROLLABILITY AND OBSERVABILITY GRAMIANS (i) The Riccati inequality (6) admits a solutio§ > 0 for some
As is W.e” known, the c_ontrollablllty and obser\(ablllty @naans (iii) The Riccati inequality (7) admits a solutioR > 0 for some
play very important roles in LTI balanced truncation appiess to Ao € Po
0 .

model reduction; see [1]. In this section, we introduce gelimed
Gramians for the uncertain system (1), as defined below.

Definition 4: The matricesS> 0,P > 0 are said to be generalized
controllability or observability Gramidn respectively, for the uncer-
tain system (1) if the following inequalities hold,

ANS+SAL +BpBL <0 VA€ A, (4)
ANP+PAp+CACA <O VAEAC (5)

Proof: We only prove the equivalence betwegh and (ii).
(i) = (i) : (3) holds withX = S™1,0 = A¢ by using (8). Ther(i)
follows using Lemma 3.
(i) = (ii) : Using Lemma 3, it follows that (3) holds. Then we can
choosee > 0 sufficiently small, such that~ 11, — G*©G > 0 and

AX +XA+K*OK +XEOLE*X
+ (XB+K*OG) (e tIm—G*0G)"1(B*X + G*OK) < 0. (10)

Uncertai ingar eyetems wih Sructred Uncertaimy vieussed -6 X = (9©= & HAc, and subsiute these values into (10).
Y y .From this, it is not difficult to derive (8), and thus (6) halds =

in the framework of 1QCs. In these references, LTV systenih wi The following theorem relates (6) and (7) to the generalized

nonlinear uncertainties were studied, and parameteriiecaR dif- . . . .
. . . . . controllability and observability Gramians for the uneémt system
ferential equations were derived to characterize robustrathability ) . -
(1), as defined in Definition 4.

and unobservability of uncertain systems. In this sectiga, will Theorem 7:If there existS> 0, P> 0. Ac € Po, Ao € Po

apply the ideas in [19.]‘ [18] to th.e ur?certguln SVSte.”? (D). solving ARIs (6), (7), therS P are generalized controllability and
Consider the following algebraic Riccati inequalities (&R observability Gramians for the uncertain system (1).

AS+ SA 4 (SK* + BG*)(/\gl — GG*)*l(KS+ GB") Proof: We only prove the controllability part.
+EAG'E"+BB <0, (6) ApS+ S, + BaB,:
A*P+PA+ (PE+C*D)(Ao—D*D) " }(E*P+D*C) = (A+EAK)S+ S(A+ EAK)* + (B+ EAG)(B+EAG)*
+K*AK+C*C<0, (7) = AS+SA +EAMN;IA'E* + BB

K sk -1_ ok —1 K
IHere generalized Gramians are defined in the sense that atisfy sun- +(SK'+BG)(Ac GG') " (KS+GB')
derlying Lyapunov inequalities rather than equations [Mjte that the same —[SK* +BG* —EA(A: 1 — GG (A1 -GGt
notion also refers to structured Gramians in the literatubeen uncertainty 1
structures are involved; e.g., [11], [25]. x [SK"+BG" —EA(A:~ —GG')]".



Then (4) holds fronEA/\glA*E* =EA¢ l/ZAA*/\El/zE* < E/\glE* as described in Procedure 11. Thep is also balanced and robustly
and/\g1 —-GG* > 0. W stable. Furthermore,

IV. BALANCED TRUNCATION ASUADHGA(S) —Gra(9)lo <201+ +Yg), (14)
e C

It is shown that solutions to ARIs (6-7) are generalized Geas
for G, in (1). Consequently, traditional balanced truncatiomiégue where ! denote the distinct generalized Hankel singular values of
for model reduction can be applied. Firstly, we present showto Yd+1,---;Yn-
solve ARIs (6-7). By using the Schur complement twice antirigt Proof: It is easy to show that;,s satisfies (6) and (7) with
Ac =Ag1, (6-7) can be transformed into Linear Matrix Inequalitiedalanced Gramial;. Therefore,gx is balanced from Theorem 7,
(LMIs), as in the following propositions. and robustly stable from Theorem 6. As for the bound in (14g, t
Proposition 8: If there exist matrice$S> 0 andA¢ € Pg solving proof is analogous to that of Theorem 13, and thus omitted. hmr
the following LMI In the above theorem, we assume that the original systemhend t
SA +AS+EAE*  SK* B reduced system have identical ungertaintigs. If diffelqrr.ttertaintigs
N A G <0, (11) are aII(_)wed, the error bound will require an additional tefm
. N . determined by\¢, Ao, as to be shown below.
Theorem 13:Consider a robustly stable uncertain system (1) and
then S is a generalized controllability Gramian for the uncertaiguppose that the reduced dimension uncertain systanis obtained

system (1). as described in Procedure 11. Then
Proposition 9: If there exist matrice® > 0 and/\, € Pg solving
the following LMI sup [[Ga() = Gra(9)llew < 2(Vy+-+-+Vy+6), (15)
C
APLPALK'AK PE C bach
* —No D | <O, (12)  \where® = 5K 1 V/00iBi, 80i,Bci are the repeated entries 0k, Ac
* * - respectively, as defined in (2).
thenP is a generalized observability Gramian for the uncertagtesy Proof: We will utilize [16, Theorem 1] to prove the above result.
). For anyA, A € A®, define
Note that solutions to LMIs (11) and (12) are not unique. A3pos _ - .
ble heuristic is, taking (11) for example, to solve the faliog Semi- A = diag(s g,5 Mn_g,8), A=diags 'g,00-q,8),
Definite Programming (SDP) problem: minimizeace(S), subject — A E| — B] = —
to (11); see e.g. [24]. Here the objective function is chosaoh Ma1 = {K q » M1z = {G} , M21=[C D], M22=0,
that, in the absence of uncertainty, the solution leads écstandard M v o st 0o 1t
controllability Gramian. M= gll Mlz} 1= {271 (1) } , M= {271 6 } )
Definition 10: An uncertain system of the form (1) is said to 21 M2z 1 2
be balancedif it has i ili ili Ao 0 1
generalized observability and controllability A s _ 4 ~ 1
Gramians which are identical diagonal matrices. The diabentries M= 0 _Kcl} 2= dlag<217227 (Nofe) 2)’
are then referred to as generalized Hankel singular valoeshg
uncertain system. where A E,B,K,G,%1,3,,Ac,\o are obtained from Procedure 11.
We summarize the proposed model reduction algorithm agwisll It is easy to check thatz; = #u(M,d), G = Fu(M,A), and
Procedure 11 (Balanced Truncation): My, M2,M3 are correspgngling IQC multipliers for the uncertainty
1) Solve LMIs (11) and (12), or the associated SDP problems, Blocks in A,A. Then A A satisfy the IQCs defined byl =
obtain generalized Gramiarg> 0,P > 0. My Mz M i) =diag My oy, Mg, 0, j = 1,2, where
2) BalanceS, P by constructing a state transformation maffif2] [(Mey MNe2)l’ @) SAE o
such that ni= My  Miez . Note that (11) and (12) are equivalent to the

ka1 . . M2y Mo
TST = (T77)'PT " =Z=diag(Z1,Z2) = diag(ys,--,¥n),  following two matrix inequalities respectively,
(13)

wherey; > ... > g > Yae1 > - > yn > 0, I3 = diag(y1, ..., Ya), {'V'Ill '\"012} H{Mln M012}<{8 ﬂ
Z2 = diag(yd+17 ~-~7Vn)- % [<2 .

3) Write the transformed nominal system of (1) &8 = M1l |2 O 0 M11 M Mg < O

A|E B | 0 32 | 21M21 < 0.

K|0o, G |, whereA=TAT, E=TE B=
C|D O Therefore, the error bound (15) holds by invoking [16, Tlesorl].
X

TB, C=CT1; K=KT~L The sub-matrices of this balanced - ' . -
realization of M corresponding to the matrif, in (13) are Definition 14: The Hausdorff distancey (¥ , # ) between the sets

truncated to obtain a reduced order uncertain system defin@dand}[ is defined as

A|E B 7 7
d H):=maxd(F ,#),d(#, ,
byMi=| K, |0, G with orderd. Hﬂ(% ) X (?_ ),d#, 7))
clp o d(F,#):= sup inf |f(s)—h(9)|w.
. r Ixm | ) f(s)er h(ser
4) Write the reduced dimension uncertain system @g =
Fu(Mr,4),A € A, If we denoteGp := {Ga : A € A%} and Gia := {Gra : A € A®},

Theorem 12:Consider a robustly stable uncertain system (1) artie above result provides an upper bound on the Hausdoténtie
suppose that the reduced dimension uncertain sygtgnis obtained between these two setdi (Ga, Gra) < 2(y‘1 +e —H/Eq +6).
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(a) Continuous-time system. (b) Discrete-time system.

Fig. 1. Bilinear transformation.

A. Connection to Discrete-time Cases

Following [11], [16], we include a passive integral operalg =
s71| and a norm-bounded shift operathf = Al, as seen in Fig. 1, in
the upper uncertainty blocks; the lower blocks are constattices.
A bilinear transformatiomd, = (Ap —1)(Ap+1)~1 can be applied to
convert the continuous-time system in Fig. 1(a) to the digctime
system in Fig. 1(b) as follows,

A=(1-A"11+A),

E 8 =Vv21-A'E B, [Q «z[é} =A% 1)

G 8J-lrae el g

b Dy |C D O

Using the discrete-time results in [10], [11], the Lyapurmoequal-
ity associated with generalized controllability Gramiam €iscrete-
time systems in Fig. 1(b) is

k &lls nl[R

ElEE e e

whereS> 0, and/\¢ € Po. By using the Schur complement, (17) is

equivalent to

ASA* - S A~ E B
« RKAFL G 6
* * —N¢ O <0 (18)
* * * —I
V2(1—A) 0
Left and right multiplying (18) by diag | 2 N | 1,1 | and
its transpose and using (16), the continuoﬁs-time RI (6) be

derived. Note that ARI (6) is related to generalized cotatulity
Gramians for our continuous uncertain systems. This d@siva
illustrates the connection between our continuous-timmilte and
those in [11] for discrete-time systems, and provides aenfit
perspective on our balanced truncation approach.

V. Ho MODEL REDUCTION

(a) Original configuration. (b) Equivalent configuration.

Fig. 2. LFT configuration.

Fu(Mr, D) e <€, if there existS> 0,P > 0,A¢ € Pg,/\o € Pg solving
Riccati inequalities (6), (7) and satisfying

Mo > €A, Amin(SP =¢€2, rank(SP—¢€2l) <d.  (19)

Proof: Let M; = {Mrll Mrlz} and define

Mr21 Mr22
A|lE B O
B M1 Mgz O K10 G 0o
M=| Mar M =1\ =1 o1 5
0 I 0 0|0 | 0

Then the configuration of the error systerg(M,A) — Fu(Mr,4) is
shown in Fig. 2(a), which is equivalent to the one shown in. Fig

2(b) for M Mr22 Mmjj. Now the result of the theorem can

Mri2 Mg _
be proved by using [26, Theorem 5.1] for an equivalent LRY

synthesis problem. [ ]
Remark 16:Note that (6), (7) and (19) are equivalent to (11), (12)
and the conditions below,

No Elp S ey S ey
o so [ e]so S

Those are referred to as rank constrained LMIs and can bedsbly
LMIRank [27].

} <n+d. (20)

VI. LQG BALANCED TRUNCATION

The balanced truncation anH., model reduction techniques
introduced above require uncertain systems be robusthlestén
LQG balanced truncation approach, taking into accalosed-loop
control considerations, was presented in [6] to overcomeesthbility
requirement for LTI systems. In this section, we apply thipraach
to the uncertain system (1).

Suppose that the uncertain system (1) is robustly stablézand
detectable. Consider the following LQG control and filterceiti
inequalities for the uncertain system (1), for Al A°,

W(ap— BaRy " DACA) + (An — BaRy DACH)'W
~WBAR, BAW + CARA Lea <0, (21)

As shown in [24, Theorem 4.20], for a nominal system without (ﬂAfﬁAK[lDZCA)V +V(ﬂA*93AK[1@£CA)*

uncertainties, generalized Gramians can be used to charadt,
model reduction problems; see also the original paper [Bis & also
true for our uncertain system (1), as stated in the followttmgprem.

ViR TV +BaRy 1B <0, (22)

where®y = | +DxDp, Rp =1 +DpDj,.

Theorem 15:Given a robustly stable uncertain system (1), there It is shown that LQG control and filter algebraic Riccati etiprzs

exists a reduced dimension uncertain system definedMpy=

Ar | Er Br
Kr | Dr11 Dr12 of order d such that sug#u(M,A) —
Cr | Dr21 Dr22 Ache

or inequalities are closely related to coprime factoraatproblems
[8], [25] and some special» control problems [28], [29]. In what
follows, we will establish these connections and provideumerical
approach to obtain solutions to Riccati inequalities (2§l §22).



Motivated by [29], [28], the filter Riccati inequality (225 irelated 007

to an output injectiorr> problem. This problem involves finding an oot
observer gairl, such thatl|#i(Goia,L)ll,, <Y with a giveny > 0. O"U‘:
Apn | [0 @A} | = oo
Her€ Goa=| | [[0 0] O |[,and the state space description o oot
ca |V »a] O
is . 0.035
X:AX+EE+BUZ+VV7 0.03
Z= KX+GU2 0025
Gola:y Y=X (23) N o : o8 :
p=Cx+DE+uy, (a) Balanced truncation
E=0Az, AcAC.

Now apply Proposition 8 tazoa with w=Lp. That is, make the
following substitution in (11),

A+LC—A E+LD—E, [L Bj»B, [0 G —»G.  (24)

Defining variableS=S1, A¢ :Kgl, Y = SL, we have the following
result.

Theorem 17:1f matricesS> 0, A\¢ € Pg andY ¢ R™! solve the
following LMI:

(L) SE4+YD Y  SB+K*AG

* AT Ohxm
* * —I Orxm <0, (25)
* * *  —Im+G*NAG oof - T T T T T

where (1,1) = A'S+ SA+YC+C*Y* + K*AK, thenS * satisfies
(22).

Proof: By Proposition 8, the solutioSto (11) satisfies Lyapunov
inequality (4). Since (25) is derived by substituting (24fpi (11), the
solutionS to (25) satisfies

[[RORNOTN

(An+Lca)S " +5 M (ap+ L)
+[L Ba+LDpl[L Ba+LDp]* <O, S T

which is equivalent to (¢) He model reduction
(An— %Railf’ZCA)éil +5 Han— BARN TDACH)" 0
SR oS o mary L oss
+(RaYS T+ CaS T+ paBs) Ry HRAYS T+ oS T+ 2a35) < 0. L
This implies thaiS * satisfies (22). n gjm

The following result on the control Riccati inequality (2dan be
obtained similarly.

Theorem 18:If matricesP > 0,A, € Pg and X € R™" solve the o1
LMI: 0051 -05 0 05 1
(1,1) PK*+X*G* X* PC*+EA,D* ’
_A, d) LQG Balanced truncation
* No Ons<m On <0, (26) Fig. 3. He-norm of th(e)err?)r system.
* * —Im OmxI
* * * —1; + DAD*

where (1,1) = AP+ PA* + BX + X*B* + EAoE*, thenP " verifies
(21).

Note that solutions to LMIs (25) and (26) are not unique. Agpos
ble heuristic is, taking (25) for example, to solve the faliog SDP

problem: minimizetrace(Z), subject to (25) an IZ I—g > 0; see

n
e.g. [25]. We now summarize the proposed LQG balanced ttiamca 1) ObtainSandP by solving LMIs (25) and (26) or the associated
algorithm as follows. SDP problems, and 18=S ' P=P%;

Procedure 19 (LQG Balanced Truncation):

2This expression is a slight abuse of notation for state speatzations .
since herqu’ Bp, Ch, and Dp are Operators' 2) FO”OW StepS 2-4 in PrOCEdure 11.
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